Homework Chapter 2 UTK – M251 – Matrix Algebra Fall 2003, Jochen Denzler, MWF 1:25–2:15, Ayres 318

- 1. How many inversions does the permutation (3, 1, 5, 2, 7, 4, 6) have? (In other words, we are taking about the permutation that gives the term $a_{13}a_{21}a_{35}a_{42}a_{57}a_{64}a_{76}$ in the determinant of a 7×7 matrix) Is it an even or an odd permutation?
- 2. Read the glossary entry on even and odd permutations. Find a sequence of swaps of pairs of numbers that obtains (3, 1, 5, 2, 7, 4, 6) from (1, 2, 3, 4, 5, 6, 7). How many swaps did you take?
- **3.** How many inversions does the permutation (n, n 1, n 2, ..., 3, 2, 1) have? List the number of inversions for the cases n = 2, 3, 4, ..., 9 in a table.
- 4. Look at ex. 8 on p. 86 and make sure that you understand the special rule memorization

device for 3×3 determinants. Use it to calculate $\begin{vmatrix} 2 & -1 & 3 \\ 4 & 1 & -2 \\ 1 & 1 & 5 \end{vmatrix}$. It's also a good idea

to try to do this same technique without actually copying the two columns on paper.

- 5. Complete the following sentence: If two columns (or two rows) in a square matrix are equal, then the determinant of this matrix
- 6. Calculate the following determinant by the use of row transformations:

2	-1	0	0	0	0
-1	2	-1	0	0	0
0	-1	2	-1	0	0
0	0	-1	2	-1	0
0	0	0	-1	2	-1
0	0	0	0	-1	$egin{array}{c c} 0 & \ 0 & \ 0 & \ 0 & \ -1 & \ 2 & \ \end{array}$

- 7. Have a close look at your work in the previous problem. You should discern a pattern. I give you a 100×100 matrix with the same pattern, namely 2's on the diagonal and -1's next to them, 0's everywhere else. What is the determinant of this matrix?
- 8. Calculate

1 1 10 1 2	
dot	
$\det \begin{bmatrix} 1 & 10 & 1 & 2 \\ 0 & -5 & 1 & 2 \end{bmatrix}$	
4 15 2 1	

9. Find the following determinant, using a smart sequence of row or column transformations to get many zeros easily:

1	1	1	1	1	1	1
2	2	2	2	2	2	1
3	3	3	3	3	2	1
4	4	4	4	3	2	1
5	5	5	4	3	2	1
6	6	5	4	3	2	1
7	6	5	4	3	2	1

Hint: There are at least two choices: create zeros in the first column below a leading one in the first row, then cofactor expansion of the first column. Or: bottom-up row operations: for i = n, n - 1, ... 2, subtract the $(i - 1)^{\text{st}}$ row from the i^{th} row.

10. Let

$$V := \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$

Before you start calculating, answer the question: What value does V have, if x = y? — Now calculate V for general x, y, z. Here comes the punchline: I want you to write the result not as a mess with 6 terms, but transform it into a product (* - *)(* - *)(* - *), where you have to figure out what the * stand for. And the very first question in this problem will serve as a hint how to accomplish this task.

11. In the following matrix the symbols *e* and *o* stand for even and odd integers respectively. I don't reveal for which exactly. Different *e*'s may stand for different even numbers, and similarly for *o*'s. I claim that from this information you can already know that the determinant

is not zero. Explain how you can come to this conclusion.

12. For which numbers a does the linear system

$$ax + 2y - 3z = 5$$
$$2x + 3y - 2z = 7$$
$$3x + 2y - 5z = 9$$

have exactly one solution? Use Cramer's rule to find y in this case. (Finding x and z is not required.)

13. For A as given below, find $\operatorname{adj}(A)$.

	1	-1	2
A =	-2	a	-3
	0	-2	a

- 14. Let A be a 5×5 matrix with determinant -2. Simplify $\operatorname{adj}(\operatorname{adj}(A))$ to an expression that can be typed on the computer keyboard with 5 or less keystrokes. Make sure that you give a clear calculation to justify your result. Hint: If you find this difficult, you should collect formulas about the adjoint of a matrix and the determinant of matrices from the glossary, and you need to look which are useful and try to put them together. Quote the formulas you are using.
- 15. If all entries of a square matrix A are integers and if furthermore det A = 1, can you conclude that all entries of A^{-1} are integers? If the answer is yes, explain why; if the answer is no, explain why not (counterexample).