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Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.
Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.

Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.
Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Arabidopsis root

Gene expression
microarrays are a tool to
understand dynamics and
regulatory processes.
Two ways of separating
cells in the lab:

I Chemically, using
18 markers (colors in
diagram A)

I Physically, using
13 longitudinal
sections (red lines in
diagram B)



Measurement along two axes

I Markers measure variation among cell types.

I Longitudinal sections measure variation along developmental
stage.

Näıve approach would use variation among each set of experiments
as proxies for variation along each of the two axes.
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Problem with näıve approach

Correspondence between markers and cell types is imperfect.

For example, the sample labelled APL consists of mixture of two
cell types:
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Problem with näıve approach

Similarly, the longitudinal sections do not have the same mixture of
cells. For example:

I In each of sections 1-5, 30-50% of the cells are lateral root
cap cells.

I In sections 6-12, there are no lateral root cap cells.

Conclusion: Need to analyze each transcript across all 31
(= 13 + 18) experiments to model the expression pattern in the
whole root.
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Model

I Expression level for each combination of a cell type and a
section.

I Each marker and longitudinal section measures a linear
combination of these expression levels.

I The coefficients of these linear combinations are determined
by:

I Numbers of cells present in each section
I Marker selection patterns

Under-constrained system: 31 (= 13 + 18) measurements and 129
expression levels.
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Assumption

Since the system is under-constrained, we make the following
assumption:

I The dependence on the expression level on the section is
independent of the dependence on the cell type.

I More precisely, the expression level in section i and type j is
xiyj for some vectors x and y .

Example

If the expression level is either 0 or 1 (off or on), then our
assumption says that it is 1 for the combination of some subset of
the sections and some subset of the cell types.
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Non-negative bilinear equations

Equating the expression levels from the above model with actual
observations gives a system of bilinear equations:

x tA(1)y = o1

...

x tA(k)y = ok

x1 + · · ·+ xn = 1 (normalization)

where

A(1), . . . ,A(k) n ×m non-negative matrices (cell mixture)

o1, . . . , ok positive scalars (expression levels)

We want approximate solutions with x and y non-negative vectors
of dimensions n × 1 and m × 1 respectively.
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Kullback-Leibler divergence

Maximum likelihood estimation: Given a model (function
f : Θ→ Rk) and empirical counts for each of the k events,
determine the parameters which maximize the probability of the
counts given the model.

Equivalently, maximum likelihood parameters minimize the
Kullback-Leibler divergence between the predicted distribution and
the empirical distribution (= normalized counts):

D(o‖f (θ)) :=
k∑
`=1

o` log

(
o`

f`(θ)

)

− o` + f`(θ)

With two additional terms, the generalized Kullback-Leibler
divergence provides a measurement of the difference between any
two positive vectors.
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Finding maximum likelihood parameters

Two statistical methods for finding maximum likelihood
parameters:

I Expectation Maximization: reduce solving mixture model
(summation) to solving underlying equations.

I Iterative Proportional Fitting: solving log-linear (monomial)
equations.



Expectation Maximization
Want to solve: ∑

i ,j

A
(`)
ij xiyj = o` for ` = 1, . . . , k (1)

I Start with guesses x̃ , ỹ

I Estimate contribution of (i , j) term of left side of equation 1
needed to obtain equality:

eij` :=
A

(`)
ij x̃i ỹj∑

i ′j ′ A
(`)
i ′j ′ x̃i ỹj
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I Find approximate solution to system:(∑
`

A
(`)
ij

)
xiyj ≈

∑
`

eij`

I Repeat until convergence
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Iterative Proportional Fitting

Want to minimize Kullback-Leibler divergence of:(∑
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j Aij x̃i ỹj

I Adjust ỹi :

ỹj ← ỹj
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Back to Arabidopsis root

Using this algorithm, we estimated the expression profiles of
30, 000 transcripts in several hours.



Validation

A: reconstructed
expression levels.
B and C: same
transcript visualized
using green fluorescent
protein (GFP).



Generalization: positive root finding

The EM/IPF-based algorithm can be generalized to find exact or
approximate positive solutions to polynomial systems of equations:∑

α∈S

a`αxα = o` for ` = 1, . . . , k ,

where

I S is a finite set of exponent vectors,

I coefficients a`α are all non-negative,

I the o` are positive, and

I a technical condition on the exponents (sufficient to be
homogeneous or multi-homogeneous).


