1) What’s the coefficient of 22° in (2 + 32%)'°? [You do not need to evaluate powers and
binomials.]

Solution. We have
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Hence, the coefficient is . 3727 [i.e., we take i = 5. O



2) [Remember: if a,b € Z, then a divides b if there exists ¢ € Z such that b = a - q.] Let
a,b,d € Z. Prove that d divides a and b if, and only if, d divides a and a + b.

Proof. [=] Suppose that d divides a and b. [We need to show that d divides a and a + b.]
Then, by definition there q1,q2 € Z such that a = ¢; - d and b = ¢ - d. Then, a + b =
¢1-d+q2-d=(q1 + @) - d, and hence [since Z is closed under addition| d divides a + b by
definition [of division]. Since d also divides a [by assumption|, we have that d divides a and
a—+b.

[<] Suppose now that d divides a and a + b. [We need to show that d divides a and

b.] Then, by definition, there are ¢, q3 € Z such that a = ¢; - d and a + b = g3 - d. Hence,

b=(a+b)—b=q3-d—q -d= (g3 — q1) - d, and thus [since Z is closed under subtraction]

we have that d divides b by definition [of division|. Since d also divides a [by assumption],
we have that d divides a and b.

[l



3) Prove or disprove: A\ (BNC)=(A\C)U(C\ B).

Solution. The statement is false! [Again, it suffices to give a counterexample.] Let A =
B =@ and C = {1}. Then, A\ (BNC)=@. Also, A\C =@ and C'\ B = {1}. Hence
(A\C)U(C\B)=A{1} A2 =A\(BNC). m



4) Let R be the relation on R given by aRb iff a — b € Z.

(a)

Prove that R is an equivalence relation.

Proof. [Reflexive:] [We need to prove that xRz for all z € R.] Given z € R, we have
that © — 2 = 0 € Z. Thus, Rz [by definition].

[Symmetric:] Suppose that 2Ry. [We need to prove that yRx.| Then, [by definition]
we have that x —y € Z. Thus, —(z —y) =y —x € Z [as 0 € Z and Z is closed under
subtraction]. Hence, yRa [by definition].

[Transitive:] Suppose that Ry and yRz. [We need to prove that zRz.] By definition,
we have that x — y,y — 2z € Z. Hence, [since Z is closed under addition] we have that
(x —y)+ (y — 2) =x — 2z € Z, and thus 2Rz [by definition].

O

Give three elements in the equivalence class 0.312, at least one of which is negative,
and three elements not in 0.312, at least one of which is negative. [No need to justify
this part.]

Solution. We have that 0.312,1.312,0.312 — 1 € 0.312, and —1,0,1 ¢ 0.312. O
=—0.688



5) Find a closed formula for the recursion ag = 0, a,, = 2-a,,_1 —3 for n > 1. [You don’t have
to show me how you came up with the formula, but you have to prove that it is correct.]

Solution. We have

ag =0

a; = —3

ag =2+ (=3)+ (-3)
ag=4-(=3)+2-(-3)+(-3)

ay = —3)+4-(=3)+2-(=3)+(—3)

an'z 2" (=3) 2" (=3) -+ 28 (=3) + 27 (=3)
= (=3)- (2" 224 2t 429

2" —1
=-3. = 3. (2" —1).
So, we claim that a, = —3 - (2" — 1), and prove it by induction.

For n = 0, we have that aqp = 0= —3- (2" — 1).
Now, suppose that a,, = —3 - (2" — 1). [We need to prove that a,;; = —3- (2" —1)]

We then have:

pi1 =2+ Qp — 3 [recurrence]
=2-(=3-(2"-1))-3 [ind. hyp.]
=-3-(2-(2"=-1)+1) [factor —3]

=3 (2" —24+1)=-3. (2" —1).



6) Let f: X Y and ACY.
(a) Prove that if f is onto, then f(f1(A)) = A.

Proof. [C] Let y € f(f~'(A)). [We need to show that y € A.] Then, by definition
of direct image, there exists * € f~'(A) such that y = f(z). But, by definition of
preimage, we have that z € f~'(A) means that f(z) € A. Since y = f(x), we have
that y € A. [Note that we did not use the fact that f is onto here.]

D] Let y € A. [We need to show that y € f(f~'(A)).] Since f is onto, there
exists x € X such that y = f(z). Since y € A, by definition of preimage, we have
that = € f~!'(A). Since y = f(z) and = € f~'(A), by definition of direct image,
y € f(f7'(A)). [Note that the fact f is onto is used in this part.]

]

(b) Give an example of f and A such that f(f~*(A)) # A.

Solution. Let f : R — R be the function f(x

) = 22, and take A = {—1,1}. Then,
f7HA) ={=1,1}, and thus f(f7'(A)) = {1} # {-1,

1}.
O



n

1
7) Prove by induction that > — for all n € N. You can use any property of inequalities
n

we’ve seen before, as long as you state it clearly!
[Hint: Prove first that (n + 1)®> > n(n + 2). [You do not need induction for that!] Then,
n+l n  (n+1) ]

note that = .
n+2 n+1 nn+2)

Proof. First, observe that (n+1)? = n?+2n+1 > n?+2n = n(n+2). Then, forn # —1, -2,

1 2
we have that M > 1
n(n + 2)
Now, we prove the statement by induction. For n =1, we have 1/(1+1) > 1/2.
1 1 1
Suppose then that —— > 5 for some n > 1. [We need to prove that 212 > 5] As
: (n+1)2
observed above, since n # —1, —2, we have that ——— > 1, and then
n(n + 2)
n+1 n (n+1)2>1 1_1
n+2 n+l nn+2) -2 2
[Here, we've used the fact that if 0 < a < b and 0 < ¢ < d, then ac < bd.]
]



8) Suppose that a and b are elements of an ordered field [you can think of R if you want]
that have n-th roots, and 0 < a < b. Prove that for all n € N we have that a'/" < b'/™.
[This is straight from your HW! You can use anything we’ve proved in class or HW about
inequalities with integer exponents, as long as you state it clearly!]

Proof. We prove the result by contradiction. Suppose that a'/™ > b'/". [We must derive a
contradiction.]

If a'/" = b/ then a = (a'/™)" = (b'/")" = b, which is a contradiction [as a < b].

If a'/™ > b/ since we know b'/" > 0 [by definition of n-th root], we have that a =
(a'/™)? > (bM/™" = b [as if 0 < o < y, then 2™ < y" for all n € N, which again contradicts
a <b.

O



9) Let F be a field. [Remember that if a € F, then n(a) = n(1) - n(a), n(n(a)) = a, and if
a,b e F\ {0}, then g(a-b) = q(a) - ¢(b). You can use those, without proving them, in both

parts below.]
(a) Prove that ¢(n(1)) = n(1). [Hint: Use that if x - a = 1, then x = g(a).]

Proof. We have that n(1) - n(1) = n(n(1)) = 1. As stated in the hint, this means that
n(1) = q(n(1)). O

(b) Prove that if a € F'\ {0}, then ¢(n(a)) = n(q(a)). [Hint: It might help to use (a).]

Proof. We have
q(n(a)) = q(n(1) - a) = q(n(1)) - q(a) = n(1) - ¢(a) = n(q(a)).



