One-dimensional group construction

Dustin Cartwright

University of Tennessee, Knoxville

July 10, 2025

Algebraic matroids

- K: a field (of any characteristic)
- C: a one-dimensional irreducible variety over K
- $X \subset C^n$: irreducible subvariety
- $\pi_I \colon C^n \to C^I$ coordinate projection onto the coordinates $I \subset [n]$
- Matroid of X:
 - Independent sets are I such that $\pi_I(X) \subset C^I$ is dense
 - Bases are sets I such that $\pi_I|_X$ is dominant and generically finite.
 - Rank of *I* is the dimension of $\overline{\pi_I(X)}$

Matrix of endomorphisms

- C = G: is a 1-dimensional connected algebraic group (i.e. $(K, +), (K^{\times}, \times)$, elliptic curve)
- M: $n \times r$ matrix with M_{ij} : $G \rightarrow G$: group endomorphisms of G

$$\Phi\colon G^r\to G^n$$

$$\Phi_i(g_1,\ldots,g_r)=M_{i1}(g_1)\cdot\cdots M_{ir}(g_r)$$

Take
$$X = \phi(G^r) \subset G^n$$
.

Special case: linear matroids

Take G = (K, +). For $a \in K$, can consider a as an endomorphism defined by a(g) = ag. Then,

$$\Phi_i(g_1,\ldots,g_r)=M_{i1}g_1+\cdots+M_{ir}g_r$$

 $X = \Phi(\mathbb{A}^r)$ is the column space of M, with the independent sets the set of linearly independent rows

Special case: toric varieties

Take $G = (K^{\times}, \times)$. Write $n \in \mathbb{Z}$ for the endomorphism $n(g) = g^n$.

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \Phi(x, y, z) = \begin{pmatrix} x \\ y \\ z \\ xy \\ xz \\ yz \\ xyz \end{pmatrix}$$

 $\begin{pmatrix} 1 & 1 & 0 & -1 & 0 & 0 \end{pmatrix}$ is in the left null space, corresponding to $(x)(y)(xy)^{-1}-1$ gives a dependence

One-dimensional group construction

 \mathbb{E} is the endomorphism ring of a 1-dimensional connected algebraic group G. \mathbb{E} is contained in a division ring Q.

- M is an $n \times r$ matrix with entries in \mathbb{E}
- $\Phi \colon G^r \to G^n$ is the group homomorphism defined by M
- The algebraic matroid of $X = \Phi(G^r)$ is the same as the row span of M

(Lindström 1988, Evans-Hrushovski 1991)

One-dimensional algebraic groups

- G = (K, +), $\mathbb{E} = Q = K$ in characteristic 0, $\mathbb{E} = K[F]$ in characteristic p, skew polynomial ring with $F\alpha = \alpha^p F$ for $\alpha \in K$
- $G = (K^{\times}, \times)$: $\mathbb{E} = \mathbb{Z}$, $Q = \mathbb{Q}$
- G an elliptic curve: Q is \mathbb{Q} , imaginary quadratic extension, or quaternion algebra over \mathbb{Q} (if p > 0), \mathbb{E} is finitely generated subring of Q.

In all cases, there is a \mathbb{Z} -valuation on Q with commutative residue field.

Non-commutative example

K has characteristic p, G = (K, +), $\mathbb{E} = K[F]$ Pick $\alpha \in K$

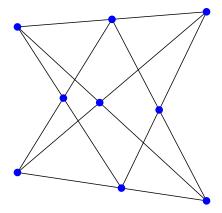
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & \alpha \\ 1 & F \end{pmatrix}$$

Then X is the image of:

$$\Phi(x,y) = (x,y,x + \alpha y, x + y^p)$$

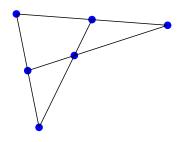
$$egin{pmatrix} (F-lpha^p & 0 & -F & lpha^p \end{pmatrix}$$
 is in the left null space, gives $(x^p-lpha^px)-(x+lpha y)^p+lpha^p(x+y^p)=0$ as a dependency

Non-Pappus matroid



The non-Pappus matroid is linear over any non-commutative division ring and therefore algebraic over any field of positive characterisitic.

Evans-Hrushovski theorem



Theorem (Evans-Hrushovski 1991)

Any $X \subset C^6$ which whose matroid is the graphic matroid of K_4 is equivalent to a one-dimensional group construction $G^3 \to G^6$.

As a corollary, they establish a Mnëv-type theorem.

Characteristic sets

The algebraic characteristic set $\chi(M)$ of a matroid M is the subset of $\{0\} \cup \{\text{primes}\}$ such that there exists a subvariety whose algebraic matroid is M.

Theorem (C.-Varghese 2024)

Let C be either a finite or cofinite subset of $\{0\} \cup \{primes\}$. Assume that if $0 \in C$, then C is cofinite. Then there exists a matroid M such that $\chi(M) = C$.

Density

Theorem (C.-Varghese 2024)

Let $0 \le \alpha < \beta \le 1$. Then there exists a matroid M such that:

$$\alpha < \lim_{N \to \infty} \frac{|\{p \in \chi_A(M), p < N\}|}{|\{p \text{ prime}, p < N\}|} < \beta$$

The densities of algebraic characteristic sets are dense.

Question

Can $\chi(M)$ be infinite and have density 0? Non-cofinite and density 1?