
The Begin of an Exciting Story
UTK – M351 – Algebra I

Spring 2004, Jochen Denzler

Problem 22 of your homework is actually the begin of an exciting story. To explain this, I
need to change the ring in Problem 22 (which I have chosen for simplicity) a little bit. I could
have asked the same problem (division with remainder) for the ring

Z[ω] = {a + bω | a ∈ Z, b ∈ Z} with ω =
−1 + i
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instead of
Z[i] = {a + bi | a ∈ Z, b ∈ Z} .

The significance of ω is that z = ω is a complex solution of z3 = 1, as compared to z = i,
which is a complex solution of z4 = 1.

And the ring Z[ω] plays an important role in the early days of the famous Fermat problem,
which made the headlines a few years ago: Fermat had claimed that there are no (nonzero)
integer solutions u, v, w to the equation u3+v3 = w3, nor to u4+v4 = w4, nor to u5+v5 = w5,
etc., for any integer exponent n ≥ 3. (In contrast, for n = 2, you have many such solutions,
the simplest ones being 32 + 42 = 52 and 52 + 122 = 132.) And I said ‘nonzero’, because we
don’t care for trivial solutions like 53 + 03 = 53. As nobody knew how to prove Fermat’s
claim for general exponent n, people would naturally start tackling specific exponents n, one
at a time. n = 4 was the easiest, but the next more difficult one, n = 3 will be the hero of
our story. And you already see that we are in the right company with the number ω, which
was designed as one other solution to z3 = 1 (next to the obvious real solution z = 1), when
we are dealing with third powers as in the equation u3 + v3 = w3.

To appreciate the one crucial idea people had in those days, think of the following simpler
problem: I ask you “are there integers u, v such that u2 + v2 + 1 = 0?” – You immediately
reply “No way, there are not even real numbers u, v that could satisfy the equation, let alone
integers.”

Well, the same easy answer is not available for u3 +v3 = w3, because there are real solutions,
like e.g. ( 3
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12)3. But maybe we can find some other class of numbers

comprising more than only the integers, but certainly not all real or complex numbers; a
class of numbers that has two properties: (1) We can show that even in that larger class of
numbers there is no soluton. (2) We actually gain an advantage that simplifies the work in
that larger class of numbers, as compared to the set Z. This miraculaous class of numbers is
the ring Z[ω], which contains Z as a subring but is itself a subring of C (not a subring of R).
It was shown that there are no nontrivial solutions u3 + v3 = w3 in the ring of numbers Z[ω],
and therefore not in the smaller ring Z either.

What made Z[ω] such an advantageous ring to work in? The answer is that you can write
u3 + v3 = (u + v)(u + ωv)(u + ω2v). And they would start (kind of): “Let p be a prime
number dividing w. Then it must divide w3 = u3 + v3, and so it must either divide u + v or
u+ωv or u+ω2v etc.” You have seen a very simple version of this kind of game in the proof
that there are no integer solutions of u2 = 2v2 (i.e.,

√
2 is not rational). Remember? 2 must

divide u2, so 2 must divide u, but then u2 is divisible by 4, and then v2 must be even, etc.

Now there was only one problem: Prime numbers were taylormade for the ring Z, not for the
ring Z[ω] (and the concept of a ring wasn’t invented yet in those days anyways). So it was
necessary to rebuild the whole arithmetic from scratch, starting with divisibility, division with
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remainder (there we go with our problem 22) all the way up to prime numbers, but this time
for the ring Z[ω]. They did it, and a lot more along these lines. And the Fermat problem
became the midwife for a whole area of mathematics, at the borderline between abstract
algebra (which was not invented then) and number theory (which the ancient Greeks knew
already, but which needed to be re-invented for the new numbers).

And even though the whole story is much deeper than our M351 course, I feel you should have
heard about this background, because our course, too, is on the borderline between abstract
algebra and number theory. And without this history, some of the stuff might not have made
it into the curriculum. I have taken the history lightly here. It was actually Euler, who
proved the case n = 3 in the first half of the 18th century. But the general reconstruction of
arithmetic dates more than 100 years later, with Kummer, Dirichlet, Dedekind being some
of the big names. My focus is not on historic detail, but on a perspective that sheds light
on today’s mathematics. I do not know and have not investigated how much of the modern
point of view can actually be recognized in Euler’s original proof.

You find the proof that u3 + v3 = w3 has no nontrivial solutions in Z[ω] in the classical book
by Niven and Zuckerman: “Introduction to the theory of numbers” (for instance). They also
give the proof that u4 + v4 = w4 has no solutions in integers. Since this proof does not use
exotic number rings, they put it in an altogether different chapter. Both proofs (and the
book as a whole) is feasible reading for A students (and in parts for B students, too), but
you need to take some time for it. If I had to present the n = 3 proof in class for an honors
version of M351, I’d probably take 2–3 classes for it (after the number theory we will yet do,
and still omitting some technicalities).
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