
∫ 0

−1

x dx

x2 + 3x + 3
=

∫ 0

−1

(x + 3
2 )− 3

2

(x + 3
2 )2 + 3

4

dx =
[
1
2

ln
(

(x +
3
2
)2 +

3
4

)
− 3/2√

3/2
arctan

(x + 3
2√

3/2

]0

−1

=
1
2

ln 3−π

6

√
3

(key idea was: complete square and separate fraction to reduce to standard integral)

∫ 1

0

dx√
x(1− x)

=
∫ 1

0

dx√
1
4 − (x− 1

2 )2
=

∫ π/2

−π/2

1
2 cos u du

1
2 cos u

= π

(key idea was: square root of quadratic polynomial needs trig substitution. complete the square to see which
one: namely x− 1

2 = 1
2 sinu) — Alternatively, this particular example yields to the “ingenious substitution”

x = sin2 t, which is however NOT a substitution that can be employed routinely for broad classes of integrals.

∫
x arctanx dx =

x2

2
arctanx−

∫
x2

2
1

1 + x2
dx =

x2

2
arctanx−x

2
+

1
2

arctanx+C

(key idea was: integration by parts differentiating arctanx to get rid of the inverse trig; then PFD for the
rational function thus obtained) — Alternatively, you could have tried the substitution x = tan u, but you
might find the integration by parts that would still have to follow very unintuitive∫ ∞

−∞

dx

coshx
=

∫ ∞

−∞

2dx

ex + e−x
=

∫ ∞

0

2dt/t

t + t−1
= 2

∫ ∞

0

dt

t2 + 1
= π

(key idea was: rational expressions in ex are reduced to rational expressions by the substitution u = ex. The
resulting integral will need PFD unless it happens to be a standard integral already, which is the lucky case
in this example.) — Alternatively you could have used the substitution v = tanh(x/2) parroting the analog
paradigm “rational expression in sinx and cos x are dealt with by means of u = tan x

2”.

∫ π

0

cos x

2 + cos x
dx =

∫ ∞

0

1−u2

1+u2

2 + 1−u2

1+u2

2du

1 + u2
=

∫ ∞

0

2(1− u2) du

(3 + u2)(1 + u2)
= 2

∫ ∞

0

(
1

1 + u2
− 2

3 + u2

)
du =

(3− 2
√

3)π
3

(key idea is: “rational expression in sinx and cos x are dealt with by means of u = tan x
2 . Leads to a PFD

with arctan type integrals in this case.”)

The next integral is the same, but care must be taken with the limits under the substitution u = tan x
2 :

x ∈ ]0, π[ corresponds to u ∈ ]0,∞[; and x ∈ ]π, 2π[ corresponds to u ∈ ]−∞, 0[.

∫ 2π

0

cos x

2 + cos x
dx =

(∫ ∞

0

+
∫ 0

−∞

) 1−u2

1+u2

2 + 1−u2

1+u2

2du

1 + u2
= . . . =

2
3
(3−2

√
3)π

Alternatively, you could have used the periodicity of the integrand to integrate over [−π, pi] instead of [0, 2π],
thus bypassing the aforementioned difficulty. But either way, this difficulty should NOT cuase you second
thaughts about the u = tan x

2 substitution.

∫
(ex + 1)(e2x + 1)

e3x + 1
dx =

∫
(u + 1)(u2 + 1)

u3 + 1
du

u
=

∫ (
1
u

+
1

(u− 1
2 )2 + 3

4

)
du = . . . = x+

2√
3

arctan
2ex − 1√

3
+C

(key idea is to substitute u = ex, as for all rational expressions in ex. Here an algebraic cancellation happens
to be possible, before or after the substitution.)

1



∫
x3(lnx)2 dx =

x4

4
(lnx)2−

∫
x4

4
2 ln x

x
dx =

x4

4
(lnx)2−

∫
x3

2
lnx dx = . . . =

x4

4
(lnx)2−x4

8
lnx+

x4

32
+C

(key idea is integration by parts, each times differentiating the logarithm(s) until they are gone. )

∫ π/3

0

tanx dx = [− ln | cos x|]π/3
0 = ln 2

This may be considered as a standard integral worth memorizing: not the formula, but the fact that the
observation tan x = sinx/ cos x makes the problem a routine substitution. If you overlook this simple fact,
your routine approach would be u = tan x

2 as for all rational expressions in sinx and cos x, but that makes
it overly complicated. – If you continue to overlook that the simple sinx substitution works here, but invest
more smartness towards the cookbook substitutions, you could write sinx/ cos x = (sinx cos x)/(cos x)2 and
substitute v = tan x, which works for all rational expressions depending on “pairs of trigs”, namely sin x cos x,
sin2 x, and cos2 x only. That’s better, but still more complicated than the given formula. You may wish
to try each of them just for exploration purposes. As always, the general-purpose tools are good for many
purposes, but for some purposes, they may fall short of being best.

∫
x4 + 1
x3 + 1

dx =
∫ (

x +
2/3

x + 1
+

− 2
3 (x− 1

2 )
(x− 1

2 )2 + 3
4

)
dx =

x2

2
+

2
3

ln |x+1|− 1
3

ln(x2−x+1)+C

(A routine PFD problem. For definite integrals, watch when/if | · | is needed, and when you use it, don’t fall
in the trap if

∫ 0

−2
is asked for this integrand: it doesn’t exist because of x = −1, and the | · | in ln |x + 1|

prevents the logarithm from warning you with a loud cry ‘foul!’)

∫
exp(−

√
x) dx =

∫
exp(−u) 2u du = −2(1+

√
x) exp(−

√
x)+C

Substitution u =
√

x and one integration by parts, in either order. There is however a paradoxical observation
here: If you do parts first, you integrate 1 and differentiate the exponential. If you substitute first, you’ll
integrate the exponential. But this paradox is psychology, not math. You could have done parts first,
integrating x−1/2 exp−x1/2 and differentiating the complementary factor x1/2, thus going parallel with the
integration by parts I did *after* the substitution. But who would *see* such a devious trick beforehand!?

∫ √
1− x

1 + x
dx =

∫
1− x√
1− x2

dx =
∫

(1− sin t) cos t dt

cos t
= t+cos t+C = arcsinx+

√
1− x2+C

The moral is:
√

linear/linear is as good or as bad as
√

quadratic. You could have used
√

1−x
1+x =

√
1−x2

1+x

instead, by expanding the fraction differently. In either case, a trig substitution is demanded: x = sin t, with
t ∈ [−π/2, π/2] (x = cos t with t ∈ [0, π] would have worked just as well.)

∫
(arcsinx)2 dx = x(arcsinx)2−

∫
x 2 arcsinx

1√
1− x2

dx = x(arcsinx)2−2
∫

x√
1− x2

arcsin x =

= x(arcsinx)2 + 2
√

1− x2 arcsinx− 2x + C

Key idea was: Integrate by parts twice (I’ve shown one), differentiating the inverse trigs until they’re gone.
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∫ t

0

cos ax e−bx dx = . . . =
b

a2 + b2
+e−bt a sin at− b cos at

a2 + b2

Key idea is either: integrate by parts twice, obtaining the original integral back, and then solve for this yet
unknown integral. Or else: write trigs in terms of exponentials and take e(−b+ia)x/(−b+ ia) as antiderivative
of e(−b+ia)x, remembering that complex exponentials are friend, not foe.

∫
x sin2(x2) dx =

x2

4
− sin 2x2

8
+C

(A straightforward substitution: x2 = u. Then sin2 u can be integrated by the double-angle formula, or
through an integration by parts as in problem 41. With parts, you get the same result in a slightly different
shape.)

∫
sin(ln x) dx =

x(sin(lnx)− cos(ln x))
2

+C

(A straightforward substitution: lnx = u, with an integration by parts following.)
Look at all those hwk problems that tell you about key integrals that cannot be evaluated in terms of

elementary functions. Know the Euler Formula and be able to switch from trigs to exponentials and back.
Know how to use the tan x

2 substitution. (The trig identities needed will be provided). Be able to select easy
and intractable integrals out of a pool of similar-looking problems. I may give problems of the type “Use
integration by parts on

∫
dx/(1 + x2) to evaluate

∫
dx/(1 + x2)2.”
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