
Homework
UTK – M531 – Ordinary Differential Equations I

Fall 2004, Jochen Denzler, TR 11:10–12:25, Ayres 309B

The first 8 problems serve multiple purposes: Familiarize yourself with key examples, in
particular from a modelling point of view, get a sneak preview of later material, appreciate
the need to get qualitative information about solutions of an ODE, with or without the ability
to come up with formula solutions, and along the way review some techniques learned in the
sophomore ODE course.

1. Exponential Growth Give physical / biological interpretations to the variables y, t,
and the parameter k (positive or negative) in the ODE

y′(t) = ky(t)

if the ODE describes (a) radioactive decay, (b) Newton’s law of cooling, (c) population
growth. Write down the set of all solutions to this ODE (called general solution in the
sophomore level courses). In case (a), express the half-life of the radioactive substance
in terms of the/a variable(s)/parameter present in the ODE.

This is kind of a review of sophomore ODE material. See any textbook or my web
notes for this level, or me, with any difficulties here.

The flow function (t, y) 7→ φ(t, y) is defined as follows: φ(t, y0) is the value y(t) of the
(unique) solution of the ODE subject to the initial condition y(0) = y0. Give a formula
for the function φ.

2. Two Step Radioactive Decay A nucleus A decays, with a decay constant k1 into a
nucleus B. This nucleus is itself radioactive and decays, with a decay constant k2, into
a stable nucleus C. Set up the differential equations for the concentrations A(t), B(t),
C(t) of the respective nuclei as a function of time, find the solution, expressed in terms
of the initial concentrations A0, B0, C0. Determine the large-time asymptotic behavior
of the ratio A(t)/B(t), distinguishing the cases k2 > k1 and k2 < k1. (Never mind the
physically irrelevant case where k1 = k2.)

Note: asymptotic behavior refers to the limit as t →∞, provided this limit exists and
is neither 0 nor infinity. Otherwise, find a simple function (in our case aebt) such that
the limit (as t →∞) of (A(t)/B(t))/(aebt) is 1.

3. Predator Prey Model (Lotka–Volterra Equations) Find all equilibrium solutions
(stationary solutions) for the confined predator-prey model

R′ = aR− bRF − eR2

F ′ = −cF + dRF − fF 2

Choosing e = f = 0, a = b = c = d = 0.3, sketch the ‘phase portrait’ (aka vector field)
of the predator prey model. Also sketch one or two solution curves (aka integral curves
of the vector field).

4. Modelling a Leaky Bucket Derive the leaky bucket ODE

y′ = −k
√

y

from energy considerations, neglecting motion inside the bucket (appropriate for a small
leak) and viscosity: The potential energy of a thin ‘slab’ of water at the top that leaves
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the bucket, gets converted in kinetic energy of the water that flows out. Make sure to
express k in terms of accessible (physical and geometric) quantities. Solve the ODE.
How long, depending on the initial height, does it take until the bucket is empty?

5. Mathematical Pendulum The mathematical pendulum obeys the equation

ẍ + g
` sinx = 0

where x denotes the angle as measured from the vertical-down position.

Show that for a particular choice of a 6= 0 (which?), and arbitrary t0, a solution is
given by x = 4 arctan exp(a(t − t0)) − π. Sketch a graph of this function and describe
the particular motion of the pendulum that is given by these solutions. Note that
sin 4 arctanu is a rational function of u, and you can find out which, if you use the
double angle formulas sin 2ϕ = 2 sin ϕ cos ϕ, cos 2ϕ = cos2 ϕ− sin2 ϕ twice.

Unless you are familiar with the so-called elliptic functions usually denoted by sn, cn,
dn (and I certainly don’t expect such familiarity) you will not be able to write down
formulas for a general solution to the mathematical pendulum equation.

Multiply the equation by ẋ and integrate, such as to obtain a 1st order ODE instead of
the second order ODE. What name does the physicist call the constant of integration
thus obtained? (You may prefer also to multiply with the constant m`2, where m is
the mass of the pendulum, to obtain a more clearly visible meaning of the constant of
integration.)

6. Mathematical Pendulum II Write the 2nd order ODE of the previous problem as
a 1st order system, sketch a phase portrait, making sure to enter the equilibria and the
special solution explicitly calculated there into the figure.

How can the 1st order ODE that you obtained in the previous problem by integrating
be represented in the phase portrait?

7. Genesis of the Bessel Equation In the study of oscillations of a circular membrane,
the partial differential equation ∆w = −ω2w arises, where the Laplace operator is
∆ = ∂2

∂x2 + ∂2

∂y2 . Using the chain rule to transform it in polar coordinates, one obtains

∆ = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂ϕ2 . If you look for solutions w of the special form w = u(r) cos nϕ,
which ODE must u satisfy?

8. Bessel Zeros: Qualitative Heuristics For sufficiently large r (say r > n), compare
the Bessel equation with the equation of the damped harmonic oscillator; argue based
on physical intuition pretending that r should be called ‘time’, and give a mechanical
interpretation. Explain heuristically why the solutions should be oscillatory for large r.
Based on heuristic approximations, what approximate distance between adjacent zeros
of solutions would you expect?

9. Bessel Zeros: A Rigorous Proof The heuristics of the previous problem can be
made rigorous by means of the following calculations, which, when seen first, will seem
miraculous and unmotivated. Just trust me and follow the roadmap. We take the
Bessel eqn with n = 0:

The substitution U = r1/2u serves the purpose to get an ODE for U that does not
contain a first derivative. Find the ODE for U . The ODE v′′ + v = 0, whose solutions
are known, is introduced as an auxiliary equation for comparison with the eqn for U .
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Note that any solution v = a cos r + b sin r of v′′+ v = 0 can also be written in the form
v = c sin(r − r0).

Assume (for the purpose of deriving a contradiction) that some solution u is positive
on a certain interval [r0, r0 + π] of length π and consider the function U ′v − Uv′, with
the comparison function v = sin(r − r0). Calculate

∫ r0+π
r0

(U ′v − Uv′)′ dr in two ways:
(a) with the fundamental theorem of calculus, (b) using the ODEs for U , v.

The contradiction arises when one way of calculation yields a positive quantity, whereas
the other way yields a negative quantity.

Having shown that U and hence u cannot be positive on any interval of length π, you
conclude that u must have infinitely many zeros, with distance ≤ π apart.

Note: In the sophomore ODE course, you have encountered the Wronskian U ′v−Uv′ =

det
[

v U
v′ U ′

]
of solutions v, U of one and the same 2nd order linear ODE. Here we

have used a ‘mixed’ Wronskian of solutions v, U of different, but similar ODEs as the
key piece of magic in our proof.

Note: The method of proof, namely to integrate the derivative of a Wronskian to get
sign information, is called a Sturm comparison argument. We’ll return to it later. The
only reason to have it as a preview already now is that I don’t want to leave you with
only vague heuristis from #8.

10. Trying Out Some Proof Ideas Consider the IVP ẋ = x, x(0) = 1. Write down the
solution explicitly.

Next write this IVP as an integral equation as outlined in the proof sketch for the
Picard-Lindelöf existence and uniqueness theorem. Give formulas for the approximate
solutions x[0], x[1], x[2], x[3], etc, obtained in the Picard-Lindelöf iteration. Graph them,
together with the exact solution, over the interval [−1.5, 1.5] 3 t, in one figure.

Likewise, calculate the piecewise linear approximate solutions x[h] obtained from the
explicit Euler method for h = 1, h = 0.5, and h = 0.25 and plot these functions in one
figure together with the exact solution, over the interval [−1, 1] 3 t. (I’ve taken license
in using the symbol x[?] in two different meanings.)

11. Find a continuous function f that satifies f(x) =
∫ x
0 (1+f(t)2) dt for sufficiently small x.

12. Reconstructibility of the Past: Theory and Modelling If you find an empty
bucket with a leak, can you determine when it was full? (Is the difficulty a theoretical
or a practical one?) Which theorem is illustrated by this problem? — An isotope A
decays into a stable isotope B with a half-life of 10 hours (Let’s say by β decay, which
carries away only a negligible mass). You are told that many weeks ago somebody
prepared 100g of 90% pure A. Now you find a residue of (almost) 100g of isotope B,
with no trace of A left. Can you find out when the 100g of isotope A was prepared?
How does this question differ from the leaky bucket question? — Can you also play the
devil’s advocate and challenge the validity of the distinction just found?

13. Good Modelling Consistence Properties for Lotka–Volterra For the predator
prey model

Ṙ = aR− bRF − eR2

Ḟ = −cF + dRF − fF 2
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with a, b, c, d > 0, e, f ≥ 0, show that (a) R(t) = 0 for all t, provided R(0) = 0; (b)
F (t) = 0 for all t, provided F (0) = 0; (c) R(t) > 0 and F (t) > 0 for all t, provided
R(0) > 0 and F (0) > 0. (Here, ‘for all t’ is to be understood as ‘for all t in the maximal
interval of existence’.)

The title is ‘modelling consistence properties’, because, if the mathematics allowed for
the ODE to have solutions starting with a positive number of foxes and rabbits but
then ending up with a negative number after some time, the conclusion would have to
be that these ODEs are a really poor (fishy or lousy, but certainly not foxy) model.

14. An Integral of Motion Based on part (c) of the previous problem, we here consider
as the phase space of the predator prey model only the positive quadrant R > 0, F > 0.
In the predator prey model, with e = f = 0, a stroke of genius has invented the function
V (R,F ) := dR+ bF − c lnR−a lnF , defined for R,F > 0. Show that miraculously the
function t 7→ V (R(t), F (t)) for solutions (R(·), F (·)) to the ODE, is a constant function.

I’m not aware of an official name for this function V , but your calculation shows an
analogy to, say, the total energy in certain mechanical systems, which is a function E of
the phase space variables (positions and velocities of the particles), and for the actual
movements of the particles (i.e., with the actual solutions of the ODE being plugged
into this function), it becomes a constant in time. So just to stress this analogy in your
mind, I invent the name ‘bionergy’ for V , for the sole usage in this problem.

Sketch the ‘isobionergics’ (lines of constant bionergy) in phase space. What information
do they give about solutions of the ODE?

Using V in a similar way as 1+ ‖x‖2 in Cor. 1.2.5, prove that solutions to the predator
prey model exist for all positive times, even when e, f ≥ 0 don’t necessarily vanish.

15. Phase Portraits; When are two the Same? The harmonic oscillator ẍ+ω2x = 0
can be written as a first order system in the following two ways (and in many other
ways as well):

ẋ = v
v̇ = −ω2x

and
ẋ = ωy
ẏ = −ωx

How (if at all) do the phase portraits differ? — Suggest a definition when two phase
portraits should be considered as ‘the same’. —(Chicone Ex 1.8)

16. Calculating a Flow Calculate the flow map (t, x, y) 7→ φ(t, x, y) of the system

ẋ = y2 − x2

ẏ = −2xy

Note: A problem like this may be rather intractable already. What makes this one
much easier is that the formulas become simpler in terms of the complex coordinate
z = x + iy instead of the real coordinate (x, y). —(Chicone Ex 1.8)

17. A Dimensional Effect Prove: An equation ẋ = f(x) with x ∈ R cannot have
non-constant periodic solutions.

This a simple example of the principle that low dimension of the phase space limits
the complexity of the solutions. The more interesting case to study later will be what
limitations on the behavior of solutions a 2-dimensional phase space can set.
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18. Picard–Lindelöf Quantitatively: Redo the proof of the existence/uniqueness the-
orem for the specific case

x(t) =
∫ t

0
(1 + x(τ)2) dτ

in the complete metric space (ball in the Banach space) C0([−T, T ] → B̄r(0)), op-
timizing T and r such as to get the largest possible interval of existence out of the
proof. Compare with the true maximal interval of existence. (The ODE can be solved
explicitly.)

The space {
f : [−T, T ] → R | f(t) = t g(t) ; g ∈ C0([−T, T ] → R)

}
with the norm ‖f‖1 := supt∈[−T,T ] |f(t)/t| is also a Banach space. (Why?) — Redo
the contraction mapping argument in a ball of radius r in this Banach space, again
optimizing T and r such as to get the largest possible interval of existence out of this
proof. (Remember that the contraction constant can be any ϑ < 1 and needn’t be the
1
2 I chose in 1.3.1 of the lecture.

In either case, sketch the set in the (t, x) plane in which the graphs of those functions
can lie that are in the ball of the respective Banach space.

I do not mean to allege that this is the best method to get good estimates for the
maximal interval of existence; rather I suggest it as a good way to study the Picard-
Lindelöf proof and the Banach space formalism in detail, and to work with different
norms, as the task may suggest as convenient.

19. Insufficient ‘Contraction’ for Banach’s Fixed Point Theorem: R is a complete
metric space. Find a function f : R → R that satisfies |f(x) − f(y)| < |x − y| unless
x = y, but which has no fixed point.

Show on the other hand that the ‘weak contraction property’ |f(x) − f(y)| < |x − y|
unless x = y is sufficient to salvage Banach’s fixed point theorem in a compact metric
space X. Hint for this one: Consider Z :=

⋂
n fn(X) with fn := f ◦f ◦ · · ·◦f (n times);

show that Z contains exactly one point.

20. A Weighted Norm, for Global Estimates: If f : R×Rn → Rn is continuous and
satisfies a Lipschitz condition on all of [−T, T ]× Rn

|f(t, x)− f(t, y)| ≤ L|x− y| for all x, y ∈ Rn , t ∈ [−T, T ]

then the solution to ẋ = f(t, x), x(0) = x0 exists for all t ∈ [−T, T ] by (a variant of)
the extensibility theorem. However, fixed point iteration in C0([−T0, T0] → Rn) with
the usual norm still requires a smallness condition on T0 to be a contraction. (Namely,
how small must T0 be?)

Take a different norm in C0([−T, T ] → Rn), namely ‖x(·)‖a := max{|x(t)| exp(−a|t|) :
t ∈ [−T, T ]}. This norm makes C0([−T, T ] → Rn) into a Banach space, too. Show that
for appropriate a (which?), the fixed point iteration is a contraction, with the whole
time interval [−T, T ] allowed.

21. Mathematical Pendulum with Damping How does the phase portrait of the
mathematical pendulum ẍ + sin x = 0 change if a small friction is introduced: ẍ + δẋ +
sinx = 0? You may use heuristic answers, physical intuition, experimental mathematics
or rigorous arguments, provided you declare them correctly as what they are.
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22. Coincidential Uniqueness The vector field f on R given by f(0) = 0, f(x) =
|x|1/2 sin(1/x) for x 6= 0, is continuous, but is not Lipschitz in any neighbourhood of
x = 0. Show that nevertheless the initial value problem ẋ = f(x), x(0) = 0, has only
the trivial solution x(t) ≡ 0.

23. Planar 1-body Kepler Problem Consider the ODE

ẋ = v
v̇ = −x/|x|3 where x =

[
x
y

]
and v =

[
u
v

]
on U := {(x,v) ∈ R4 | x 6= 0} ⊂ R4. It describes the motion of a planet around the
sun, neglecting the reaction force of the planet on the sun, hence considering the sun
as fixed at x = 0.

Do there exist equilibrium solutions?

Show that the following two quantities are constants of motion: L := xv − yu and
E := 1

2 |v|
2 − |x|−1. L denotes the angular momentum (per unit mass) of the planet,

and E denotes its total energy (per unit mass).

Show (kinematically) that E ≥ −1/|x| + L2/(2|x|2). — When I say ‘kinematically’,
I mean: by using only functions defined on U without reference to the ODE (the vector
field on U).

Show that the joint-level set {(x,v) ∈ U | L(x,v) = L0 , E(x,v) = E0} is compact,
for any choice E0 < 0, L0 ∈ R \ {0}.
What does this imply for the existence time of solutions? Can you salvage your con-
clusion even if E0 ≥ 0 (still assuming L0 6= 0)? — In very practical geometric terms,
which type of initial conditions are excluded by the assumption L0 6= 0?

Using heuristic arguments, which dimension should the above-mentioned joint-level sets
have? — Which advanced calculus theorem makes the heuristics rigorous? Can you
apply it? Describe the exceptional case where the heuristic argument cannot be proved
rigorously.

24. Solving the Kepler Problem Continuing the previous problem, express E and
L in terms of polar coordinates (r, θ) and their time derivatives, where x = r cos θ,
y = r sin θ. Assume L 6= 0.

Show that θ is a strictly increasing or strictly decreasing function of time. Rather than
considering r as a function of t, consider r as a function of θ. (It is convenient to
distinguish ṙ = dr/dt from r′ = dr/dθ.) Transform both the energy conservation and
the ODE for r̈ into ODEs for functions of θ, rather than t. Hindsight then invents
the lucky substitution r = 1/ρ to obtain a significant simplication. Solve the ODE for
ρ = ρ(θ).

Finally set up the differential equation connecting θ and t. (We’ll omit solving it.)

25. A Geometric Look at the Kepler Problem It seems difficult to visualize the set

Λ(E0, L0) :=
{

(x, y, v, w)
∣∣∣ (x, y) 6= (0, 0) ,

v2 + w2

2
− 1√

x2 + y2
= E0 , xw−yv = L0

}
⊂ R4

geometrically, doesn’t it? — But using the expressions for E and L in polar coordinates,
you can visualize an R3 whose ‘horizontal’ plane has cartesian coordinates (x, y) or polar
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coordinates (r, θ), and whose vertical axis denotes ṙ. (θ̇ is eliminated in favor of L = L0

already.) What kind of geometric (topological) shape does the level set Λ(E0, L0) have?
E.g., is it a (possibly deformed) sphere, or a (possibly deformed) donut, or what else?
How does the answer depend on signE0? What happens if E = −1/(2L2) ?

26. What the Hedgehog Knows about Planetary Motion ; –) The ‘Hedgehog The-
orem’ from algebraic topology says that you cannot comb a hedgehog. More precisely,
it is not possible on a sphere (round, or deformed by a C1 map with C1 inverse) to have
a continouous assignment of a nonzero tangential vector to each point. In meteorology,
it says that, unless there is a tornado somewhere (where the wind is not tangential to
the surface), there must be some point on the surface of the earth where there is no
wind.

Assuming this result, what (negative) conclusion could you have drawn on the shape
of Λ(E0, L0) in the previous problem with virtually no calculation at all?

Further and much deeper reasoning along this school of thought could even have posi-
tively predicted the topological shape of Λ(E0, L0) instead of just ruling out one possi-
bility. This would transgress the scope of a M531/M532; I just mention it to illustrate
the power of a qualitative analysis, even in the absence of explicit calculations, in partic-
ular in low dimensions. Compare with the ultra-simple problem 17 for another instance
of qualitative reasoning without calculation.

27. Mathematical Pendulum with Friction For the pendulum ẍ + εẋ + sin x = 0
with ε > 0 consider the total mechanical energy E = 1

2v2 + 1 − cos x with v = ẋ.
Show: (x, v) = (0, 0) is asymptotically stable, and in particular if E(x(0), v(0)) < 2 and
|x(0)| < π, then x(t) → 0 as t →∞.

Show asymptotic stability also by means of linearization and compare advantages /
disadvantages of the two methods.

28. Stability for Lotka–Volterra Consider the equilibrium

R∗ = af+bc
ef+bd

F∗ = ad−ec
ef+bd

of the system
Ṙ = aR− bRF − eR2

Ḟ = −cF + dRF − fF 2

in the case where this equilibrium is biologically meaningful (ad > ec). Show by lin-
earization that the equilibrium is asymptotically stable, provided a, b, c, d, e, f > 0.

It is possible to concoct a Lyapunov function of the form V = αR−β lnR+γF−δ lnF +
const . for the same purpose, but the calculation that determines the appropriate choice
of α, β, γ, δ is rather messy. With Mathematica’s help I obtain
α = d(ef + bd), β = d(af + bc), γ = b(ef + bd), δ = b(ad− ec).
I then get V̇ = (ef + bd)[−de(R−R∗)2 − bf(F − F∗)2].

If you trust my calculation, can you answer the question: Still assuming a, b, c, d, e, f >
0, do there still exist non-constant periodic orbits as was the case for e = f = 0 ?
Explain.

29. Attractive and Unstable Consider the ODE

ẋ = x(1− r2) + z2 − r2z
ż = z(1− r2) + x(r2 − z)

(where r2 = x2 + z2)
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(a) Using the auxiliary function V (x, z) = x2 + z2, calculate d
dtV ; show that the sets

{(x, z) | V (x, z) ≤ c} are forward invariant, provided c ≥ 1. Show that the flow exists
for all positive times. Which level sets of V are invariant?

(b) Show that there are exactly two equilibria: (0, 0) and one other, which we shall call
(x∗, z∗). Re-using the calculation of d

dtV narrows down this calculation significantly.

(c) For each equilibrium, find the linearization of the vector field there, and determine
its eigenvalues. What conclusions (if any) can be drawn about the stability of either
equilibrium?

(d) Show that (x∗, z∗) is unstable.

(e) Now (begin to) show that (x∗, z∗) attracts all initial values (x0, z0) 6= (0, 0): to
this end, show first that limt→∞ V (φt(x0, z0)) = 1. Also show that for all initial values
(x0, z0) that are on the circle {V = 1} already, limt→∞ φt(x0, z0) = (x∗, z∗).

(f) Use the two facts from (e) together to show that the ω-limit set of any initial point
other than (0, 0) is either {(0, 1)} or the entire circle x2 + z2 = 1.

In which direction does the vector field point on the following line segments or arcs: (1)
z = 1, 0 < x < 1; (2) x2 + y2 = 1.9; (3) x = 0, 0 < z < 1; (4) z = 0, x > 0. — Use
this to identify a forward invariant set and to rule out the entire circle x2 + z2 = 1 as
an ω-limit set.

30. Lorenz Equations: Equilibria and Their Stability The Lorenz equations are
known for rather complicated dynamics. They are

ẋ = σ(y − x)
ẏ = ρx− y − xz
ż = −βz + xy

(3)

with parameters β, ρ, σ > 0,

(a) Show that for ρ < 1, the only equilibrium is (0, 0, 0), and it is asymptotically
stable, and that this equilibrium becomes unstable for ρ > 1.

(b) Show that for ρ > 1, other equilibria occur, and that they are asymptotically
stable at least for ρ ∈ ]1, ρ̂[ with some ρ̂ > 1 dependent on β, σ.

(c) By considering for which value of ρ (given β, σ > 0) a pair of eigenvalues on the

imaginary axis is possible, show that we can take ρ̂ =
σ2 + 3σ + σβ

σ − 1− β
, provided

σ > β + 1, and ρ̂ = ∞ otherwise.

(d) Show that indeed, for ρ > ρ̂, the non-trivial equilibria are unstable. To this end,
consider β, σ fixed and calculate the derivative dλ1/dρ of the negative eigenvalue
when the other eigenvalues are crossing the imaginary axis. (Thanks to a trace
argument, this calculation, which is simpler than the derivative of the other eigen-
values, suffices.)

Note: Eigenvalues of a matrix depend continuously on the matrix, and as long as they
are simple, they depend differentiably on the matrix.

31. Lorenz Equations: The ‘Easy’ Part of Long Time Behavior For the Lorenz
equations, consider V (x, y, z) := ρx2 + σy2 + σ(z− 2ρ)2. Show that there exist positive
constants a, b such that V̇ ≤ −aV + b.
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Hint: Expressing a, b in terms of β, ρ, σ is a bit messy and not really needed. However,
if you use, e.g., z(z− 2ρ) ≥ 1

2(z− 2ρ)2− 2ρ2, then you’ll see that a = min{2σ, 2, β} and
b = 4σβρ2 work.

Conclude that solutions exist for all positive times, and that the ω-limit set of each
orbit is contained in the ellipsoid {(x, y, z) | V (x, y, z) ≤ b/a} (and therefore compact
and non-empty).

32. Associated Matrix Norms
(a) Show that the matrix norm ‖A‖ := max|x|=1 |Ax|/|x| associated to the vector norm
|x| := maxi |xi| is given by |A| = maxi

∑
j |Aij |. Hint: Do it by means of explicit

inequalities |Ax| ≤ etc. and with examples where the inequality is sharp. Calculus is
no good here since the set |x| = 1 is not smooth.
(b) Show that the matrix norm associated to the vector norm |x| := (

∑
i |xi|2)1/2 is the

square root of the largest eigenvalue of the symmetric matrix AT A. Hint: Do it with
Calculus and Lagrange multipliers; no explicit inequalities.

33. Explicit Matrix Exponentials

(a) Calculate exp
[

0 t
−t 0

]
by explicit use of the power series.

(b) Likewise, calculate exp
[

0 t
0 0

]
and also exp


0 t 0 0
0 0 t 0
0 0 0 t
0 0 0 0

 .

(c) Confirm explicitly that exp
([

0 t
0 0

]
+

[
0 0
−t 0

])
is in general

neither
(

exp
[

0 t
0 0

]) (
exp

[
0 0
−t 0

])
nor

(
exp

[
0 0
−t 0

]) (
exp

[
0 t
0 0

])
.

34. Strict Lyapunov Functions May Still Look Funny: Let α > 0 and |β| < 1.

Transform the system
{

ẋ = −αx− y
ẏ = x− αy

into polar coordinates. Likewise express the

function

V (x, y) := (x2 + y2)

[
1 +

β√
x2 + y2

(
x cos

ln(x2 + y2)
2α

− y sin
ln(x2 + y2)

2α

)]

in polar coordinates. Show that V is a strict Lyapunov function for the ODE at the
origin. Plot a typical orbit of the ODE and, with the same unit length, graph a radial
section of the function V , i.e., graph r 7→ V (r cos ϕ, r sinϕ) for some choice of ϕ. (For
the graph I suggest β = 3/4, α = 1/20.)

35. A little review problem concerning the flow Review the definition and properties
of the flow map, if necessary. Then answer the question: Given the flow map (t, x) 7→
φ(t, x), find the vector field f that generated it. (I.e., express f in terms of φ).

If you think complicated, then you are thinking too complicated. . .
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36.

37.

38.

39.
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