
Examples of mappings defined by certain complex functions

Before we continue with more theory, I want you to experience a few examples of simple complex
functions. Just as you would have graphed linear functions, quadratics, and similar simple
functions in precalculus before venturing into single variable calculus, we will graph complex
functions here. But for a complex function w = f(z), you cannot plot a diagram with a z and a
w axis, because actually you would need a z- and a w-plane! So the whole picture would need
not 2, but 4 dimensions! So we invent a different method for graphing functions. Namely, we
draw a z-plane and a w-plane separately. Then we draw some nice geometric pattern in the
z-plane; and to each point z in this pattern we plot the corresponding point w = f(z) in the
w-plane. This way, a new pattern arises in the w-plane. Just like in optical imaging, f describes
some kind of imaging process, and understanding this imaging process geometrically is our way
of ‘graphing’ f .

This process is transparent only for rather simple functions f , and a judiciously selected sampling
of patterns for each function f . For a complicated function and some random pattern, the
pictures you’d get may well be a less-than-enlightening mess. But the good news is, that these
few simple examples are actually quite useful in applications.

All of the functions we are studying here will later turn out to be differentiable. All the mappings
you will encounter will turn out to be conformal , i.e., angles in the image equal corresponding
angles in the original. (There are a few exceptional points, can you spot them?) This is no coin-
cidence. Differentiable functions give rise to conformal mappings (subject to some details I am
skipping here; details to follow later). In 2-dimensional electrostatics problems, this conformal
mapping property is desired, hence the applicability of complex variables to the subject.

We start our discussion with a simple example, a linear function. Say f(z) = (1+ i
√
3)z+2− i

2
.

Note that in polar coordinates, 1 + i
√
3 = 2 cis(π

3
). So what is f doing to z? It doubles the

absolute value of z and adds π

3
to its argument. Then it translates the result by 2− i

2
, which is

the real vector [2,−1

2
]T . The pattern I have selected here, the gray square with random text in

it, gets enlarged by a factor 2 = |1 + i
√
3|, rotated by an angle π

3
= arg 1 + i

√
3, and translated

by 2− i

2
. Any other pattern would undergo the same changes.
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w = f(z) = (1 + i
√
3)z + 2− i

2

Now let’s have a look at the mapping w = f(z) = z2. Here it’s nice to use certain cartesian or
curvilinear coordinate grids as patterns. Remember: squaring a complex number squares the
absolute value and doubles the argument. So it is easy to understand the mapping for a piece
of a polar coordinate grid.
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z

0 1 2 3

w

0 1 4 9

w = f(z) = z2

Another example: Still the same function f(z) = z2, but we map a cartesian coordinate grid:
We study what happens to the straight vertical lines z = 1 + it, z = 2 + it, z = 3 + it under
the mapping w = z2. Then we study the same for the horizontal lines z = i + t, z = 2i + t,
z = 3i+ t.

For instance if z = 1 + it, we get w = z2 = 1 − t2 + 2it. So if we write w = u + iv, we
observe that u = 1− t2 = 1− v2/4. This is a parabola that opens to the left. Similar parabolas
are obtained for the other vertical lines. For the horizontal lines like eg., z = i + t, we get
w = z2 = (i+ t)2 = t2 − 1+ 2it = u+ iv, so u = v2/4− 1, which is a parabola that opens to the
right. I am drawing all parabolas in a to-scale figure:

z

0 1 2 3

w

0 1 4 9

w = f(z) = z2

Did you notice how angles are preserved? Right angles in the original will still be right angles
in the image (and this would apply to other angles as well). There is however one exceptional
point z0. Angles of lines meeting at z0 are not the same as angles between the image lines
meeting at f(z0) = z2

0
. Can you spot this point?
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Hwk 7: Consider the curves xy = const and x2 − y2 = const , say in the first quadrant of C.
These curve are hyperbolas. If these hyperbolas are mapped under the function f(z) = z2, what
curves arise in the complex w-plane?

Hwk 8: Now consider the map f(z) = 1/z. Using the problem pg 12,#25, show that
• every circle in the z plane that does not pass through 0 is mapped into another circle in the w
plane (that also doesn’t pass through 0);
• every straight line that does not pass through 0 is mapped into a circle in the w plane that does
pass through 0;
• every circle in the z plane that does pass through 0 is mapped into a straight line in the w
plane that doesn’t pass through 0;
• every straight line in the z plane that passes through 0 is mapped into an other straight line
in the w plane that again passes through 0.

The circle centered at 2 with radius 1 is mapped into which circle? Notice that this image circle
is not centered at f(2) = 1

2
.

Draw a cartesian coordiante grid involving the vertical lines Re z ∈ {−3,−2,−1, 0, 1, 2, 3} and
also the horizontal lines Im z ∈ {−3,−2,−1, 0, 1, 2, 3}. What are the images of this grid under
the mapping w = f(z) in the w plane? Draw a picture.

Hwk 9: The function f(z) = z + 1

z
is an interesting example. Show that all circles |z| = r

for r > 1 map into ellipses w = u + iv where u
2

?2
+ v

2

?2
= 1. (Fill in the question marks with

appropriate expressions in r). In particular conclude that the exterior of the unit circle, namely
the set |z| > 1 maps into the set C \ [−2, 2], and that this map is a 1-1 correspondence (in other
words bijective).

Hwk 10: Consider the function f(x + iy) = ex cis y. [We will later identify this function as
f(z) = ez, as you may be aware already from Math 231]. What does the rectangle a < x < b,
c < y < d map into? What kind of curve does a line z = (1 + 3i)t map into? Sketch.

This probably comes close to exhausting the ‘good’ examples that are accessible at this stage.
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