
Solutions to Homework for M351 – Algebra I

Hwk 42:

In the ring Z[i], find a greatest common divisor of a = 16 + 2i and b = 14 + 31i, using
repeated division with remainder in analogy to Problem 25.

(Note that I said: a GCD, with the indefinite article. If g is a GCD, then −g, ig and
−ig also are correct solutions. The option of selecting ‘the positive one’ is not available
here.)

Solution:
16+2i
14+31i = 286−468i

1157 rounds to 0 16 + 2i = (0 + 0i)(14 + 31i) + (16 + 2i)

14+31i
16+2i = 286+468i

260 rounds to 1 + 2i 14 + 31i = (1 + 2i)(16 + 2i) + (2− 3i)

16+2i
2−3i = 26+52i

13 = 2 + 4i no remainder 16 + 2i = (2 + 4i)(2− 3i) + 0

So 2− 3i is a gcd of 16 + 2i and 14 + 31i. (The other gcd’s are −2 + 3i, 2i + 3, −2i− 3.)

Hwk 43:

Give the isomorphism θ : Z12 → Z3 ⊕ Z4 afforded by the chinese remainder theorem
explicitly (i.e., table all values). — Likewise for θ : Z10 → Z2 ⊕ Z5.

Also show that there cannot be an isomorphism Z4 → Z2 ⊕ Z2. To do this, observe,
for instance, the number of solutions to the equation x + x = 0 in either ring. Come
up with at least one other equation (using multiplication) that has different numbers
of solutions in either ring. (Doing so amounts to giving a second proof that there
cannot be an isomorphism Z4 → Z2⊕Z2). Include a formally sufficient proof of the last
statement in the following note, such as to make rigorous why the number of solutions
to an equation involving only ring operations can be used to show that two rings are
not isomorphic.

Note: How would one typically show that two rings are isomorphic? Easy in principle:
one exhibts a mapping explicitly and shows that it is 1-1, onto, and a homomorphism.
This does not mean that the task is always easy in practice. — But how does one show
that two rings are not isomorphic? Not so easy in principle. One has to show that
no 1-1 onto map watsoever can be a homomorphism. Between two rings with just four
lousy elements, there would be 24 bijective maps already to check for homomorphism
properties. This problem shows a more feasible approach: Find properties that are
preserved under isomorphisms: If a certain equation in one ring R has exactly n solutions
x1, . . . , xn, then it has exactly n solutions in any other ring S that is isomorphic to R;
if θ : R → S is a ring isomorphism, then the solutions to that equation in S are
θ(x1), . . . , θ(xn).

Solution : θ : 0̄12 7→ (0̄3, 0̄4)
1̄12 7→ (1̄3, 1̄4)
2̄12 7→ (2̄3, 2̄4)
3̄12 7→ (0̄3, 3̄4)
4̄12 7→ (1̄3, 0̄4)
5̄12 7→ (2̄3, 1̄4)
6̄12 7→ (0̄3, 2̄4)
7̄12 7→ (1̄3, 3̄4)
8̄12 7→ (2̄3, 0̄4)
9̄12 7→ (0̄3, 1̄4)

1̄012 7→ (1̄3, 2̄4)
1̄112 7→ (2̄3, 3̄4)

θ : 0̄10 7→ (0̄2, 0̄5)
1̄10 7→ (1̄2, 1̄5)
2̄10 7→ (0̄2, 2̄5)
3̄10 7→ (1̄2, 3̄5)
4̄10 7→ (0̄2, 4̄5)
5̄10 7→ (1̄2, 0̄5)
6̄10 7→ (0̄2, 1̄5)
7̄10 7→ (1̄2, 2̄5)
8̄10 7→ (0̄2, 3̄5)
9̄10 7→ (1̄2, 4̄5)



By testing all elements, 0̄4, 1̄4, 2̄4, 3̄4, we see that x + x = 0 has two solutions in Z4, namely
x = 0̄4 or x = 2̄4. In Z2 ⊕ Z2 all four elements (0̄2, 0̄2), (0̄2, 1̄2), (1̄2, 0̄2), (1̄2, 1̄2) solve the equation
x + x = 0.

If θ : R → S is a ring homorphism and x satisfies the equation x + x = 0 in R, then θ(x) + θ(x) =
θ(x + x) = θ(0) = 0. So y = θ(x) satisfies the equation y + y = 0 in the ring S. If θ is 1-1, then to
different solutions x in R, one gets different solutions y = θ(x) in S. If θ is also onto, then every y
is of the form y = θ(x) for some x. Now if y solves y + y = 0, then θ(x + x) = θ(0) by the above
calculation; since θ is 1-1, we can again conclude that x solves x + x = 0. So there is a bijective
correspondence between solutions of x + x = 0 in R and solutions to the same equation y + y = 0
in S.

Here is another equation that does the trick: x · x = 0 has two solutions 0̄4 and 2̄4 in Z4, but only
one solution (0̄2, 0̄2) in Z2 ⊕ Z2.

Or, another example, the equation x · x = x has two solutions in Z4, but four solutions in Z2 ⊕Z2.
The equation x · x = 1 has two solutions in Z4, but only one solution in Z2 ⊕ Z2.

Hwk 44:

Use modular arithmetic to show that the following determinant is not 0:∣∣∣∣∣∣∣∣∣∣∣∣

1 3 5 0 2 4
5 2 1 2 4 2
10 5 3 7 1 0
−5 5 15 11 −7 10
15 0 −5 20 5 3
0 −10 5 10 3 5

∣∣∣∣∣∣∣∣∣∣∣∣
Solution: The determinant of a matrix is a certain polynomial in the entries of that matrix,
according to the formula detA =

∑
π signπa1π(1)a2π(2) . . . anπ(n) where, in our example, the size of

the matrix, n = 6. The sum extends over all permutations π ∈ Sn. With the entries in Z, the
determinant can be seen as a calculation within that ring. We may reduce modulo some number a:
For matrices A,B: If A ≡ B mod a (componentwise), then det A ≡ det B mod a We use this with
a = 5, to create many zeros in the modular arithmetic determinant: entries ∗ denote numbers we
don’t bother to calculate because they are not relevant.∣∣∣∣∣∣∣∣∣∣∣∣

1 3 5 0 2 4
5 2 1 2 4 2
10 5 3 7 1 0
−5 5 15 11 −7 10
15 0 −5 20 5 3
0 −10 5 10 3 5

∣∣∣∣∣∣∣∣∣∣∣∣
≡

∣∣∣∣∣∣∣∣∣∣∣∣

1 ∗ ∗ ∗ ∗ ∗
0 2 ∗ ∗ ∗ ∗
0 0 3 ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 0 3
0 0 0 0 3 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −1 · 2 · 3 · 1 · 3 · 3 = −54 ≡ 1 mod 5

So since the determinant is congruent 1 mod 5, it cannot be 0.

Hwk 45:

How many zeros exactly are at the end of the decimal representation of the number
93!, written out in digits? Only count the contingent zeros at the end, after the last
non-zero digits. For instance, for the number 350102100000, you would count five zeros.

Solution: Notation: bxc denotes the largest integer ≤ x.

The number of trailing zeros is the largest n such that 10n divides 93!. In the prime factor
decomposition, 93! has the prime 5 to the power 21. Namely, the factors 5, 10, 15, . . . , 90 contribute



each (at least) a factor 5 to the product 1 ·2 ·3 ·4 ·5 · · · 89 ·90 ·91 ·92 ·93. This makes b93
5 c = 18 many

terms already. However, the multiples of 25 = 52 actually contribute a second factor of 5 (not
counted yet) to the product, which makes another three occurrences.

Likewise, the number of factors 2 in 93! is b93
2 c+ b93

4 c+ b93
8 c+ b93

16c+ b93
32c+ . . . = 46 + 23 + 11 +

5 + 2 + 1 = 88. This is of course larger than the number of factors 5. So the number of trailing
zeros in 93! is 21.

Hwk 46:

Find all numbers n such that ϕ(n) = 12. Show that there are no numbers n such that
ϕ(n) = 14.

Solution: If we write n in the form of the prime number decomposition, n = pα1
1 . . . pαk

k , then
ϕ(n) = pα1−1

1 (p1−1) . . . pαk−1
k (pk−1). This implies: If p is a prime number divinding n, then p−1

must divide ϕ(n). If a higher power of p divides n, then p must also divide n. We can therefore
analyze the possible prime factors of n by looking at the divisors of ϕ(n).

If ϕ(n) = 12, we look at the divisors of 12: They are: 1,2,3,4,6,12. Any prime divisors p of n must
therefore be found among: 2,3,4,5,7,13 (we added 1 to each divisor of ϕ(n) = 12). Of course 4 is
not a prime, so n can contain at most the primes 2, 3, 5, 7, 13.

2 can show up at most with power 3 in the prime factorization of n, since ϕ(23) = 22(2 − 1) = 4
still divides 12, but ϕ(24) = 23(2 − 1) = 8 does not divide 12 any more. Likewise, 3 can show up
at most with power 2. All the other prime factors cannot show up with a higher power at all.

Case 1: 13 divides n. Let n = 13m. m will be relative prime to 13, because we know that 132

cannot divide n. Since ϕ(13) = 12, we must have ϕ(m) = 1. So m can have no other prime fuctors
but 2, and we have m = 1 or m = 2. This gives us two solutions: n ∈ {13, 26}.
Case 2 13 doesn’t divide n, but 7 divides n. So let n = 7m. Again gcd(7,m) = 1. We need
ϕ(m) = 2. By the same divisor argument m can have only 2 and 3 as prime factors, and we only
have two choices: m is either 3, 4 or 6. This gives us two further solutions: n ∈ {21, 28, 42}.
Case 3: Neither 13 nor 7 divide n. If n = 5m, we need 12 = ϕ(5)ϕ(m). Hence ϕ(m) = 3. But
there is no such m: Actually ϕ(m) is never an odd number other than 1. For, whenever m contains
an odd prime factor, then ϕ(m) must be even, due to the (p− 1) factor. But is m is a power of 2,
we again get an even ϕ(m), from pα−1, unless m = 1 or m = 2. In these cases however ϕ(m) = 1.
No solution here.

We harvest for later use: ϕ(m) will never be an odd number other than 1.

Case 4: n = 2a3b with a ≤ 3 and b ≤ 2. The only choice here for ϕ(n) = 12 is n = 22 · 32 = 36.

We have found altogether six solutions n to ϕ(n) = 12. Namely, n ∈ {13, 21, 26, 28, 36, 42}.
Now study ϕ(n) = 14. The divisors of 14 are 1,2,7,14. So the prime factors of n must be found
among 2,3,8,15. But only 2,3 are prime. But ϕ(2a3b) could not contain a prime factor 7. Therefore
ϕ(n) = 14 cannot happen for any n.

Hwk 47:

Let’s try the ring Z[
√
−5] for a change: another subring of C; it consists of all the

numbers a + b
√
−5 with a, b ∈ Z.

First show that the only numbers dividing the identity 1 in this ring are +1 and −1:
you have to find all integers a, b, c, d such that (a + b

√
−5)(c + d

√
−5) = 1.

Now show that 3 has no divisors but ±3 and ±1 in this ring. Show the analog for the
numbers 2 and 1±

√
−5. In other words, all of these numbers are irreducible in the ring



Z[
√
−5]. (Remember: irreducible means that the number cannot be factored further

except by introducing units (= divisors of 1) as factors.)

Hint: The task to find all integers a, b, c, d such that (a + b
√
−5)(c + d

√
−5) = 1 (or 3

etc) is simplified a lot if you first multiply this equation with its complex conjugate.

Solution: A unit A ∈ Z[
√
−5] is an A such that there exists C ∈ Z[

√
−5], where AC = 1. So

suppose A = a + b
√
−5 is a unit and C = c + d

√
−5 is such that AC = 1. By taking the complex

conjugate, we conclude ĀC̄ = 1. Multiplying the two, we get (a2 + 5b2)(c2 + 5d2) = 12 = 1. The
two factors are integers of course, so a2 + 5b2 must divide 1. The only divisors of 1 are ±1, but
a2 + 5b2 ≥ 0. Hence a2 + 5b2 = 1 This can only happen if b = 0 and a = ±1.

There is another method to prove the same thing: If (a+ b
√
−5)(c+d

√
−5) = 1, then ac− 5bd = 1

and ad + bc = 0. We want to show bd = 0 first, and we do it by ruling out the possibilities bd > 0
and bd < 0. Clearly, if bd > 0, then ac = 1 + 5bd > 0, and therefore (ad)(bc) = (ac)(bd) > 0. But
if ad and bc have the same sign, their sum cannot be 0. On the other hand, if bd < 0, then (being
an integer) bd ≤ −1; hence ac = 1 + 5bd ≤ −4 < 0. Again we conclude that ad and bc have the
same sign, making ac + bd = 0 impossible. — Now that we know bd = 0, we conclude ac = 1,
so a = c = ±1. With this plugged in, ad + bc = 0 implies b + d = 0. With bd = 0, we conclude
b = d = 0.

If (a+b
√
−5)(c+d

√
−5) = 3, multiplication with the complex conjugate gives (a2+5b2)(c2+5d2) =

9. So (a2 + 5b2) must divide 9, hence (being nonnegative) it can only be 1, 3, or 9. In particular
|a| ≤ 3 and |b| < 2. Inspecting all case, we see that the only integer solutions to a2 +5b2 ∈ {1; 3; 9}
are a+b

√
−5 ∈ {±1; ;±3,±2±

√
−5} with c+d

√
−5 ∈ {±3,±2±

√
−5; ;±1} respectively. However,

the last cases do not give rise to divisors of 3 since (±2±
√
−5)(±1) 6= 3. (Of course when taking

| · |2 of the equation, we found a necessary, but not sufficient, condition.)

If (a+b
√
−5)(c+d

√
−5) = 2, multiplication with the complex conjugate gives (a2+5b2)(c2+5d2) =

4. So (a2 + 5b2) must divide 4, hence (being nonnegative) it can only be 1, 2, or 4. In particular
|a| ≤ 2 and b = 0. Likewise d = 0. But then the factors must be integers, and the only factorization
of 2 within Z is 2 · 1 of (−2)(−1).

Now (a+b
√
−5)(c+d

√
−5) = 1+

√
−5, implies (a2+5b2)(c2+5d2) = 6, hence a2+5b2 ∈ {1, 2, 3, 6}.

2 and 3 cannot occur as values of a2 + 5b2; in the other two cases, we obtain a = ±1. Then b = 0
or b = ±1 respectively. — Same argument for 1−

√
−5.

Hwk 48:

Show that in the ring Z[
√
−5], the number 6 can be written as a product of irreducible

factors in two essentially different ways. (Refer to previous problem for raw material).

Solution: 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5). Since each of the four numbers in the factorization

is different from ±1 times any other among the four numbers (±1 being the only units), the two
factorizations are essentially different.

Hwk 49:

Given a commutative ring R with identity, we consider the set Seq(R) consisting of all
sequences s = (s0, s1, s2, s3, . . .) where each si is an element of R. For instance, with
R = Z, the following are elements of Seq(Z): (0, 1, 4, 9, . . .), or (1, 0,−1, 0, 1, 0,−1, . . .).
Generally, we will denote by si the ith entry in the sequence s, where we begin to count
entries at number 0. We define the following operations on Seq(R):

The sum a+ b of two sequences is defined componentwise: a+ b = (a0 + b0, a1 + b1, a2 +
b2, . . .). The Cauchy product of two sequences is defined as follows:

ab = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .)



such that (ab)n =
∑n

i=0 aibn−i = a0bn + a1bn−1 + . . . + an−1b1 + anb0.

(a) Make sure that you understand the definition: To this end, calculate the Cauchy
product ab of the sequence a = (1, 1, 1, 1, 1, 1, . . .) with b = (0, 1, 2, 3, 4, 5, . . .) in Seq(Z).
Which number is the the entry (ab)30?

(b) Now show that Seq(R) with these operations is a commutative ring.

We call this ring R[[X]] (The ad-hoc name Seq(R) was just for the set.)

Solution: (a) (1, 1, 1, 1, 1, 1, . . .)·(0, 1, 2, 3, 4, 5, . . .) = (0, 1, 3, 6, 10, 15, . . .). More precisely ai = 1
and bi = i. So (ab)n =

∑n
i=0 1(n− i) =

∑n
j=0 j = n(n + 1)/2 where we have substituted j = n− i.

In particular (ab)30 = 465.

(b) It is clear that addition is commutative and associative, and that the zero sequence (0, 0, 0, 0, . . .)
is the additive neutral. The additive inverse is given by (−a)n = −an, or, in other words the negative
of (a0, a1, a2, a3, . . .) is (−a0,−a1,−a2,−a3, . . .).

Commutativity of multiplication: we again use the summation index substitution j = n− i. Then
(ab)n =

∑n
i=0 aibn−i =

∑n
j=0 an−jbj =

∑n
j=0 bjan−j = (ba)n for each n. Hence ab = ba. The

commutativity of the ring R enters here.

Distributivity: [(a + b)c]n =
∑n

i=0(a + b)icn−i =
∑n

i=0(ai + bi)cn−i =
∑n

i=0 {aicn−i + bicn−i} =∑n
i=0 aicn−i +

∑n
i=0 bicn−i = (ac)n + (bc)n = (ac + bc)n.

Associativity of multiplication: This time, since it is the most complicated part, we’ll be pedantic
and list all properties that are used in each step, apart from associativity of +, which is already
implicit in the

∑
notation.

[(ab)c]n =
(1)

n∑
i=0

(ab)icn−i =
(1)

n∑
i=0

(
i∑

k=0

akbi−k

)
cn−i =

(2)

n∑
i=0

i∑
k=0

akbi−kcn−i

[a(bc)]n =
(1)

n∑
k=0

ak(bc)n−k =
(1)

n∑
k=0

ak

n−k∑
j=0

bjcn−k−j

 =
(2)

n∑
k=0

n−k∑
j=0

akbjcn−k−j

(1) def’ of product — (2) distributive law in R (enhanced by induction to deal with
∑

of more
than two terms).

In the first line let’s rearrange the summation in the last double sum. Note that
∑n

i=0

∑i
k=0 =∑n

k=0

∑n
i=k. (Each sums over all (k, i) satisfying 0 ≤ k ≤ i ≤ n.) We now substitute the summation

variable i for j := i− k, so that
∑n

i=k =
∑n−k

j=0 . So we continue the first line:

n∑
i=0

i∑
k=0

akbi−kcn−i =
n∑

k=0

n∑
i=k

akbi−kcn−i =
n∑

k=0

n−k∑
j=0

akbjcn−j−k

and it matches the result of the secdond line, as was to be shown.

Hwk 50:

In the ring Z[[X]], show that the element a = (1, 1, 1, 1, . . .) is invertible and give its
inverse.

Solution: The 1-element in Z[[X]] is (1, 0, 0, 0, . . .). We can find this by trying to find x =
(x0, x1, x2, x3, . . .) such that (a0, a1, a2, a3, . . .)(x0, x1, x2, x3, . . .) = (a0, a1, a2, a3, . . .) for all ai.
From a0x0 = a0 we get x0 = 1, then from a0x1 + a11 = a1, we get x1 = 0. Next from
a0x2 + a10 + a21 = a2, we get x2 = 0, etc. (Formally, this is of course an induction proof).



We want to find a = (a0, a1, a2, a3, . . .) such that (1, 1, 1, 1, . . .)(a0, a1, a2, a3, . . .) = (1, 0, 0, 0, . . .).
From 1a0 = 1, we conclude a0 = 1. Then from 1a0 + 1a1 = 0, we conclude a1 = −1. Next, from
1a0 + 1a1 + 1a2 = 0, we conclude a2 = 0, and inductively now all further ai vanish. So we were
able to find an inverse of (1, 1, 1, 1, . . .), namely (1,−1, 0, 0, . . .).

[Once the X notation below is established, this is of course nothing but the geometric series from
calculus, in algebraic disguise: 1+x+x2+x3+. . . = (1−x)−1, hence (1+x+x2+x3+. . .)−1 = 1−x.]

Hwk 51:

We consider the subset Seq0(R) of Seq(R), consisting of those sequences that have only
finitely many non-zero entries. For instance, the sequence (1, 2, 0,−7, 3, 0, 0, 0, 0, . . .) is
in Seq0(Z). Such sequences can be written in abbreviated form as finite sequences by
omitting the trailing zeros: (1, 2, 0,−7, 3). Show that Seq0(R) is a subring of Seq(R).
In particular, to gain sufficient understanding concerning the closure of multiplication,
calculate the Cauchy product of (1, 2, 0,−7, 3) and (2,−1, 4).

Solution: The ‘training calculation’ is: (1, 2, 0,−7, 3) · (2,−1, 4) := (1, 2, 0,−7, 3, 0, 0, 0, 0, . . .) ·
(2,−1, 4, 0, 0, 0, 0, 0, 0, . . .) := (2, 3, 2,−6, 13,−31, 12, 0, 0, 0, . . .)

We want to show: If a, b ∈ Seq0(R), than so are a− b and ab. Now a ∈ Seq0(R) means there exists
some N such that ai = 0 for i > N . And b ∈ Seq0(R) means there exists some M such that ai = 0
for i > M .

Now if i > max{M,N}, then both ai and bi are 0, hence (a− b)i = ai− bi = 0. So a− b ∈ Seq0(R).

Moreover if n > M + N , then we cannot have both i ≤ N and n − i ≤ M . Therefore ai = 0 or
bn−i = 0 (possibly both). But this means that in the sum (ab)n =

∑n
i=0 aibn−i, each term is 0.

Hence (ab)n = 0 if n > N + M . So ab ∈ Seq0(R).

Hwk 52:

In the ring Seq0(R), we denote the element (0, 1) as X. Calculate X0, X2, X3 etc., and
write (1, 2, 0,−7, 3) as a linear combination of powers of X.

Solution: Obviously, the problem means to assume that R is a ring with 1, as can be seen from
the definition of X. X0 is defined to be the multiplicative neutral in any ring; namely in this ring
here, it is (1, 0, 0, 0, . . .).

X2 = (0, 1, 0, 0, 0, . . .)(0, 1, 0, 0, 0, . . .) = (0, 0, 1, 0, 0, . . .),
X3 = (0, 0, 1, 0, 0, . . .)(0, 1, 0, 0, 0, . . .) = (0, 0, 0, 1, 0, . . .),
X4 = (0, 0, 0, 1, 0, . . .)(0, 1, 0, 0, 0, . . .) = (0, 0, 0, 0, 1, 0, . . .), etc.

(More formally, we prove by induction over n, that (Xn)j = 0 for j 6= n and (Xn)n = 1.)

We can write, for instance, in the ring Seq0(Z), from which the example is taken, (1, 2, 0,−7, 3) =
1X0 + 2X1 − 7X3 + 3X4.

In a more general commutative ring R with 1, you may wonder about writing, e.g., (a0, a1, a2, a3) as
a0X

0 + a1X
1 + a2X

2 + a3X
3. This latter expression appears to involve multiplications of elements

of different rings, namely ai ∈ R, but Xi ∈ R[X]. The way to understand this is to intend ai as a
shorthand for (ai, 0, 0, 0, . . .). Note that the mapping a 7→ (a, 0, 0, 0, . . .), R 7→ R[X] is an injective
ring homomorphism. This allows us to pretend that R is a subring of R[X].



Hwk 53:

From now on, we will take the liberty of writing the elements of Zn as 0, 1, 2, . . . , n− 1,
rather than 0, 1, 2, . . . , n− 1 when no confusion arises. Calculate (1 + 2X)3 in the ring
Z3[X].

Solution: This is too easy: (1 + 2X)2 = (1 + 2X)(1 + 2X) = 1 + 4X + 4X2 = 1 + X + X2.
(1 + 2X)3 = (1 + 2X)(1 + X + X2) = 1 + 3X + 3X2 + 2X3 = 1 + 2X3.

Note that the exponents are nonnegative integers, whereas the coefficients are not integers, but
congruence classes, in Z3. You can use the binomial theorem, which is valid in every commutative
ring with 1, because it relies only on these axioms. However, then, issues get swept under the
carpet if you omit the overline notation for congruence classes:

(1̄ + 2̄X)3 = 1̄3 + 3 · 1̄2(2̄X) + 3 · 1̄(2̄X)2 + (2̄X)3 = . . .

Note that in any ring, ring elements can be multiplied with integers, namely 1 · r = r, 2 · r = r + r,
3 · r = r + r + r, etc. (−1)r = −r, (−2)r = (−r) + (−r), etc. For the ring Zn, this understanding
implies that ab̄ = āb̄. (The first is integer times congruence class, the second a product of congruence
classes.)

. . . = 1̄ + 2̄3X3 = 1̄ + 2̄X3

Hwk 54:

In the polynomial ring Z6[X], find two polynomials p and q, such that deg(pq) <
(deg p)+(deg q). Note that Z6 is not an integral domain; so the purpose of this problem
is to show that the assumption that the coefficient ring be an integral domain is really
needed for the degree formula to hold.

Solution: For instance p = 2̄X + 1̄ and q = 3̄X + 1̄. Since 2̄ · 3̄ = 0̄, we have pq = 5̄X + 1̄. So
1 = deg(pq) < deg p + deg q = 1 + 1.

Hwk 55:

In the ring Z[X] take the polynomials a = X3 + X2 + 2X + 1 and b = 2X2. Show
that it is not possible to find polynomials q and r in Z[X] such that a = bq + r and
deg r < deg b. If the coefficients are taken from a field, the euclidean algorithm asserts
that such a division with remainder is possible. So this problem serves as an illustration
that the requirement that the coefficient ring be a field is really needed for the euclidean
algorithm.

Solution: If deg r < deg b, then (with deg bq = deg b + deg q ≥ deg b) we obtain deg r < deg bq
and therefore deg(bq + r) = deg bq = deg b + deg q. So since deg a = 3 and deg b = 2, we need
deg q = 1. This means q = c0 + c1X. Comparing the X3 coefficient of a and bq + r (to which r
doesn’t contribute), we find 1 = 2c1 with c1 ∈ Z. This is not possible b/c 2 is not a unit in Z.

Hwk 56:

In the ring Q[X], find a GCD of a = X3 − 7X2 + 3X + 3 and b = X3 − 6X2 + X + 7.
Also write the GCD thus obtained as a linear combination of a and b.



Solution: Let’s do a long division with a0 := a and a1 := b So we write a0 = q0a1 + a2 (defining
a2 to be the remainder), and then a1 = q1a2 + a3, etc.

a0 = q0a1 + a2 X3 − 7X2 + 3X + 3 = 1 · (X3 − 6X2 + X + 7) + (−X2 + 2X − 4)
a1 = q1a2 + a3 X3 − 6X2 + X + 7 = (−X + 4) · (−X2 + 2X − 4) + (−11X + 23)
a2 = q2a3 + a4 −X2 + 2X − 4 = ( 1

11X + 1
121) · (−11X + 23) + (−507

121)
a3 = q3a4 + a5 −11X + 23 = (1331

507 X − 121·23
507 ) · (−507

121) + 0

So we find that the constant polynomial −507
121 is a gcd of a and b. Since gcd’s are determined

only up to a unit in the ring (which means in Q[X], up to a constant polynomial), we may more
conveniently answer that 1 is a gcd of a and b.

Now let’s write the gcd, which is a4, as a linear combination of a0 and a1. We do it successively:

a4 = a2 − q2a3 = a2 − q2(a1 − q1a2) = (1 + q1q2)a2 − q2a1 = (1 + q1q2)(a0 − q0a1)− q2a1 =
= (1 + q1q2)a0 + (−q2 − q0 − q0q1q2)a1 =
= 1

121(121− (−X + 4)(11X + 1))a + 1
121(−11X − 1− 121 + (−X + 4)(11X + 1))b

−507 = (−11X2 + 43X + 125)a + (11X2 − 54X − 126)b

You might have started in reverse order, with a1 := a and a0 := b. Then the calculation would
have looked slightly differently, but with the same conclusion:

a0 = q0a1 + a2 X3 − 6X2 + X + 7 = 1 · (X3 − 7X2 + 3X + 3) + (X2 − 2X + 4)
a1 = q1a2 + a3 X3 − 7X2 + 3X + 3 = (X − 5) · (X2 − 2X + 4) + (−11X + 23)
a2 = q2a3 + a4 X2 − 2X + 4 = (− 1

11X − 1
121) · (−11X + 23) + (507

121)
a3 = q3a4 + a5 −11X + 23 = (−1331

507 X + 121·23
507 ) · (507

121) + 0

Hwk 57:

In the ring Z13[X], find a GCD of the “same” polynomials a = X3− 7X2 + 3X + 3 and
b = X3 − 6X2 + X + 7, and write the GCD thus obtained as a linear combination of a
and b.

I put the word “same” in quotes, because this is an abuse of language. The coefficent
−6 in b of problem 56 is the integer −6, whereas in problem 57, the ‘same’ −6 is a
shorthand for the element −613 = 713 ∈ Z13. But it’s nevertheless common language
usage to consider the ‘same’ polynomial in different rings.

Solution: In order to do the divisions in the field Z13, it is convenient to have a list of inverses at
hand, and these are found by trial and error multiplications: 2 · 7 = 1, 3 · 9 = 1, 4 · 10 = 1, 5 · 8 = 1,
6 · 11 = 1, 12 · 12 = 1 in Z13. I could write standard representatives, like 6 instead of −7, but I’ll
stick with the given form. To reuse much of the previous calculation, note 1/11 = 6 in the ring at
hand. Remember that all the coefficients are not integers, but congruence classes, and the bars
have simply been omitted for notational convenience.

a0 = q0a1 + a2 X3 − 7X2 + 3X + 3 = 1 · (X3 − 6X2 + X + 7) + (−X2 + 2X − 4)
a1 = q1a2 + a3 X3 − 6X2 + X + 7 = (−X + 4) · (−X2 + 2X − 4) + (2X + 10)
a2 = q2a3 + a4 −X2 + 2X − 4 = (6X + 10) · (2X + 10) + 0

So this time we have a gcd of 2X + 10 (or, if you please, 2X − 3, which is the same in Z13[X]). Or,
if you want a monic polynomial (i.e., leading coefficient 1), a gcd is X + 5.

Now to express our gcd as a linear combination, we write:

a3 = a1 − q1a2 = a1 − q1(a0 − q0a1) = (1 + q0q1)a1 − q1a0



where
1 + q0q1 = 1 + 1(−X + 4) = −X + 5

So we have

(2X + 10) = (X − 4)(X3 − 7X2 + 3X + 3) + (−X + 5)(X3 − 6X2 + X + 7)

Hwk 58:

In the ring Z[X], show that the ideal (2, X) := {2p + qX | p, q ∈ Z[X]} is not principal,
i.e., it is not of the form (g) := {gp | p ∈ Z[X]}. Show that the polynomials 2 and X do
have a gcd, but that this gcd cannot be obtained as a linear combination of 2 and X.

Solution: We will show that a gcd is 1, and that it cannot be written as a linear combination of
2 and X. From these facts it will follow that the ideal (2, X) is not principal.

(1) A divisor d of a polynomial p is a polynomial d such that another polynomial q exists with
dq = p. By the degree formula (Z has no zero divisors, deg d+deg q = deg p. So deg d ≤ deg p. Any
divisor of the constant polynomial 2 must therefore be a constant polynomial. And the constant
in question must be a divisor of the integer 2. The divisors of 2 are therefore ±2 and ±1.

2 does not divide X, because from the equation 2q = X (an equation in Z[X], that can be
interpreted as an equation in Q[X]), it follows q = 1

2X ∈ Q[X], but this polynomial is not in Z[X].

So gcd(2, X) = 1 (or −1, which differs from 1 by a factor that is a unit in the ring.)

(2) Next we bring the assumption 1 = 2p+Xq for polynomials p, q ∈ Z[X] (p = p0+p1X + . . . pkX
k

and similar for q) to a contradiction. We look at the constant coefficient of the polynomials on
either side and obtain 1 = 2p0. But such a p0 ∈ Z doesn’t exist.

(3) The proof that the ideal (2, X) is not principal follows from the preceding two facts, and it is
literally taken from the proof than in a PID, a gcd exists and can be written as a linear combination:
Namely, assume that (2, X) = (g). Then since 2 ∈ (2, X) = (g), 2 must be a multiple of g. Similarly,
X must be a multiple of g. So g is a common divisor of 2 and X. Since g ∈ (g) = (2, X), g must be a
linear combination of 2 and X. Any common divisor of 2 and X must divide this linear combination,
so it must divide g. This makes g a gcd of 2 and X. But these facts ar in contradiction to the
previously shown facts that any gcd of 2 and X cannot be written as a linear combination.

Hwk 59:

In the ring Z[
√
−5], show that the ideal (1+

√
−5, 3) := {(1+

√
−5)a+3b | a, b ∈ Z[

√
−5]}

is not principal, i.e., it is not of the form (g) := {gp | p ∈ Z[
√
−5]}. Show that the

numbers 1+
√
−5 and 3 do have a gcd, but that this gcd cannot be obtained as a linear

combination of 1 +
√
−5 and 3.

Solution: The proof logic proceeds along the same lines as before. – Note that Z[
√
−5] is a

subring of C, and remember that a + b
√
−5 = c + d

√
−5 implies a = c, b = d by comparing real

and imaginary parts.

(1) We have seen in a previous hwk that the only divisors of 3 in Z[
√
−5] are ±1 and±3. Now 3

does not divide 1 +
√
−5, because the equation 3x = 1 +

√
−5 in Z[

√
−5] could be interpreted as

an equation in C, where it has the (only) solution x = 1
3 + 1

3

√
−5 /∈ Z[

√
−5]. The associate −3

doesn’t divide 1 +
√
−5 either. So the only choices for a gcd of 3 and 1 +

√
−5 are the units ±1.

(2) We bring the assumptions 1 = 3a + (1 +
√
−5)b with a, b ∈ Z[

√
−5] to a contradiction. Let a =

a1 +a2

√
−5 and b = b1 +b2

√
−5. Comparing real and imaginary part, we obtain 1 = 3a1 +1b1−5b2

and 0 = 3a2 + b1 + b2. These are equations in Z, and we can show that they have no solution by



reducing modulo 3: The first equation implies 1 ≡ b1 + b2, whereas the second equation implies
0 ≡ b1 + b2.

(3) By the very same argument as in the previous problem, the facts proved in (1),(2) cannot
coexist with the hypothesis that the ideal (3, 1 +

√
−5) is principal.

Hwk 60:

In the ring 2Z of even integers (which lacks a 1), show that the numbers 4 and 6 do
not have a common divisor. The definitions in class concerning princial ideals are not
meant to carry over to rings without a 1, but would need to be modified. So no questions
pertaining to ideals are asked for this example.

Solution: The only divisor of 4 in the ring 2Z is 2.
6 does not have any divisors in the ring 2Z, because 6 cannot be written as a product of even
integers. In particular, there are no common divisors with 4.

Hwk 61:

Give an example of a polynomial in Q[X] that is not prime (i.e. can be factored), but
has no root in Q. What is the smallest degree such a polynomial can have (explain
why)?

Solution: If the polynomial has no rational root, then it has no linear factor. Since the polynomial
can be factored, it must at least have degree 4. For instance, we could take X4−4 = (X2−2)(X2+2).

Hwk 62:

Show that the polynomial p = X4 + 1 is irreducible in Q[X], but not in R[X] nor in
C[X]. Give a complete factorization in R[X] (two quadratic factors; show that this is a
complete factorization), and a complete factorization in C[X] by further factoring the
real quadratics.

Also give three different incomplete factorizations (product of two quadratics) in C[X]
(for later use) by grouping the linear terms in two pairs in 3 different ways.

Solution: Since X4 + 1 has no rational (nor real) root, any factorization within either Q[X] or
R[X] can only be into two quadratics.

There are at least three ways now to show irreducibility in Q[X]:

(1) If p factors in Q[X], then it factors in Z[X] as well, due to Gauss’ lemma. So we can only have
p = (X2 + aX + b)(X2 + cX + d) with b, d integers satisfying bd = 1 and a, c integers. Checking
the X3 coefficient we must have c = −a. But (X2 + aX + 1)(X2 − aX + 1) = X4 + (2− a2)X2 + 1
and (X2 + aX − 1)(X2 − aX − 1) = X4 + (−2− a2)X2 + 1. And neither 2− a2 nor −2− a2 will
be zero for any integer a.

(2) If p factors in Q[X] then it trivially factors in R[X] (with the same factorization), since Q ⊂ R.
So we find the only factorization in R[X] (see below): it is X4+1 = (X2+

√
2X+1)(X2−

√
2X+1).

Since this is not a factorization in Q[X], p is irreducible in Q[X].

(3) This is tricky, and you need both experience and an easy lemma (that wasn’t covered in class)
to find it: Namely, the substitution X = Y + 1 is a ring isomorphism between Q[Y ] and Q[X];
therefore p(X) is irreducible if and only if p̃(Y ) = p(Y +1) = (Y +1)4+1 = Y 4+4Y 3+6Y 2+4Y +2
is irreducible. This latter polynomial is irreducible by Eisenstein’s test with the prime number 2:



The leading coefficient is not divisible by 2, all other coefficients are, and the constant coefficient
is not divisible by 22.

Now we show that X4 + 1 can be factored in R[X]. Proof: X4 + 1 = (X2 +
√

2 + 1)(X2 −
√

2 + 1),
as can be checked by expanding.

How would you find this factorization? You try to factor X4 + 1 into quadratics. There is no loss
of generality to have monic factors (monic= leading coefficient 1). So we try to find a, b, c, d ∈ R
such that X4 + 1 = (X2 + aX + b)(X2 + cX + d). Comparing coefficients, we get

a + c = 0 , b + d + ac = 0 , ad + bc = 0 , bd = 1

Clearly c = −a, and the other conditions become

b + d = a2 , (d− b)a = 0 , bd = 1

Clearly, a 6= 0, because else we would have d = −b, in contradiction to bd = 1. So we conclude
b = d from the 2nd equation. b = d must be positive from the first equation. So b = d = 1 from
the 3rd equation. Now we have a = ±

√
2 from the 1st equation.

Solving the two quadratics in C gives us a complete factorization of p in C[X]:

X4 + 1 =
(
X − (1 + i)

√
2

2

)(
X − (1− i)

√
2

2

)(
X − (−1 + i)

√
2

2

)(
X − (−1− i)

√
2

2

)
Pairing the 1st with the 2nd, 3rd, 4th factor respectively, we get the following incomplete factor-
izations in C[X]:

X4 +1 = (X2−
√

2X +1)(X2 +
√

2X +1) = (X2−
√

2iX − 1)(X2 +
√

2iX − 1) = (X2 + i)(X2− i)

Hwk 63:

In the fields Zp for p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, find one solution of the equations
x2 + 1 = 0, x2 − 2 = 0, x2 + 2 = 0 each, or conclude that none exists. Basically that’s
trial and error, and I have filled in all but three of the “doesn’t exist” cases, and a few of
the existence cases, to save you work. [Table with filled-in cases not recopied here.] Note
also that in the example p = 29, to find solutions, I only needed to test 1, 2, 3, . . . , 14,
since 15 ≡ −14, 16 ≡ −13,. . . .

Once this is accomplished, use the information, and wisdom gleaned from the very
last part of the previous problem, to factor X4 + 1 completely in Zp[X] for the prime
numbers p = 2, 3, 5, 7, 11, 13, 17 (and more of them, if you are bored, or want to get
bored).

Background info: a simple result from the theory of quadratic residues (in elementary
number theory), or in other terms, a simple argument about groups, which we have
alas no time to go into, implies in particular: if p is an odd prime such that there is no
element in Zp whose square is −1, and also no element whose square is 2, then there
does exist an element whose square is −2.

Accepting this fact, you can conclude that at least one of the factorizations of X4 + 1
into quadratics (in C[X]) found in problem 62 can serve as a model for factorization in
Zp[X]; in other words: X4 + 1 can be factored nontrivially in *every* Zp[X].

Solution: The table gives one solution x to the given equations in the rings (fields, actually) Zp.
The negative of a solution is also a solution for these equations here. It turns out there are no



further solutions (because quadratic polynomials have only two roots, when the coefficient ring is
a field), but this is not used in the following.

p x2 + 1 = 0 x2 − 2 = 0 x2 + 2 = 0
2 1 0 0
3 dne dne 1
5 2 dne dne
7 dne 3 dne

11 dne dne 3
13 5 dne dne
17 4 6 7
19 dne dne 6
23 dne 5 dne
29 12 dne dne

All coefficients will be congruence classes, even though they are written like integers, without a bar.
Now we can copycat factorizations from C: If in our finite field we have an a such that a2 + 1 = 0,
then we can factorize X4 + 1 = (X2 + a)(X2 − a). If we have a b such that b2 = 2, then we can
factorize X4 + 1 = (X2 − bX + 1)(X2 + bX + 1). If we have a c such that c2 = −2, then we
can factorize X4 + 1 = (X2 + cX − 1)(X2 − cX − 1). If we have all three of them, then we have
a factorization into linear factors, which we could get, by taking the gcd of quadratics from two
different factorizations.

Factorization in Z2[X]: X4 + 1 = (X2 + 1)(X2 − 1) = (X2 + 1)(X2 + 1) = (X + 1)4

Factorization in Z3[X]: X4 + 1 = (X2 + X − 1)(X2 −X − 1) = (X2 + X + 2)(X2 + 2X + 2)
Factorization in Z5[X]: X4 + 1 = (X2 − 2)(X2 + 2) = (X2 + 2)(X2 + 3)
Factorization in Z7[X]: X4 + 1 = (X2 − 3X + 1)(X2 + 3X + 1) = (X2 + 3X + 1)(X2 + 4X + 1)
Factorization in Z11[X]: X4 + 1 = (X2 + 3X − 1)(X2 − 3X − 1) = (X2 + 3X + 10)(X2 + 8X + 10)
Factorization in Z13[X]: X4 + 1 = (X2 − 5)(X2 + 5) = (X2 + 5)(X2 + 8)
Factorization in Z17[X] below.
Factorization in Z19[X]: X4 +1 = (X2 +6X − 1)(X2− 6X − 1) = (X2 +6X +18)(X2 +13X +18)
Factorization in Z23[X]: X4 + 1 = (X2 − 5X + 1)(X2 + 5X + 1) = (X2 + 5X + 1)(X2 + 18X + 1)
Factorization in Z29[X]: X4 + 1 = (X2 − 12)(X2 + 12) = (X2 + 12)(X2 + 17)

Factorization in Z17[X]: three essentially different factorizations in quadratics (neither of them
complete: the complete factorization is into 4 linear terms)

X4 + 1 = (X2 − 4)(X2 + 4) = (X2 + 4)(X2 + 13)
= (X2 − 6X + 1)(X2 + 6X + 1) = (X2 + 6X + 1)(X2 + 11X + 1)
= (X2 − 7X − 1)(X2 + 7X − 1) = (X2 + 7X + 16)(X2 + 10X + 16)

We can obtain a complete factorization by calculating, e.g., the gcd of X2 + 13 and X2 + 6X + 1,
or by looking for roots for the individual quadratics. Either way, we find X4 + 1 = (X − 2)(X +
2)(X − 9)(X + 9) = (X + 2)(X + 8)(X + 9)(X + 15)

In connection with the Eisenstein irreducibility test, we have seen: If a monic polynomial in Z[X]
is reducible in Q[X] (or equivalently in Z[X]), then it is also reducible in every Zp[X].

The problem we have just solved shows (provided we accept that no prime will have a triple dne
entry in the above table), that the converse is not true. We have exhibited a polynomial that is
reducible in every Zp[X], but nevertheless irreducible in Q[X].

Epilog: This is not part of the problem, but let me explain fyi why it is true for every odd prime number
p, that among the equations x2 + 1 = 0, x2 − 2 = 0, x2 + 2 = 0, either exactly one or all three have a
solution in Zp:

Choose any a 6= 0 in Zp. If an equation x2 = a has a solution x1 in Zp, then x2 := −x1 is also a
solution; and it is a different one, because p is odd. (x = −x implies x = 0 in Zp with p odd). There



can be no further solution because the quadratic polynomial x2 − a can have only two roots. So if we
take the squares of all elements x ∈ Zp \ {0} =: Z∗

p, each result a that is obtained among these squares
is obtained exactly twice. Which means that one half of the p− 1 many elements of Z∗

p are squares and
the other half are non-squares.

(1) Obviously the product of two squares is a square: (x2)(y2) = (xy)2. — (2) It is easy to see that the
product of a square and a non-square is a non-square. For if x2b = y2, then b = (yx−1)2, so b would
have to be a square, too. This argument uses the fact that all elements of Z∗

p have a multiplicative
inverse in the field Zp. — (3) Finally we can conclude that the product of two non-squares must be a
square (and this will turn out ot be the crucial observation): Namely let b 6= 0 be a nonsquare. The
mapping x 7→ bx , Z∗

p → Z∗
p is one-to-one and onto because its inverse is y 7→ b−1y. Since it maps

the squares (of which there are (p− 1)/2 many) into non-squares (which are equally many) according
to part (2), there is no choice left for the non-squares but to be mapped into squares. But that means
non-square times non-square is square.

Now since (−1) · 2 = (−2), not all three of these elements can be non-square. If −1 and 2 are both
non-square, then −2 is square. If exactly one of −1 and 2 is non-square, then −2 is also non-square. If
both −1 and 2 are square, then so is −2.

Hwk 64:

We have seen that a polynomial of degree n in F [X] can have at most n roots in F (or
any extension field of F ). This assumed that F be a field. In contrast, consider the
polynomial ring Z25[X].

How many roots does the polynomial X2 have in Z25?

Give several essentially different factorizations of X2 in Z25, thus showing that the
unique factorization property may fail in R[X], if R is not a field (and not even an
integral domain).

Solution: The roots of X2 in Z25[X] are: 0, 5, 10, 15, 20. We have essentially distinct factoriza-
tions X2 = X ·X = (X + 5)(X + 20) = (X + 10)(X + 15).

We could even have further factorizations like X2 = (X − 5X2)(X + 5X2). However, note that
X + 5X2 = X(1 + 5X), and 1 + 5X is a unit because (1 + 5X)(1− 5X) = 1. So this factorization
is not essentially different from the factorization X ·X.

Hwk 65:

In Z2[X], consider the ideal I of all multiples of the irreducible polynomial X3 +X +1.
Denoting the equivalence class X̄I in Z2[X]/I as j, list all elements of Z2[X]/I, and give
their multiplication table. In particular, find the inverse of 1 + j in the field Z2[X]/I.

Solution: Every congruence class modulo I contains exactly one polynomial of degree ≤ 2 (or
the 0 polynomial). Since the coefficients can be only 0 or 1 in Z2, we can enumerate 8 congruence
classes: 0, 1, X, 1 + X, X2, 1 + X2, X + X2, 1 + X + X2.

Let j := X. Then we get the following multiplication table (from which the trivial cases 0 and 1
have been omitted):



· j j + 1 j2 j2 + 1 j2 + j j2 + j + 1
j j2 j2 + j j + 1 1 j2 + j + 1 j2 + 1

j + 1 j2 + j j2 + 1 j2 + j + 1 j2 1 j

j2 j + 1 j2 + j + 1 j2 + j j j2 + 1 1
j2 + 1 1 j2 j j2 + j + 1 j + 1 j2 + j

j2 + j j2 + j + 1 1 j2 + 1 j + 1 j j2

j2 + j + 1 j2 + 1 j 1 j2 + j j2 j + 1

We just give one sample calculation proving this table: (j2 +1)(j2 + j +1) = j4 + j3 +2j2 + j +1 =
(j + 1)(j3 + j + 1) + j2 − j = j2 + j.

From the table, we can in particular see that (j + 1)−1 = j2 + j.


