Comments on #1:

\(x \in A \cap B \) means: \(x \in A \) and \(x \in B \); y'all know this. BUT

\(x \not\in A \cap B \) doesn't mean "\(x \not\in A \) and \(x \not\in B \)"; and the definition of intersection doesn't justify such a claim.

\(x \not\in A \cap B \) is equivalent to \(x \not\in A \) or \(x \not\in B \).

Sample sol'n: "\(\in \)"

Let \(x \in (A \cap B) \cup (B \cap A) \). This means \(x \in A \cap B \) or \(x \in B \cap A \).

Case 1: \(x \in A \setminus B \), i.e. \(x \in A \), but \(x \notin B \).

Since \(x \in A \), \(x \in A \cap B \) or \(x \in B \), i.e. \(x \in A \cup B \).

We claim that \(x \notin A \cap B \). For if \(x \) were an element of \(A \cap B \), it would in fact be an element of \(B \), contrary to "\(x \notin B \)".

So we have seen \(x \in A \cap B \), but \(x \notin A \cap B \), hence

\(x \in (A \cup B) \setminus (A \cap B) \).

Case 2: \(x \in B \setminus A \), i.e. \(x \in B \), but \(x \notin A \).

(likewise as Case 1, only with \(A, B \) interchanged).

"\(\notin \)" Let \(x \in (A \cup B) \setminus (A \cap B) \). So we have \(x \in A \cup B \), but \(x \notin A \cap B \).

In particular \(x \in A \) or \(x \in B \); but not both, because \(x \notin A \cap B \).

Case 1: \(x \in A \); but then \(x \notin B \).

Hence \(x \in A \setminus B \). Therefore \(x \in (A \setminus B) \cup (B \setminus A) \).

Case 2: \(x \in B \); but then \(x \notin A \).

Hence \(x \in B \setminus A \). Therefore \(x \in (A \setminus B) \cup (B \setminus A) \).

BTW: I phrased the problem "Show that for any sets \(A, B, C \), it holds...".

But \(C \) never occurred in the statement. Technically, it this is