Useful Maple Commands

The following Maple commands will be useful for plotting functions and checking your work. Note that in Maple, each command must be followed by a colon or semi-colon. The colon suppresses output, whereas the semi-colon displays output. To see the help page for any command, type ? followed by the command. The examples at the bottom of each help page are particularly useful.

Plotting

To plot the function $y=f(x)$ on the interval from $x 0$ to $x 1$, use 'plot'.
Syntax:
$>\operatorname{plot}(f(x), x=x 0 . . x 1)$;
Example:
$>\operatorname{plot}(\cos (\mathrm{x}), \mathrm{x}=0 . .2 * \mathrm{Pi})$;

Differential equations

At the beginning of a worksheet with differential equation commands, you will need to load the differential equations toolbox using the 'with' command.

```
> with(DEtools):
```


Plotting direction fields

To plot the direction field of the differential equation $y^{\prime}=f(y, x)$ from $x 0$ to $x 1$ and $y 0$ to $y 1$, use 'dfieldplot'.

Syntax
> dfieldplot(diff(y(x),x)=f(y(x),x), y(x), x=x0..x1, y=y0..y1);
Example

```
> dfieldplot(diff(y(x),x)=y(x)*(1-y(x)), y(x), x=-2..2, y=-0.5..1.5);
```


Plotting solutions on direction fields

To plot the solution with initial condition $y(0)=y i$ on top of the direction field, use 'DEplot'.

Syntax
$>$ DEplot(diff(y $(x), x), y(x), x=x 0 \ldots x 1,[[y(0)=y i]], y=y 0 \ldots y 1)$;
Example
$>$ DEplot $(\operatorname{diff}(y(x), x)=y(x) *(1-y(x)), y(x), x=-2 . .2,[[y(0)=0.5]]$, $\mathrm{y}=-0.5 . .1 .5$);

Solving differential equations
To obtain an equation for the solution to the differential equation with initial condition $y(0)=y i$, use 'dsolve'.

Syntax
$>$ dsolve(\{diff $(y(x), x)=f(y(x), x), y(0)=y i\})$;
Example
$>\operatorname{dsolve}(\{\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{y}(\mathrm{x}) *(1-\mathrm{y}(\mathrm{x})), \mathrm{y}(0)=0.5\})$;

$$
\mathrm{y}(x)=\frac{1}{1+e^{(-x)}}
$$

