
Final (Take-Home Part)

M551 – Abstract Algebra

December 3rd, 2007

1. Let R be a commutative ring with identity. Suppose that for each prime ideal P , the local-

ization RP has no non-zero nilpotent element.

(a) Show that R has no non-zero nilpotent element.

Proof. Let a ∈ R−{0}. Let I
def= {r ∈ R : ra = 0}. Then I is an ideal: if r, s ∈ I, then

(r − s)a = ra− sa = 0. If x ∈ R, then xra = x · 0 = 0.

Since a 6= 0, we have that 1 6∈ I, and hence I 6= R. Thus, there is a maximal ideal M

[and hence also prime] such that I ⊆ M . But, if am = 0 [in R], then (a/1)m = (am)/1 =

0/1 [in RM ], and hence, since RM has no non-zero nilpotent elements, we have that

a/1 = 0/1. So, there exists x ∈ R − M such that xa = 0. But, by definition, such x

would have to be in M , giving us a contadiction. Thus, a cannot be nilpotent.

(b) Is R necessarily a domain?

Proof. No! Let R
def= Z/6Z. The only proper non-zero ideals of R are P1

def= (2) and

P2
def= (3). [Note that every ideal of R is principal, since Z is a PID. It is not a PID since

it is not a domain, though.] Since it is not a domain, we have that (0) is not prime. By

observing containment, we can see that P1 and P2 are maximal, and hence prime.

Note that in RP1 , we have that 2/1 = 0/1, since 3 6∈ P1 and 3 · 2 = 0 [in R]. Now, if

(a/b)n = 0/1 in RP1 , then there exists x 6∈ P1 such that xan = 0. Since x 6∈ P1, we have

that x = 1, 3, 5. Since 1 and 5 are units in R, if a 6= 0, then we must have x = 3. But

then, an must be in P1 = {0, 2, 4}. Since P1 is prime, we have that a ∈ P1. So, by our

previous remark [i.e., 2/1 = 0/1], we have (a/b) = 0/1. Therefore, RP1 has no non-zero

nilpotent elements.

[In fact, we have RP1 = {0/1, 1/1} ∼= Z/2Z, since 2/1 = 0, and 1/1 = 1/3 = 1/5.]

Note that in RP2 , we have that 3/1 = 0/1, since 2 6∈ P3 and 2 · 3 = 0 [in R]. Now, if

(a/b)n = 0/1 in RP2 , then there exists x 6∈ P2 such that xan = 0. Since x 6∈ P2, we have
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that x = 1, 2, 4, 5. Since 1 and 5 are units in R, if a 6= 0, then we must have x = 2 or

x = 4. But then, an must be in P2 = {0, 3}. Since P2 is prime, we have that a ∈ P2.

So, by our previous remark [i.e., 3/1 = 0/1], we have (a/b) = 0/1. Therefore, RP2 has

no non-zero nilpotent elements.

[In fact, we have RP2 = {0/1, 1/1, 2/1} ∼= Z/3Z, since 3/1 = 0, and 1/2 = 2/1.]

2. Let R be a non-Noetherian commutative ring with identity, and S be the set of ideals which

are not finitely generated.

(a) Show that S has a maximal element I. [The ideal I in the next items is this maximal

element.]

Proof. We use Zorn’s Lemma: let C be a chain in S. [Note that S 6= ∅ since R is non-

Noetherian.] Let IC
def=

⋃
I∈C I. Then, as usual, IC is an ideal. If IC is finitely generated,

say IC = (a0, . . . , an), then there exists Ii ∈ C ⊆ S such that ai ∈ Ii. Since C is a chain

[i.e., totally ordered], we have that all ai are in a single Ij , which we can assume, without

loss of generality, to be In. But then, I ⊆ In ⊆ I. i.e., I = In. So, I ∈ S, which would

mean that I is not finitely generated, giving us a contradiction. Thus, I ∈ S is an upper

bound of C.

(b) Suppose that x 6∈ I. Prove that there exists a finitely generated ideal I0 ⊆ I, such that

(I0, x) = (I, x). [Don’t forget the I0 ⊆ I part!]

Proof. Since I is maximal in S and x 6∈ I, we have that I $ (I, x), and so (I, x) 6∈ S,

and so it’s finitely generated, say (I, x) = (a1, . . . , an). Since ai ∈ (I, x), for each i there

exists bi ∈ I and ri ∈ R such that ai = bi + xri. Let then I0
def= (b1, . . . , bn). Clearly

I0 ⊆ I, and so (I0, x) ⊆ (I, x).

Now, given a+xr ∈ (I, x), since (I, x) = (a0, . . . , an), we have that there are s1, . . . , sn ∈
R such that

a + rx = s1a1 + · · · snan = s1b1 + · · ·+ snbn + x(s1r1 + · · ·+ snrn) ∈ (I0, x).

Thus, (I0, x) = (I, x).
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(c) Suppose xy ∈ I, but x, y 6∈ I. Prove that J
def= {r ∈ R : rx ∈ I} is a finitely generated

ideal.

Proof. Let r, s ∈ J . Then, (r − s)x = rx − sx ∈ I, since rx, sx ∈ I, and so r − s ∈ J .

Given t ∈ R, we have trx ∈ I, since (rx) ∈ I and I is an ideal. Thus, J is an ideal.

Now, if r ∈ I, clearly rx ∈ I, and so I ⊆ J . But, since y 6∈ I, and yx = xy ∈ I, we have

that I $ J . By the maximality of I in S, we have that J is finitely generated.

(d) Prove that I must be prime. [Of course, use (b) and (c). Assume that I is not prime

and conclude that it must be finitely generated.]

Proof. Observe that I 6= R, since R = (1) and hence not in S [while I ∈ S]. Suppose

then that xy ∈ I, with x, y 6∈ I. Let J be the ideal from part (c). We claim that

I = (I0, xJ). Indeed, clearly I0, xJ ⊆ I. Now, given a ∈ I ⊆ (I, x) = (I0, x), there are

a0 ∈ I0 and r ∈ R such that a = a0 + xr. But then, xr = a− a0 ∈ I, and hence r ∈ J .

So, a = a0 + rx ∈ (I0, xJ), and thus I = (I0, xJ).

So, since J is finitely generated by (c), if J = (c1, · · · , cm), then I = (I0, xJ) =

(b1, . . . , bn, xc1, . . . , xcm), and I is finitely generated. But this contradicts the fact that

I ∈ S. Therefore, I must be prime.

[Note that this proves that if every prime ideal of a commutative ring with 1 is finitely

generated, then the ring is Noetherian.]
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