Part Two

ALGEBRAIC
EQUATIONS

This part is concerned with the solutions of algebraic equations, in one
or several variables. This is the recurrent theme in every chapter of this
part, and we lay the foundations for all further studies concerning such
equations.

Given a subring A of a ring B, and a finite number of polynomials
Jis .-y fpin A[X,, ..., X, ], we are concerned with the n-tuples

(by,...,b,) e B™
such that
filby,...,b,)=0

for i=1,...,r. For suitable choices of 4 and B, this includes the general
problem of diophantine analysis when 4, B have an “arithmetic” structure.

We shall study various cases. We begin by studying roots of one polyno-
mial in one variable over a field. We prove the existence of an algebraic
closure, and emphasize the role of irreducibility.

Next we study the group of automorphisms of algebraic extensions of a
field, both intrinsically and as a group of permutations of the roots of a
polynomial. We shall mention some major unsolved problems along the
way.

It is also necessary to discuss extensions of a ring, to give the possibil-
ity of analyzing families of extensions. The ground work is laid in Chapter
VIL

In Chapter IX, we come to the zeros of polynomials in several variables,
essentially over algebraically closed fields. But again, it is advantageous to
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222 ALGEBRAIC EQUATIONS PART TWO

consider polynomials over rings, especially Z, since in projective space, the
conditions that homogeneous polynomials have a non-trivial common zero
can be given universally over Z in terms of their coefficients.

Finally we impose additional structures like those of reality, or metric
structures given by absolute values. Each one of these structures gives rise to
certain theorems describing the structure of the solutions of equations as
above, and especially proving the existence of solutions in important cases.



CHAPTER V

Algebraic Extensions

In this first chapter concerning polynomial equations, we show that given
a polynomial over a field, there always exists some extension of the field
where the polynomial has a root, and we prove the existence of an algebraic
closure. We make a preliminary study of such extensions, including the
automorphisms, and we give algebraic extensions of finite fields as examples.

§1. FINITE AND ALGEBRAIC EXTENSIONS

Let F be a field. If F is a subfield of a field E, then we also say that E is
an extension field of F. We may view E as a vector space over F, and we say
that E is a finite or infinite extension of F according as the dimension of this
vector space is finite or infinite.

Let F be a subfield of a field E. An element « of E is said to be algebraic
over F if there exist elements a,, ..., a, (n = 1) of F, not all equal to 0, such
that

ay+a,a+-+a,a"=0.

If « #0, and « is algebraic, then we can always find elements a; as above
such that a, # O (factoring out a suitable power of a).
Let X be a variable over F. We can also say that « is algebraic over F if
the homomorphism
F[X]-E
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224 ALGEBRAIC EXTENSIONS V. §1

which is the identity on F and maps X on a has a non-zero kernel. In that
case the kernel is an ideal which is principal, generated by a single polyno-
mial p(X), which we may assume has leading coefficient 1. We then have an
isomorphism

F[X1/(p(X)) ~ F[a],

and since F[«] is entire, it follows that p(X) is irreducible. Having normal-
ized p(X) so that its leading coefficient is 1, we see that p(X) is uniquely
determined by a and will be called THE irreducible polynomial of o over F.
We sometimes denote it by Irr(a, F, X).

An extension E of F is said to be algebraic if every element of E is
algebraic over F.

Proposition 1.1. Let E be a finite extension of F. Then E is algebraic
over F.

Proof. LetaeE, a #0. The powers of a,

2 n
1, % ..., a"

cannot be linearly independent over F for all positive integers n, otherwise
the dimension of E over F would be infinite. A linear relation between these
powers shows that « is algebraic over F.

Note that the converse of Proposition 1.1 is not true; there exist infinite
algebraic extensions. We shall see later that the subfield of the complex
numbers consisting of all algebraic numbers over Q is an infinite extension

of Q.

If E is an extension of F, we denote by
[E: F]

the dimension of E as vector space over F. It may be infinite.

Proposition 1.2. Let k be a field and F < E extension fields of k. Then
[E:k]l=[E:F][F:k].

If {x;}ic1 is a basis for F over k and {y;};., is a basis for E over F, then
{Xi¥;}.jye1s is a basis for E over k.

Proof. Let ze€ E. By hypothesis there exist elements «; € F, almost all
a; = 0, such that
Z= Z Otjyj.

JjeJ

For each j e J there exist elements b; € k, almost all of which are equal to 0,
such that
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%= bx;,
iel
and hence
z= Z Z bix.y;.
Jjoi
This shows that {x;y;} is a family of generators for E over k. We must show

that it is linearly independent. Let {c;} be a family of elements of k, almost
all of which are 0, such that

Z ; Cijxiyj = 0.
J
Then for each j,
Z Cijx" = 0

because the elements y; are linearly independent over F. Finally c; = 0 for
each i because {x;} is a basis of F over k, thereby proving our proposition.

Corollary 1.3. The extension E of k is finite if and only if E is finite over
F and F is finite over k.

As with groups, we define a tower of fields to be a sequence
FicF,c--cF,
of extension fields. The tower is called finite if and only if each step is finite.
Let k be a field, E an extension field, and « € E. We denote by k(x) the

smallest subfield of E containing both k and «. It consists of all quotients
f(@)/g(x), where f, g are polynomials with coefficients in k and g(a) # 0.

Proposition 1.4. Let a be algebraic over k. Then k(a) = k[a], and k() is
finite over k. The degree [k(x): k] is equal to the degree of Irr(a, k, X).

Proof. Let p(X) = Irr(x, k, X). Let f(X)ek[X] be such that f(a)# 0.
Then p(X) does not divide f(X), and hence there exist polynomials g(X),
h(X) € k[X] such that

9(X)p(X) + h(X)f(X) = 1.

From this we get h(x)f(x) = 1, and we see that f(x) is invertible in k[a].

Hence k[«] is not only a ring but a field, and must therefore be equal to

k(x). Let d = deg p(X). The powers
La,...of!

are linearly independent over k, for otherwise suppose

ao + ala + -+ ad_lad_l =0
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with a; e k, not all a; =0. Let g(X)=ao + - + a;_; X*!. Then g # 0 and
g(x) =0. Hence p(X) divides g(X), contradiction. Finally, let f(a)e k[e],
where f(X)e€ k[X]. There exist polynomials gq(X), r(X)e€ k[X] such that
degr < d and

J(X) = q(X)p(X) + r(X).

Then f(x) = r(x), and we see that 1, a, ..., a%"! generate k[o] as a vector space
over k. This proves our proposition.

Let E, F be extensions of a field k. If E and F are contained in some field
L then we denote by EF the smallest subfield of L containing both E and
F, and call it the compositum of E and F, in L. If E, F are not given as
embedded in a common field L, then we cannot define the compositum.

Let k be a subfield of E and let a4, ..., a, be elements of E. We denote
by

k(oty,-.-50,)
the smallest subfield of E containing k and «,, ..., a,. Its elements consist of
all quotients

flay, ..., a,)

gy, ..., o)

where f, g are polynomials in n variables with coefficients in k, and
glay,...,a,) #0.

Indeed, the set of such quotients forms a field containing k and «,,...,«
Conversely, any field containing k and

Oy ovesy Oy
must contain these quotients.

We observe that E is the union of all its subfields k(a,,...,®,) as
(ay, ..., a,) ranges over finite subfamilies of elements of E. We could define
the compositum of an arbitrary subfamily of subfields of a field L as the
smallest subfield containing all fields in the family. We say that E is finitely
generated over k if there is a finite family of elements a,, ..., «, of E such
that

E=k(o,...,a,).
We see that E is the compositum of all its finitely generated subfields over k.
Proposition 1.5. Let E be a finite extension of k. Then E is finitely
generated.

Proof. Let {a,,...,a,} be a basis of E as vector space over k. Then
certainly
E =koy,...,a,).
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If E = k(ay,...,a,) is finitely generated, and F is an extension of k, both
F, E contained in L, then

EF = F(ay, ..., a,),

and EF is finitely generated over F. We often draw the following picture:

Lines slanting up indicate an inclusion relation between fields. We also call
the extension EF of F the translation of E to F, or also the lifting of E to
F.

Let o be algebraic over the field k. Let F be an extension of k, and
assume k(x), F both contained in some field L. Then « is algebraic over F.
Indeed, the irreducible polynomial for « over k has a fortiori coefficients in
F, and gives a linear relation for the powers of a over F.

Suppose that we have a tower of fields:

k < k(ay) < k(ay, a3) = -+ < k(oty, .-, &),

each one generated from the preceding field by a single element. Assume that
each o; is algebraic over k, i =1, ..., n. As a special case of our preceding
remark, we note that «;,, is algebraic over k(«,,...,®;). Hence each step of
the tower is algebraic.

Proposition 1.6. Let E = k(«,, ..., ®,) be a finitely generated extension of
a field k, and assume w; algebraic over k for eachi=1,...,n. Then E is
finite algebraic over k.

Proof. From the above remarks, we know that E can be obtained as the
end of a tower each of whose steps is generated by one algebraic element,
and is therefore finite by Proposition 1.4. We conclude that E is finite over k
by Corollary 1.3, and that it is algebraic by Proposition 1.1.

Let C be a certain class of extension fields F = E. We shall say that C is
distinguished if it satisfies the following conditions:

(1) Let k = F < E be a tower of fields. The extension k < E is in € if and
onlyif k< Fisin@ and F < E is in C.

(2 If k< E is in C, if F is any extension of k, and E, F are both
contained in some field, then F = EF is in C.

(3) If k= F and k = E are in C and F, E are subfields of a common field,
then k < FE is in C.
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The diagrams illustrating our properties are as follows:

EF
| N / \
F 5 /

| N \ /
1) @ (3)

These lattice diagrams of fields are extremely suggestive in handling exten-
sion fields.

We observe that (3) follows formally from the first two conditions.
Indeed, one views EF over k as a tower with steps k = F < EF.

As a matter of notation, it is convenient to write E/F instead of F < E to
denote an extension. There can be no confusion with factor groups since we
shall never use the notation E/F to denote such a factor group when E is an
extension field of F.

Proposition 1.7. The class of algebraic extensions is distinguished, and so
is the class of finite extensions.

Proof. Consider first the class of finite extensions. We have already
proved condition (1). As for (2), assume that E/k is finite, and let F be any
extension of k. By Proposition 1.5 there exist elements ay,..., a, € E such
that E = k(«,,...,,). Then EF = F(a,,...,®,), and hence EF/F is finitely
generated by algebraic elements. Using Proposition 1.6 we conclude that
EF/F is finite.

Consider next the class of algebraic extensions, and let

kcFcE

be a tower. Assume that E is algebraic over k. Then a fortiori, F is
algebraic over k and E is algebraic over F. Conversely, assume each step in
the tower to be algebraic. Let a € E. Then «a satisfies an equation

a,0" + - +ag=0
with g; € F, not all a; =0. Let F, = k(a,, ..., a,). Then F, is finite over k by
Proposition 1.6, and « is algebraic over F,. From the tower
k< Fy =k(a,,...,ap)  Fy(®)

and the fact that each step in this tower is finite, we conclude that Fy(«) is
finite over k, whence « is algebraic over k, thereby proving that E is algebraic
over k and proving condition (1) for algebraic extensions. Condition (2) has
already been observed to hold, i.e. an element remains algebraic under lifting,
and hence so does an extension.
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Remark. It is true that finitely generated extensions form a distinguished
class, but one argument needed to prove part of (1) can be carried out only
with more machinery than we have at present. Cf. the chapter on transcen-
dental extensions.

§2. ALGEBRAIC CLOSURE

In this and the next section we shall deal with embeddings of a field into
another. We therefore define some terminology.
Let E be an extension of a field F and let

o:F->L

be an embedding (i.e. an injective homomorphism) of F into L. Then o
induces an isomorphism of F with its image oF, which is sometimes written
F°. An embedding t of E in L will be said to be over o if the restriction of ©
to F is equal to 0. We also say that 7 extends o. If o is the identity then we
say that 7 is an embedding of E over F.

These definitions could be made in more general categories, since they
depend only on diagrams to make sense:

Y

Remark. Let f(X)e F[X] be a polynomial, and let « be a root of f in
E. Say f(X) =aq + - + a,X". Then

0=f(a) =ag +aja+ -+ + a,a”.

_

.
n—tm

—_

If T extends o as above, then we see that ta is a root of f? because
0 = 1(f(@) = ag + al(ta) + - + aZ(ra)"

Here we have written a° instead of a(a). This exponential notation is
frequently convenient and will be used again in the sequel. Similarly, we
write F? instead of o(F) or oF.

In our study of embeddings it will also be useful to have a lemma
concerning embeddings of algebraic extensions into themselves. For this we
note that if o: E — L is an embedding over k (i.e. inducing the identity on k),
then o can be viewed as a k-homomorphism of vector spaces, because both
E, L can be viewed as vector spaces over k. Furthermore o is injective.
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Lemma 2.1. Let E be an algebraic extension of k, and let o: E — E be an
embedding of E into itself over k. Then o is an automorphism.

Proof. Since o is injective, it will suffice to prove that ¢ is surjective. Let
o be an element of E, let p(X) be its irreducible polynomial over k, and let E’
be the subfield of E generated by all the roots of p(X) which lie in E. Then
E' is finitely generated, hence is a finite extension of k. Furthermore, ¢ must
map a root of p(X) on a root of p(X), and hence o maps E’ into itself. We
can view o as a k-homomorphism of vector spaces because o induces the
identity on k. Since o is injective, its image o(E’) is a subspace of E' having
the same dimension [E’ : k]. Hence o(E') = E’'. Since a € E’, it follows that
a is in the image of o, and our lemma is proved.

Let E, F be extensions of a field k, contained in some bigger field L. We
can form the ring E[F] generated by the elements of F over E. Then E[F] =
F[E], and EF is the quotient field of this ring. It is clear that the elements of
E[F] can be written in the form

arb, +---+a,b,

with g; € E and b; € F. Hence EF is the field of quotients of these elements.

Lemma 2.2. Let E,, E, be extensions of a field k, contained in some
bigger field E, and let o be an embedding of E in some field L. Then

o(E,E,;) = o(E,)o(E,).
Proof. We apply o to a quotient of elements of the above type, say

(a1b1+-~+anbn _ aib{ + - +a7b]
aib + o+ aub,) T afH by

and see that the image is an element of o(E,)o(E,). It is clear that the image
o(E,\E,) is o(E,)o(E;).

Let k be a field, f(X) a polynomial of degree =1 in k[X]. We consider
the problem of finding an extension E of k in which f has a root. If p(X) is
an irreducible polynomial in k[X] which divides f(X), then any root of p(X)
will also be a root of f(X), so we may restrict ourselves to irreducible
polynomials.

Let p(X) be irreducible, and consider the canonical homomorphism

o: k[X] - k[X1/(p(X)).

Then o induces a homomorphism on k, whose kernel is 0, because every
nonzero element of k is invertible in k, generates the unit ideal, and 1 does
not lie in the kernel. Let ¢ be the image of X under o, ie. ¢ = g(X) is the
residue class of X mod p(X). Then

p°(&) = p°(X°) = (p(X))° = 0.
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Hence ¢ is a root of p? and as such is algebraic over k. We have now
found an extension of ok, namely ok(&) in which p? has a root.
With a minor set-theoretic argument, we shall have:

Proposition 2.3. Let k be a field and f a polynomial in k[X] of degree
2 1. Then there exists an extension E of k in which f has a root.

Proof. We may assume that f = p is irreducible. We have shown that
there exists a field F and an embedding

o:k—>F

such that p? has a root £ in F. Let S be a set whose cardinality is the same
as that of F — ok (= the complement of gk in F) and which is disjoint from
k. Let E=kuS. We can extend o: k — F to a bijection of E on F. We now
define a field structure on E. If x, y € E we define

xy = o7} (a(x)a(y)),
x+y=0"o(x)+a(y)

Restricted to k, our addition and multiplication coincide with the given
addition and multiplication of our original field k, and it is clear that k is a
subfield of E. We let a =0 (). Then it is also clear that p(x) =0, as
desired.

Corollary 2.4. Let k be a field and let f,, ..., f, be polynomials in k[X]
of degrees = 1. Then there exists an extension E of k in which each f; has
aroot,i=1,...,n

Proof. Let E, be an extension in which f; has a root. We may view f,
as a polynomial over E,. Let E, be an extension of E, in which f, has a
root. Proceeding inductively, our corollary follows at once.

We define a field L to be algebraically closed if every polynomial in L[X]
of degree =1 has a root in L.

Theorem 2.5. Let k be a field. Then there exists an algebraically closed field
containing k as a subfield.

Proof. We first construct an extension E; of k in which every polyno-
mial in k[X] of degree =1 has a root. One can proceed as follows (Artin).
To each polynomial f in k[X] of degree =1 we associate a letter X, and we
let S be the set of all such letters X, (so that § is in bijection with the set of
polynomials in k[X] of degree = 1). We form the polynomial ring k[S], and
contend that the ideal generated by all the polynomials f(X,) in k[S] is not
the unit ideal. If it is, then there is a finite combination of elements in our
ideal which is equal to 1:

g filXp) + -+ g, fuX,) =1



232 ALGEBRAIC EXTENSIONS V., §2

with g; € k[S]. For simplicity, write X; instead of X,. The polynomials g;
will involve actually only a finite number of variables, say X,, ..., Xy (with
N = n). Our relation then reads

-

gl‘(Xh LR XN)ﬁ(X,) =1.

i=1

Let F be a finite extension in which each polynomial f}, ..., f, has a root,
say a; is a root of f;in F,fori=1,..., n. Let a; =0 for i > n. Substitute «;
for X, in our relation. We get 0 = 1, contradiction.

Let m be a maximal ideal containing the ideal generated by all polyno-
mials f(X,) in k[S]. Then k[S]/m is a field, and we have a canonical map

o: k[S] - k[S]/m.

For any polynomial f € k[ X] of degree = 1, the polynomial f has a root in

k[S]/m, which is an extension of gk. Using the same type of set-theoretic

argument as in Proposition 2.3, we conclude that there exists an extension

E, of k in which every polynomial f € k[X] of degree =1 has a root in E,.
Inductively, we can form a sequence of fields

E,cE,cEyc---cE,-

such that every polynomial in E,[X] of degree =1 has a root in E,,,. Let E
be the union of all fields E,, n =1, 2, .... Then E is naturally a field, for if
x, y € E then there exists some n such that x, ye E,, and we can take the
product or sum xy or x + y in E,. This is obviously independent of the
choice of n such that x, ye E,, and defines a field structure on E. Every
polynomial in E[X7] has its coefficients in some subfield E,, hence a root in
E, .y, hence a root in E, as desired.

Corollary 2.6. Let k be a field. There exists an extension k* which is
algebraic over k and algebraically closed.

Proof. Let E be an extension of k which is algebraically closed and let
k* be the union of all subextensions of E, which are algebraic over k. Then
k* is algebraic over k. If a € E and « is algebraic over k* then « is algebraic
over k by Proposition 1.7. If f is a polynomial of degree =1 in k*[X], then
f has a root a in E, and « is algebraic over k*. Hence a is in k* and k* is
algebraically closed.

We observe that if L is an algebraically closed field, and f'e L[X] has
degree =1, then there exists ce L and «,, ..., a, € L such that

J(X) =c(X —oy) =+ (X — o).
Indeed, f has a root a, in L, so there exists g(X) € L[ X] such that
J(X) = (X — a;)g(X).

If degg =1, we can repeat this argument inductively, and express f as a
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product of terms (X — ;) (i=1,...,n) and an element ¢ € L. Note that ¢ is
the leading coefficient of f] i.e.

f(X) =cX" + terms of lower degree.

Hence if the coefficients of f lie in a subfield k of L, then c € k.

Let k be a field and o: k— L an embedding of k into an algebraically
closed field L. We are interested in analyzing the extensions of o to algebraic
extensions E of k. We begin by considering the special case when E is
generated by one element.

Let E = k(a) where « is algebraic over k. Let

p(X) = Irr(a, k, X).

Let B be a root of p® in L. Given an element of k(x) = k[«], we can write it
in the form f(«x) with some polynomial f(X)e k[X]. We define an extension
of ¢ by mapping

J@—f°(B).

This is in fact well defined, i.e. independent of the choice of polynomial f(X)
used to express our element in k[«]. Indeed, if g(X) is in k[X] and such that
g(a) = f(o), then (g — f)(«) =0, whence p(X) divides g(X)— f(X). Hence
p°(X) divides g?(X) — f°(X), and thus g°(B) = f°(B). It is now clear that our
map is a homomorphism inducing ¢ on k, and that it is an extension of ¢ to
k(a). Hence we get:

Proposition 2.7. The number of possible extensions of o to k(x) is < the
number of roots of p, and is equal to the number of distinct roots of p.

This is an important fact, which we shall analyze more closely later. For
the moment, we are interested in extensions of ¢ to arbitrary algebraic
extensions of k. We get them by using Zorn’s lemma.

Theorem 2.8. Let k be a field, E an algebraic extension of k, and
o:k— L an embedding of k into an algebraically closed field L. Then
there exists an extension of o to an embedding of E in L. If E is
algebraically closed and L is algebraic over ok, then any such extension of
o is an isomorphism of E onto L.

Proof. Let S be the set of all pairs (F, 1) where F is a subfield of E
containing k, and 7 is an extension of ¢ to an embedding of F in L. If (F, 1)
and (F', t') are such pairs, we write (F,7) < (F,t') if Fc< F’ and 7'|F =1
Note that S is not empty [it contains (k, )], and is inductively ordered: If
{(F, ;)} is a totally ordered subset, we let F = | ) F; and define t on F to be
equal to 7; on each F. Then (F, 7) is an upper bound for the totally ordered
subset. Using Zorn’s lemma, let (K, 1) be a maximal element in S. Then A is
an extension of o, and we contend that K = E. Otherwise, there exists « € E,
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o ¢ K. By what we saw above, our embedding A has an extension to K(a),
thereby contradicting the maximality of (K, 4). This proves that there exists
an extension of ¢ to E. We denote this extension again by o.

If E is algebraically closed, and L is algebraic over ok, then oE is
algebraically closed and L is algebraic over oE, hence L = oE.

As a corollary, we have a certain uniqueness for an “algebraic closure” of
a field k.

Corollary 2.9. Let k be a field and let E, E' be algebraic extensions of k.
Assume that E, E' are algebraically closed. Then there exists an iso-
morphism

T.E>F

of E onto E' inducing the identity on k.

Proof. Extend the identity mapping on k to an embedding of E into E'
and apply the theorem.

We see that an algebraically closed and algebraic extension of k is
determined up to an isomorphism. Such an extension will be called an
algebraic closure of k, and we frequently denote it by k* In fact, unless
otherwise specified, we use the symbol k* only to denote algebraic closure.

It is now worth while to recall the general situation of isomorphisms and
automorphisms in general categories.

Let @ be a category, and A, B objects in @ We denote by Iso(4, B) the
set of isomorphisms of 4 on B. Suppose there exists at least one such
isomorphism o: A — B, with inverse 6™ !: B— 4. If ¢ is an automorphism of
A, then oo ¢: A — B is again an isomorphism. If y is an automorphism of
B, then Yy oo:4— B is again an isomorphism. Furthermore, the groups
of automorphisms Aut(4) and Aut(B) are isomorphic, under the mappings

pr—copoa,
o loyo oy,

1

which are inverse to each other. The isomorphism oo ¢ o¢™' is the one

which makes the following diagram commutative:

A—> B

(pl 160‘000—1

A —a> B

We have a similar diagram for 67! o yy o 0.
Let 7: A —» B be another isomorphism. Then 77! o ¢ is an automorphism

of 4, and 10 ¢! is an automorphism of B. Thus two isomorphisms differ by
an automorphism (of A or B). We see that the group Aut(B) operates on the

1
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set Iso(A, B) on the left, and Aut(4) operates on the set Iso(4, B) on the
right.

We also see that Aut(A) is determined up to a mapping analogous to a
conjugation. This is quite different from the type of uniqueness given by
universal objects in a category. Such objects have only the identity auto-
morphism, and hence are determined up to a unique isomorphism.

This is not the case with the algebraic closure of a field, which usually
has a large amount of automorphisms. Most of this chapter and the next is
devoted to the study of such automorphisms.

Examples. It will be proved later in this book that the complex numbers
are algebraically closed. Complex conjugation is an automorphism of C.
There are many more automorphisms, but the other automorphisms # id. are
not continuous. We shall discuss other possible automorphisms in the chapter
on transcendental extensions. The subfield of C consisting of all numbers which
are algebraic over Q is an algebraic closure Q2 of Q. It is easy to see that Q*
is denumerable. In fact, prove the following as an exercise:

If k is a field which is not finite, then any algebraic extension of k has the
same cardinality as k.

If k is denumerable, one can first enumerate all polynomials in k, then
enumerate finite extensions by their degree, and finally enumerate the cardi-
nality of an arbitrary algebraic extension. We leave the counting details as
exercises.

In particular, Q* # C. If R is the field of real numbers, then R* = C.

If k is a finite field, then algebraic closure k* of k is denumerable. We
shall in fact describe in great detail the nature of algebraic extensions of
finite fields later in this chapter.

Not all interesting fields are subfields of the complex numbers. For
instance, one wants to investigate the algebraic extensions of a field C(X)
where X is a variable over C. The study of these extensions amounts to the
study of ramified coverings of the sphere (viewed as a Riemann surface), and
in fact one has precise information concerning the nature of such extensions,
because one knows the fundamental group of the sphere from which a finite
number of points has been deleted. We shall mention this example again
later when we discuss Galois groups.

§3. SPLITTING FIELDS AND
NORMAL EXTENSIONS

Let k be a field and let f be a polynomial in k[X] of degree =1. By a
splitting field K of f we shall mean an extension K of k such that f splits
into linear factors in K, i.e.
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JX) =X —oy) - (X —a,)

with ;€ K, i=1, ..., n, and such that K = k(a,, ..., ®,) is generated by all
the roots of f.

Theorem 3.1. Let K be a splitting field of the polynomial f(X) € k[X]. If
E is another splitting field of f, then there exists an isomorphism o: E - K
inducing the identity on k. If k = K = k* where k* is an algebraic closure
of k, then any embedding of E in k® inducing the identity on k must be an
isomorphism of E onto K.

Proof. Let K* be an algebraic closure of K. Then K* is algebraic over
k, hence is an algebraic closure of k. By Theorem 2.8 there exists an
embedding

o: E—>K*
inducing the identity on k. We have a factorization
JX)=cX = By) - (X = B)
with ;€ E,i= 1, ..., n. The leading coefficient c lies in k. We obtain
JX)=f(X)=c(X —opy) " (X — ap,).
We have unique factorization in K*[X]. Since f has a factorization
JX)=c(X —0y) - (X — o)
in K[X], it follows that (68, ..., oB,) differs from (o, ..., ®,) by a permuta-

tion. From this we conclude that ¢f;e K for i=1, ..., n and hence that
oE < K. But K = k(«y, ..., a,) = k(cB,, ..., oB,), and hence ¢E = K, because
E = k(ﬁla ey ﬂn)

This proves our theorem.

We note that a polynomial f(X)e k[X] always has a splitting field,
namely the field generated by its roots in a given algebraic closure k* of k.

Let I be a set of indices and let {f;};,.;, be a family of polynomials in
k[X], of degrees =1. By a splitting field for this family we shall mean an
extension K of k such that every f; splits in linear factors in K[X], and K is
generated by all the roots of all the polynomials f;, i€ I. In most applica-
tions we deal with a finite indexing set I, but it is becoming increasingly
important to consider infinite algebraic extensions, and so we shall deal with
them fairly systematically. One should also observe that the proofs we shall
give for various statements would not be simpler if we restricted ourselves to
the finite case.

Let k* be an algebraic closure of k, and let K; be a splitting field of f; in
k*. Then the compositum of the K; is a splitting field for our family,
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since the two conditions defining a splitting field are immediately satisfied.
Furthermore Theorem 3.1 extends at once to the infinite case:

Corollary 3.2. Let K be a splitting field for the family {f;};, and let E
be another splitting field. Any embedding of E into K* inducing the
identity on k gives an isomorphism of E onto K.

Proof. Let the notation be as above. Note that E contains a unique
splitting field E; of f; and K contains a unique splitting field K; of f;. Any
embedding o of E into K* must map E; onto K; by Theorem 3.1, and hence
maps E into K. Since K is the compositum of the fields K;, our map ¢ must
send E onto K and hence induces an isomorphism of E onto K.

Remark. If I is finite, and our polynomials are fj, ..., f,, then a split-
ting field for them is a splitting field for the single polynomial f(X)=
J1(X) -+ £,(X) obtained by taking the product. However, even when dealing
with finite extensions only, it is convenient to deal simultaneously with sets
of polynomials rather than a single one.

Theorem 3.3. Let K be an algebraic extension of k, contained in an
algebraic closure k* of k. Then the following conditions are equivalent:

NOR 1. Every embedding of K in k® over k induces an automorphism of K.
NOR 2. K is the splitting field of a family of polynomials in k[ X].

NOR 3. Every irreducible polynomial of k[X] which has a root in K
splits into linear factors in K.

Proof. Assume NOR 1. Let a be an element of K and let p,(X) be its
irreducible polynomial over k. Let B be a root of p, in k*. There exists an
isomorphism of k(x) on k(B) over k, mapping « on B. Extend this iso-
morphism to an embedding of K in k*. This extension is an automorphism o
of K by hypothesis, hence oa = f lies in K. Hence every root of p, lies in K,
and p, splits in linear factors in K[X]. Hence K is the splitting field of the
family {p,},cx as « ranges over all elements of K, and NOR 2 is satisfied.

Conversely, assume NOR 2, and let {f;};., be the family of polynomials
of which K is the splitting field. If « is a root of some f; in K, then for any
embedding ¢ of K in k* over k we know that o« is a root of f;. Since K is
generated by the roots of all the polynomials f;, it follows that ¢ maps K
into itself. We now apply Lemma 2.1 to conclude that ¢ is an automorphism.

Our proof that NOR 1 implies NOR 2 also shows that NOR 3 is
satisfied. Conversely, assume NOR 3. Let ¢ be an embedding of K in k*
over k. Let « € K and let p(X) be its irreducible polynomial over k. If o is
an embedding of K in k* over k then ¢ maps « on a root f of p(X), and by
hypothesis B lies in K. Hence oa lies in K, and ¢ maps K into itself. By
Lemma 2.1, it follows that ¢ is an automorphism.
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An extension K of k satisfying the hypotheses NOR 1, NOR 2, NOR 3
will be said to be normal. It is not true that the class of normal extensions is
distinguished. For instance, it is easily shown that an extension of degree 2
is normal, but the extension Q(f/i) of the rational numbers is not normal
(the complex roots of X* — 2 are not in it), and yet this extension is obtained
by successive extensions of degree 2, namely

E=Q2>F>Q,
where
F=Q@, a=./2 and E=F(/a).

Thus a tower of normal extensions is not necessarily normal. However, we
still have some of the properties:

Theorem 3.4. Normal extensions remain normal under lifting. If
K o E ok and K is normal over k, then K is normal over E. If K,, K,
are normal over k and are contained in some field L, then K, K, is normal
over k, and so is K, n K,.

Proof. For our first assertion, let K be normal over k, let F be any
extension of k, and assume K, F are contained in some bigger field. Let o be
an embedding of KF over F (in F?®). Then o induces the identity on F, hence
on k, and by hypothesis its restriction to K maps K into itself. We get
(KF)* = K°F° = KF whence KF is normal over F.

Assume that K > E > k and that K is normal over k. Let ¢ be an
embedding of K over E. Then o is also an embedding of K over k, and
our assertion follows by definition.

Finally, if K,, K, are normal over k, then for any embedding ¢ of K, K,
over k we have

o(K,K3) = a(K,)o(K,)
and our assertion again follows from the hypothesis. The assertion concern-
ing the intersection is true because
o(K;nK;) =0d(K;)no(K,).
We observe that if K is a finitely generated normal extension of k, say
K =k, ..., %,),

and p,,..., p, are the respective irreducible polynomials of «,,...,®, over
k then K is already the splitting field of the finite family p,,...,p,. We
shall investigate later when K is the splitting field of a single irreducible
polynomial.
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§4. SEPARABLE EXTENSIONS

Let E be an algebraic extension of a field F and let
o:F—>L

be an embedding of F in an algebraically closed field L. We investigate more
closely extensions of ¢ to E. Any such extension of ¢ maps E on a subfield
of L which is algebraic over ¢F. Hence for our purposes, we shall assume
that L is algebraic over oF, hence is equal to an algebraic closure of oF.

Let S, be the set of extensions of o to an embedding of E in L.

Let L' be another algebraically closed field, and let 7: F— L be an
embedding. We assume as before that L' is an algebraic closure of tF.
By Theorem 2.8, there exists an isomorphism A: L —» L' extending the map
700! applied to the field oF. This is illustrated in the following diagram:

Le— L

0‘
—E-Z,

TF(—T——'F—G-)O'F

We let S, be the set of embeddings of E in L' extending .
If o* €S, is an extension of ¢ to an embedding of E in L, then A0 0* is
an extension of 7 to an embedding of E into L', because for the restriction to

F we have

1

log* =100 loog =1

Thus A induces a mapping from S, into S,. It is clear that the inverse
mapping is induced by 47!, and hence that S,, S, are in bijection under the

mapping
o* 1> Aog*.

In particular, the cardinality of S,, S, is the same. Thus this cardinality
depends only on the extension E/F, and will be denoted by

[E: F],.

We shall call it the separable degree of E over F. It is mostly interesting
when E/F is finite.

Theorem 4.1. Let E o F > k be a tower. Then
[E: k], = [E: F),[F:Kk],.

Furthermore, if E is finite over k, then [E : k] is finite and
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[E:k], < [E: k]
The separable degree is at most equal to the degree.

Proof. Let a: k - L be an embedding of k in an algebraically closed field
L. Let {0;};,; be the family of distinct extensions of ¢ to F, and for each i, let
{r;} be the family of distinct extensions of o; to E. By what we saw before,
each ¢, has precisely [E : F], extensions to embeddings of E in L. The set of
embeddings {r;} contains precisely

[E: F1,[F:K];

elements. Any embedding of E into L over ¢ must be one of the 7;;, and thus
we see that the first formula holds, i.e. we have multiplicativity in towers.

As to the second, let us assume that E/k is finite. Then we can obtain E
as a tower of extensions, each step being generated by one element:

k < k(o) = k(ty, a3) = -+~ < k(2y, ..., 2,) = E.
If we define inductively F,,, = F,(«,,,) then by Proposition 2.7,
[E'(av+l) : Fv]s -S_ [R(av+l) . E]‘

Thus our inequality is true in each step of the tower. By multiplicativity, it
follows that the inequality is true for the extension E/k, as was to be shown.

Corollary 4.2. Let E be finite over k, and E > F o k. The equality
[E:k]l,=[E:k]

holds if and only if the corresponding equality holds in each step of the
tower, i.e. for E/F and F/k.

Proof. Clear.

It will be shown later (and it is not difficult to show) that [E: k], divides
the degree [E:k] when E is finite over k. We define [E:k]; to be the
quotient, so that

[(E:K,[E:Kk); = [E: K.

It then follows from the multiplicativity of the separable degree and of the
degree in towers that the symbol [E: k]; is also multiplicative in towers. We
shall deal with it at greater length in §6.

Let E be a finite extension of k. We shall say that E is separable over k if
[E:k],=[E:k].

An element « algebraic over k is said to be separable over k if k(x) is
separable over k. We see that this condition is equivalent to saying that the
irreducible polynomial Irr(«, k, X) has no multiple roots.

A polynomial f(X)e k[X] is called separable if it has no multiple roots.
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If « is a root of a separable polynomial g(X) e k[X] then the irreducible
polynomial of a over k divides g and hence « is separable over k.

We note that if k C F C K and a € K is separable over k, then a is separable
over F. Indeed, if fis a separable polynomial in k[X] such that f(a) = 0, then
f also has coefficients in F, and thus « is separable over F. (We may say that a
separable element remains separable under lifting.)

Theorem 4.3. Let E be a finite extension of k. Then E is separable over k
if and only if each element of E is separable over k.

Proof. Assume E is separable over k and let a € E. We consider the
tower

k c k(x) = E.

By Corollary 4.2, we must have [k(a):k] = [k(a):k]; whence « is separable
over k. Conversely, assume that each element of E is separable over k. We
can write £ = k(a,, ..., ®,) where each «; is separable over k. We consider
the tower

k < k(oy) < k(ay, ) = -- < k(g ..., )

Since each «; is separable over k, each «; is separable over k(a,, ..., o;_,) for
i = 2. Hence by the tower theorem, it follows that E is separable over k.

We observe that our last argument shows: If E is generated by a finite
number of elements, each of which is separable over k, then E is separable
over k.

Let E be an arbitrary algebraic extension of k. We define E to be
separable over k if every finitely generated subextension is separable over
k, ie., if every extension k(a,,...,a,) with a,,...,a,€ E is separable
over k.

Theorem 4.4. Let E be an algebraic extension of k, generated by a
Samily of elements {«;};c;. If each a; is separable over k then E is
separable over k.

Proof. Every element of E lies in some finitely generated subfield
k(w,,...,a;),

and as we remarked above, each such subfield is separable over k. Hence
every element of E is separable over k by Theorem 4.3, and this concludes
the proof.

Theorem 4.5. Separable extensions form a distinguished class of exten-
sions.
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Proof. Assume that E is separable over k and let E > F o k. Every
element of E is separable over F, and every element of F is an element of E,
so separable over k. Hence each step in the tower is separable. Conversely,
assume that E o F o k is some extension such that E/F is separable and F/k
is separable. If E is finite over k, then we can use Corollary 4.2. Namely, we
have an equality of the separable degree and the degree in each step of the tower,
whence an equality for E over k by multiplicativity.

If E is infinite, let « € E. Then « is a root of a separable polynomial f(X)
with coefficients in F. Let these coefficients be a,,...,a,. Let Fy=
k(a,, ..., as). Then F, is separable over k, and « is separable over F,. We
now deal with the finite tower

k = Fy = Fo(a)

and we therefore conclude that Fy(x) is separable over k, hence that «
is separable over k. This proves condition (1) in the definition of
“distinguished.”

Let E be separable over k. Let F be any extension of k, and assume that
E, F are both subfields of some field. Every element of E is separable over k,
whence separable over F. Since EF is generated over F by all the elements
of E, it follows that EF is separable over F, by Theorem 4.4. This proves
condition (2) in the definition of “distinguished,” and concludes the proof of
our theorem.

Let E be a finite extension of k. The intersection of all normal extensions
K of k (in an algebraic closure E*) containing E is a normal extension of k
which contains E, and is obviously the smallest normal extension of k
containing E. If oy,..., g, are the distinct embeddings of E in E? then the
extension

K = (0’1 E)(UZE) e (anE)’

which is the compositum of all these embeddings, is a normal extension of k,
because for any embedding of it, say 7, we can apply t to each extension
g;E. Then (ta,,...,1q,) is a permutation of (¢y,...,0,) and thus T maps K
into itself. Any normal extension of k containing E must contain ¢;E for
each i, and thus the smallest normal extension of k containing E is precisely
equal to the compositum

(6,E) - (0,E).

If E is separable over k, then from Theorem 4.5 and induction we
conclude that the smallest normal extension of k containing E is also separ-
able over k.

Similar results hold for an infinite algebraic extension E of k, taking an
infinite compositum.
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In light of Theorem 4.5, the compositum of all separable extensions of a
field k in a given algebraic closure k* is a separable extension, which will be
denoted by k* or k*P, and will be called the separable closure of k. As a
matter of terminology, if E is an algebraic extension of k, and ¢ any
embedding of E in k* over k, then we call 6E a conjugate of E in k*. We can
say that the smallest normal extension of k containing E is the compositum of
all the conjugates of E in E®.

Let o be algebraic over k. If g4, ..., o, are the distinct embeddings of k()
into k* over k, then we call a,a,..., 0,0 the conjugates of a in k®. These
elements are simply the distinct roots of the irreducible polynomial of & over
k. The smallest normal extension of k containing one of these conjugates is
simply k(o,a, ..., 6,a).

Theorem 4.6. (Primitive Element Theorem). Let E be a finite extension
of a field k. There exists an element o € E such that E = k() if and only
if there exists only a finite number of fields F such that kc F < E. If E
is separable over k, then there exists such an element o.

Proof. 1If k is finite, then we know that the multiplicative group of E is
generated by one element, which will therefore also generate E over k. We
assume that k is infinite.

Assume that there is only a finite number of fields, intermediate between
k and E. Let a, e E. As c ranges over elements of k, we can only have
a finite number of fields of type k(x + cf). Hence there exist elements c,,
¢, € k with ¢, # c, such that

k(ax + ¢, B) = k(a + ¢, B).

Note that « + ¢, and « + ¢, B are in the same field, whence so is (¢, — ¢,)8,
and hence so is f. Thus « is also in that field, and we see that k(«, ) can be
generated by one element.
Proceeding inductively, if E = k(«,, ..., ®,) then there will exist elements
Cy, -.., Cy € k such that
E = k(&)

where & = a; + c,a, + -+ + ¢,a,. This proves half of our theorem.

Conversely, assume that E = k(x) for some «, and let f(X) = Irr(a, k, X).
Let k =« F < E. Let gp(X) = Irr(a, F, X). Then g, divides f. We have unique
factorization in E[X], and any polynomial in E[X] which has leading
coefficient 1 and divides f(X) is equal to a product of factors (X — «;) where
ay, ..., a, are the roots of f in a fixed algebraic closure. Hence there is only a
finite number of such polynomials. Thus we get a mapping

Frgg

from the set of intermediate fields into a finite set of polynomials. Let F, be
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the subfield of F generated over k by the coefficients of gp(X). Then g has
coefficients in F, and is irreducible over F, since it is irreducible over F.
Hence the degree of « over F, is the same as the degree of « over F. Hence
F = F,. Thus our field F is uniquely determined by its associated poly-
nomials gg, and our mapping is therefore injective. This proves the first
assertion of the theorem.

As to the statement concerning separable extensions, using induction,
we may assume without loss of generality that E = k(a, ) where a, B are
separable over k. Let a,,..., 0, be the distinct embeddings of k(«, f) in k*
over k. Let

P(X) =[] (o;x + Xo;8 — g;2 — X0;B).
i#j
Then P(X) is not the zero polynomial, and hence there exists ¢ € k such
that P(c) # 0. Then the elements o;(«x + cf) (i = 1, ..., n) are distinct, whence
k(o + cP) has degree at least n over k. But n = [k(«, B): k], and hence

k(a, B) = k(x + cB),
as desired.

If E = k(a), then we say that « is a primitive element of E (over k).

§6. FINITE FIELDS

We have developed enough general theorems to describe the structure of
finite fields. This is interesting for its own sake, and also gives us examples
for the general theory.

Let F be a finite field with g elements. As we have noted previously, we
have a homomorphism

Z->F

sending 1 on 1, whose kernel cannot be 0, and hence is a principal ideal
generated by a prime number p since Z/pZ is embedded in F and F has no
divisors of zero. Thus F has characteristic p, and contains a field isomorphic
to Z/pZ.

We remark that Z/pZ has no automorphisms other than the identity.
Indeed, any automorphism must map 1 on 1, hence leaves every element
fixed because 1 generates Z/pZ additively. We identify Z/pZ with its image
in F. Then F is a vector space over Z/pZ, and this vector space must be
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finite since F is finite. Let its degree be n. Let w,,..., w, be a basis for F
over Z/pZ. Every element of F has a unique expression of the form

a0, + - +a,0,

with a; € Z/pZ. Hence q = p".
The multiplicative group F* of F has order ¢ — 1. Every a € F* satisfies
the equation X?°! = 1. Hence every element of F satisfies the equation

f(X)=X1—X=0.

This implies that the polynomial f(X) has g distinct roots in F, namely all
elements of F. Hence f splits into factors of degree 1 in F, namely

X —X=]] (X -a).

aeF

In particular, F is a splitting field for f. But a splitting field is uniquely
determined up to an isomorphism. Hence if a finite field of order p” exists, it
is uniquely determined, up to an isomorphism, as the splitting field of
X?" — X over Z/pZ.

As a matter of notation, we denote Z/pZ by F,. Let n be an integer =1
and consider the splitting field of

X7 —X = f(X)

in an algebraic closure F,. We contend that this splitting field is the set of
roots of f(X) in F,. Indeed, let a, B be roots. Then

@+ By —(@+p=a"+p" —a—p=0,
whence o + f§ is a root. Also,
@B)” — af = a”B” —af = af —af =0,
and af is a root. Note that 0, 1 are roots of f(X). If B # 0 then
By =Bt =(")" =B =0
so that 7! is a root. Finally,
(=B = (=B =(=1)"p" + B.

If p is odd, then (—1)*" = —1 and we see that — B is a root. If p is even then
—1=1(in Z/2Z) and hence —f = B is a root. This proves our contention.
The derivative of f(X) is

f(X)=p"XP Tt —1=—1.

Hence f(X) has no multiple roots, and therefore has p" distinct roots in
F,. Hence its splitting field has exactly p" elements. We summarize our
results:
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Theorem 5.1. For each prime p and each integer n = 1 there exists a finite
field of order p" denoted by F,., uniquely determined as a subfield of an
algebraic closure F. It is the splitting field of the polynomial

X" — X,

and its elements are the roots of this polynomial. Every finite field is
isomorphic to exactly one field Fn.

We usually write p" = g and F, instead of F .

Corollary 5.2. Let F, be a finite field. Let n be an integer 21. In a
given algebraic closure Fy, there exists one and only one extension of F, of
degree n, and this extension is the field F .

Proof. Let q=p™ Then q"=p™. The splitting field of X" — X is
precisely F,.. and has degree mn over Z/pZ. Since F, has degree m over
Z/pZ, it follows that F,. has degree n over F,. Conversely, any extension of
degree n over F, has degree mn over F, and hence must be F,.... This proves
our corollary.

Theorem 5.3. The multiplicative group of a finite field is cyclic.
Proof. This has already been proved in Chapter IV, Theorem 1.9.

We shall determine all automorphisms of a finite field.
Let g = p" and let F, be the finite field with g elements. We consider the
Frobenius mapping

¢:F,—>F,

such that ¢(x) = xP. Then ¢ is a homomorphism, and its kernel is 0 since F,
is a field. Hence ¢ is injective. Since F, is finite, it follows that ¢ is
surjective, and hence that ¢ is an isomorphism. We note that it leaves F,
fixed.

Theorem S5.4. The group of automorphisms of ¥, is cyclic of degree n,
generated by ¢.

Proof. Let G be the group generated by ¢. We note that ¢" =id
because ¢"(x) = xP" = x for all x € F,. Hence n is an exponent for ¢. Let d
be the period of ¢, so d = 1. We have ¢?(x) = x? for all x € F,. Hence each
x e F_ is a root of the equation

X -XxX=0.

This equation has at most p? roots. It follows that d = n, whence d = n.
There remains to be proved that G is the group of all automorphisms of
F,. Any automorphism of F, must leave F, fixed. Hence it is an auto-
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morphism of F, over F,. By Theorem 4.1, the number of such auto-
morphisms is < n. Hence F, cannot have any other automorphisms except
for those of G.

Theorem 5.5. Let m, n be integers = 1. Then in any algebraic closure of
F,, the subfield ¥ is contained in Fom if and only if n divides m. If that is the
case, let ¢ = p", and let m = nd. Then F,m is normal and separable over F,,
and the group of automorphisms of F,m over ¥ is cyclic of order d, generated

by ¢".

Proof.  All the statements are trivial consequences of what has already been
proved and will be left to the reader.

§6. INSEPARABLE EXTENSIONS

This section is of a fairly technical nature, and can be omitted without
impairing the understanding of most of the rest of the book.

We begin with some remarks supplementing those of Proposition 2.7.

Let f(X) = (X — a)"g(X) be a polynomial in k[X], and assume X —«a
does not divide g(X). We recall that m is called the multiplicity of « in f.
We say that « is a multiple root of f if m > 1. Otherwise, we say that a is a
simple root.

Proposition 6.1. Let a be algebraic over k, o € k*, and let
f(X) = Irr (o, k, X).
If char k = 0, then all roots of f have multiplicity 1 (f is separable). If
chark=p>0,

then there exists an integer u 2 0 such that every root of f has multiplicity
p*. We have

[k(2) : k] = p*[k(2): k],

and oP" is separable over k.

Proof. Let «a,, ..., a, be the distinct roots of f in k* and let & = a;. Let
m be the multiplicity of « in f. Given 1 i < r, there exists an isomorphism

a: k() — k()

over k such that oo = o;. Extend ¢ to an automorphism of k* and denote
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this extension also by o. Since f has coefficients in k we have f° = f. We
note that

fo0 = Il'll X— gaym™

if m; is the multiplicity of a; in f. By unique factorization, we conclude that
m; = m, and hence that all m; are equal to the same integer m.

Consider the derivative f'(X). If f and f’ have a root in common, then «
is a root of a polynomial of lower degree than deg f. This is impossible
unless deg f' = —oo0, in other words, f' is identically 0. If the characteristic
is 0, this cannot happen. Hence if f has multiple roots, we are in characteris-
tic p, and f(X) = g(X?) for some polynomial g(X) € k[X]. Therefore a? is a
root of a polynomial g whose degree is < deg f. Proceeding inductively, we
take the smallest integer u >0 such that «” is the root of a separable
polynomial in k[X], namely the polynomial h such that

f(X) = h(X"™).
Comparing the degree of f and g, we conclude that
[k(@): k(@P)] = p.
Inductively, we find
[k(o): k(@™)] = p*.
Since h has roots of multiplicity 1, we know that
[k(x™): k], = [k(@™): k],

and comparing the degree of f and the degree of h, we see that the num-
ber of distinct roots of f is equal to the number of distinct roots of h.
Hence

[k(2) : k], = [k(@™): k],.

From this our formula for the degree follows by multiplicativity, and our
proposition is proved. We note that the roots of h are

af, ..., o

Corollary 6.2. For any finite extension E of k, the separable degree
LE : k], divides the degree [E:k]. The quotient is 1 if the characteristic is
0, and a power of p if the characteristic is p > 0.

Proof. We decompose E/k into a tower, each step being generated by
one element, and apply Proposition 6.1, together with the multiplicativity of
our indices in towers.

If E/K is finite, we call the quotient
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[E: k]
[E: k],

the inseparable degree (or degree of inseparability), and denote it by [E : k]; as
in §4. We have

[E:k],[E:k]; = [E:k].

Corollary 6.3. A finite extension is separable if and only if [E:k]; = 1.

Proof. By definition.

Corollary 64 If E o F o k are two finite extensions, then
[E:k); = [E: F];,[F:k],.

Proof. Immediate by Theorem 4.1.

We now assume throughout that k is a field of characteristic p > 0.

An element o algebraic over k is said to be purely inseparable over k if
there exists an integer n = 0 such that «?" lies in k.

Let E be an algebraic extension of k. We contend that the following
conditions are equivalent:

P.Ins. 1. We have [E:k], = 1.
P.Ins. 2. Every element « of E is purely inseparable over k.

P.Ins.3. For every « € E, the irreducible equation of « over k is of type
XP" —ag=0withsomen=0and ack.

P.Ins. 4. There exists a set of generators {o;};., of E over k such that
each «; is purely inseparable over k.

To prove the equivalence, assume P. Ins. 1. Let « € E. By Theorem 4.1,
we conclude that [k(x): k], = 1. Let f(X) = Irr(a, k, X). Then f has only one
root since

Ck(o) : k],

is equal to the number of distinct roots of f(X). Let m = [k(«):k]. Then
deg f = m, and the factorization of f over k(x) is f(X)= (X — «)™. Write
m = p"r where r is an integer prime to p. Then

SX) = (X7 —a”y
= XP" — raP"XP"""D 4 lower terms.
Since the coefficients of f(X) lie in k, it follows that

roP"
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lies in k, and since r # O (in k), then a”" lies in k. Let a = a?". Then a is
a root of the polynomial X?" —qa, which divides f(X). It follows that
fX)=X"—a.

Essentially the same argument as the preceding one shows that P. Ins. 2
implies P. Ims. 3. It is trivial that the third condition implies the fourth.

Finally, assume P. Ins. 4. Let E be an extension generated by purely
inseparable elements «; (i € I). Any embedding of E over k maps «; on a root
of

JiX) = Irr(w, k, X).

But f;(X) divides some polynomial X?" — a, which has only one root. Hence
any embedding of E over k is the identity on each o;, whence the identity on
E, and we conclude that [E: k], = 1, as desired.

An extension satisfying the above four properties will be called purely
inseparable.

Proposition 6.5. Purely inseparable extensions form a distinguished class
of extensions.

Proof. The tower theorem is clear from Theorem 4.1, and the lifting
property is clear from condition P. Ins. 4.

Proposition 6.6. Let E be an algebraic extension of k. Let E, be the
compositum of all subfields F of E such that F > k and F is separable
over k. Then E, is separable over k, and E is purely inseparable over
E,.

Proof. Since separable extensions form a distinguished class, we know
that E, is separable over k. In fact, E, consists of all elements of E which
are separable over k. By Proposition 6.1, given o € E there exists a power of
p, say p" such that a?” is separable over k. Hence E is purely inseparable
over E,, as was to be shown.

Corollary 6.7. If an algebraic extension E of k is both separable and
purely inseparable, then E = k.

Proof. Obvious.

Corollary 6.8. Let K be normal over k and let K be its maximal separa-
ble subextension. Then K, is also normal over k.

Proof. Let o be an embedding of K, in K* over k and extend ¢ to an
embedding of K. Then ¢ is an automorphism of K. Furthermore, oK, is
separable over k, hence is contained in K, since K, is the maximal separa-
ble subfield. Hence 6K, = K, as contended.
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Corollary 6.9. Let E, F be two finite extensions of k, and assume that
E/k is separable, F/k is purely inseparable. Assume E, F are subfields of a
common field. Then

[EF:F]=[E:k] = [EF:K],
[EF:E] =[F:k] = [EF: K],

Proof. The picture is as follows:
EF
p ins sep
’ / \F
% ) A

The proof is a trivial juggling of indices, using the corollaries of Proposition
6.1. We leave it as an exercise.

Corollary 6.10. Let E? denote the field of all elements x?, x € E. Let E
be a finite extension of k. If EPk = E, then E is separable over k. If E is
separable over k, then EP"k = E for all n 2 1.

Proof. Let E, be the maximal separable subfield of E. Assume E?k = E.
Let E = k(«y,...,,). Since E is purely inseparable over E, there exists m
such that af" € E, for each i=1,...,n. Hence EF" c E,. But EP"k=E
whence E = E, is separable over k. Conversely, assume that E is separable
over k. Then E is separable over EPk. Since E is also purely inseparable over
EPk we conclude that E = EPk. Similarly we get E = EP"k for n = 1, as was
to be shown.

Proposition 6.6 shows that any algebraic extension can be decomposed
into a tower consisting of a maximal separable subextension and a purely
inseparable step above it. Usually, one cannot reverse the order of the
tower. However, there is an important case when it can be done.

Proposition 6.11. LetK be normal over k. Let G be its group of automorphisms
over k. Let KC be the fixed field of G (see Chapter V1, §1). Then K is purely
inseparable over k, and K is separable over K ©. If Ky is the maximal separa-
ble subextension of K, then K = K°Ky and Ko n K¢ = k.

Proof. Let ae K€ Let t be an embedding of k(x) over k in K* and
extend t to an embedding of K, which we denote also by . Then 7 is an
automorphism of K because K is normal over k. By definition, ta = o and
hence 7 is the identity on k(x). Hence [k(x):k],=1 and « is purely in-
separable. Thus K¢ is purely inseparable over k. The intersection of K,
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and K is both separable and purely inseparable over k, and hence is equal
to k.

To prove that K is separable over K G assume first that K is finite over
k, and hence that G is finite, by Theorem 4.1. Let « € K. Let 0,,...,0, be a
maximal subset of elements of G such that the elements

0.d, ..., G0

are distinct, and such that o, is the identity, and « is a root of the polynomial

1X) = n X — 0,0).

For any 7 € G we note that f* = f because T permutes the roots. We note
that f is separable, and that its coefficients are in the fixed field K¢. Hence «
is separable over K¢. The reduction of the infinite case to the finite case is
done by observing that every a € K is contained in some finite normal
subextension of K. We leave the details to the reader.

We now have the following picture:

K

N
A

KonKG—_—k

By Proposition 6.6, K is purely inseparable over K,, hence purely insepara-
ble over K,K€. Furthermore, K is separable over K¢ hence separable over
KoK Hence K = K,K¢, thereby proving our proposition.

We see that every normal extension decomposes into a compositum of
a purely inseparable and a separable extension. We shall define a Galois ex-
tension in the next chapter to be a normal separable extension. Then K,
is Galois over k and the normal extension is decomposed into a Galois and a
purely inseparable extension. The group G is called the Galois group of the
extension K/k.

A field k is called perfect if k? = k. (Every field of characteristic zero is
also called perfect.)

Corollary 6.12. If k is perfect, then every algebraic extension of k is

separable, and every algebraic extension of k is perfect.

Proof. Every finite algebraic extension is contained in a normal exten-
sion, and we apply Proposition 6.11 to get what we want.
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EXERCISES

1.

10.

11.

12.

Let E = Q(a), where a is a root of the equation
a4+l +a+2=0.
Express (¢ + a + 1)(2® + «) and (¢ — 1)7! in the form
ao® + ba + ¢

with a, b, ce Q.

. Let E = F(x) where a is algebraic over F, of odd degree. Show that E = F(a?).
. Let « and f be two elements which are algebraic over F. Let f(X) = Irr(a, F, X)

and g(X) = Irr(B, F, X). Suppose that deg f and deg g are relatively prime. Show
that g is irreducible in the polynomial ring F(x)[X].

. Let o be the real positive fourth root of 2. Find all intermediate fields in the

extension Q(a) of Q.

. If « is a complex root of X® + X3 + 1, find all homomorphisms ¢: Q(a) - C.

[Hint: The polynomial is a factor of X° —1.]
p

. Show that \/5 + ﬁ is algebraic over Q, of degree 4.

. Let E, F be two finite extensions of a field k, contained in a larger field K. Show

that
[EF:k] S [E:k][F:k].

If [E: k] and [F: k] are relatively prime, show that one has an equality sign in
the above relation.

. Let f(X) € k[X] be a polynomial of degree n. Let K be its splitting field. Show

that [K:k] divides n!

. Find the splitting field of X?* — 1 over the field Z/pZ.

Let a be a real number such that a* = 5.

(a) Show that Q(ix?) is normal over Q.

(b) Show that Q(a + ia) is normal over Q(ia?).
(c) Show that Q(a + ia) is not normal over Q.

Describe the splitting fields of the following polynomials over Q, and find the
degree of each such splitting field.

(@ X2 -2 (b) X2 -1

(c) X3 -2 d) (X3 —2)(X2—2)
€ X2 +X+1 () X+X3+1
(® X°>-7

Let K be a finite field with p" elements. Show that every element of K has a
unique p-th root in K.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

If the roots of a monic polynomial f(X) € k[X] in some splitting field are distinct,
and form a field, then char k = p and f(X) = X?" — X for some n = 1.

Let char K = p. Let L be a finite extension of K, and suppose [L: K] prime to
p. Show that L is separable over K.

Suppose char K = p. Let ae K. If a has no p-th root in K, show that X?" — a is
irreducible in K[X] for all positive integers n.

Let char K = p. Let a be algebraic over K. Show that a is separable if and only
if K(a) = K(aP") for all positive integers n.

Prove that the following two properties are equivalent:

(a) Every algebraic extension of K is separable.

(b) Either char K = 0, or char K = p and every element of K has a p-th root in
K.

Show that every element of a finite field can be written as a sum of two squares
in that field.

Let E be an algebraic extension of F. Show that every subring of E which
contains F is actually a field. Is this necessarily true if E is not algebraic over F?
Prove or give a counterexample.

(a) Let E = F(x) where x is transcendental over F. Let K # F be a subfield of E
which contains F. Show that x is algebraic over K.

(b) Let E = F(x). Let y = f(x)/g(x) be a rational function, with relatively prime
polynomials f, g€ F[x]. Let n = max(deg f, deg g). Suppose n=1. Prove
that

[Fx): F(y)]=n.

Let Z* be the set of positive integers, and A an additive abelian group. Let
f:Z* > A and g: Z* — A be maps. Suppose that for all n,

fn)= ; 9(d).
Let 4 be the Mdébius function (cf. Exercise 12 of Chapter II). Prove that
g(n) = ; un/d)f(d).

Let k be a finite field with g elements. Let f(X) € k[X] be irreducible. Show that
f(X) divides X% — X if and only if deg f divides n. Show the multiplication
formula

X —X =[] [] fuX),

din fq4irr

where the inner product is over all irreducible polynomials of degree d with
leading coefficient 1. Counting degrees, show that

q" =Y dy(d),
din

where Y(d) is the number of irreducible polynomials of degree d. Invert by
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Exercise 21 and find that
ny(n) = ; u(d)g™.

23. (a) Let k be a finite field with g elements. Define the zeta function

24.

25.

( l—t) ll"[(l degp

where p ranges over all irreducible polynomials p = p(X) in k[X] with leading
coefficient 1. Prove that Z(t) is a rational function and determine this rational
function.

(b) Let m (n) be the number of primes p as in (a) of degree < n. Prove that

my(m) ~ —— — for m— oo.
qg—1m

Remark. This is the analogue of the prime number theorem in number theory,
but it is essentially trivial in the present case, because the Riemann hypothesis is
trivially verified. Things get more interesting fast after this case. Consider an
equation y? = x3 4+ ax + b over a finite field F, of characteristic # 2, 3, and
having g elements. Assume —4a® — 27b? # 0, in which case the curve defined by
this equation is called an elliptic curve. Define N, by

N, — 1 = number of points (x, y) satisfying the above equation with
x, y€ F;n  (the extension of F, of degree n).

Define the zeta function Z(t) to be the unique rational function such that Z(0) = 1
and

Z/Z({t)=Y Nyt
A famous theorem of Hasse asserts that Z(t) is a rational function of the form

(1 —at)(1 —at)

Z(t) = T—nl—q)

where a is an imaginary quadratic number (not real, quadratic over Q), & is its
complex conjugate, and o = ¢, so || = g'2. See Hasse, “ Abstrakte Bergrundung
der komplexen Multiplikation und Riemannsche Vermutung in Funktionen-
korpern,” Abh. Math. Sem. Univ. Hamburg 10 (1934) pp. 325-348.

Let k be a field of characteristic p and let ¢, u be algebraically independent over
k. Prove the following:

(a) k(t, u) has degree p? over k(t?, uP).

(b) There exist infinitely many extensions between k(t, u) and k(t?, u®).

Let E be a finite extension of k and let p" =[E:k];,, We assume that the
characteristic is p > 0. Assume that there is no exponent p* with s <r such that
EFP’k is separable over k (i.e., such that a”" is separable over k for each o« in E).
Show that E can be generated by one element over k. [Hint: Assume first that
E is purely inseparable.]
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26.

27.

28.

29.

30.

31.

Let & be a field, f(X) an irreducible polynomial in k[X], and let K be a finite normal
extension of k. If g, h are monic irreducible factors of f(X) in K[X], show that there
exists an automorphism o of K over k such that g = h°. Give an example when this
conclusion is not valid if K is not normal over k.

Let x,, ..., x, be algebraically independent over a field k. Let y be algebraic over
k(x) = k(x,,..., x,). Let P(X,,,) be the irreducible polynomial of y over k(x).
Let ¢(x) be the least common multiple of the denominators of the coefficients of
P. Then the coefficients of ¢(x)P are elements of k[x]. Show that the polynomial

f(xlv "'vXn+l) = (D(Xl’ ""Xn)P(Xn+l)

is irreducible over k, as a polynomial in n + 1 variables.
Conversely, let f(X,,..., X,.;) be an irreducible polynomial over k. Let
Xi,..., X, be algebraically independent over k. Show that

SXqy iy Xy Xps1)

is irreducible over k(x,, ..., x,).

If f is a polynomial in n variables, and (b) =(b,,..., b,) is an n-tuple of
elements such that f(b) = 0, then we say that (b) is a zero of f. We say that (b) is
non-trivial if not all coordinates b; are equal to 0.

Let f(X,,..., X,) be a homogeneous polynomial of degree 2 (resp. 3) over a field
k. Show that if f has a non-trivial zero in an extension of odd degree (resp.
degree 2) over k, then f has a non-trivial zero in k.

Let f(X, Y) be an irreducible polynomial in two variables over a field k. Let ¢ be
transcendental over k, and assume that there exist integers m, n # 0 and elements
a, b ek, ab # 0, such that f(at", bt™) = 0. Show that after inverting possibly X or
Y, and up to a constant factor, f is of type

Xmy"—c
with some c € k.

The answer to the following exercise is not known.

(Artin conjecture). Let f be a homogeneous polynomial of degree d in n vari-
ables, with rational coefficients. If n > d, show that there exists a root of unity {,
and elements

xl’ ey xneQ[C]
not all 0 such that f(x,,...,x,) =0.

Difference equations. Let u,, ..., u, be elements of a field K. We want to solve
for infinite vectors (xq, X;, ..., X,, -..) satisfying

(*) Xy =UgXp_g + "+ UgXy_yg for n=d.
Define the characteristic polynomial of the system to be

X — (@ X4 4+ uy) = f(X).
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32.

33.

Suppose a is a root of f.

(a) Show that x, = a" (n = 0) is a solution of ().

(b) Show that the set of solutions of () is a vector space of dimension d.

(c) Assume that the characteristic polynomial has d distinct roots aj, ..., a,.
Show that the solutions («}), ..., (x}) form a basis for the space of solutions.

(d) Let x, = bya} + -+ + bya] for n = 0, show how to solve for by, ..., b, in terms
of ay, ..., a5 and X, ..., X;,_;. (Use the Vandermonde determinant.)

(e) Under the conditions of (d), let F(T) =3 x,T" Show that F(T) represents a
rational function, and give its partial fraction decomposition.

Let d = 2 for simplicity. Given a,, a,, u, v, w, t € K, we want to find the solutions
of the system
a, = ua, | — vta,_, — t"w for n=2.

Let a,, a, be the root of the characteristic polynomial, that is
1 —uX +vtX?=(1 — o, X)(1 — a,X).
Assume that a,, o, are distinct, and also distinct from t. Let
FX)=Y a,X"
n=0
(a) Show that there exist elements 4, B, C of K such that

A B C

F(X) = .
K =T ext T TTox

(b) Show that there is a unique solution to the difference equation given by
a, = Aa} + Ba3 + Ct" for n=0.

(To see an application of this formalism to modular forms, as in the work of
Manin, Mazur, and Swinnerton-Dyer, cf. my Introduction to Modular Forms,
Springer-Verlag, New York, 1976, Chapter XII, §2.)

Let R be a ring which we assume entire for simplicity. Let
g(T) =T —a; T —--- —a,

be a polynomial in R[T], and consider the equation
T'=ay+a, T+ +a, T

Let x be a root of g(T).

(a) For any integer n = d there is a relation
X" =g+ Gy pX + 0 F Qg x0T

with coefficients a; ; in Z[a,, ..., a;-,] = R.
(b) Let F(T)e R[T] be a polynomial. Then

F(x) = ao(F) + ay(F)x + -+ + a4_,(F)x*™!

where the coefficients g;(F) lie in R and depend linearly on F.
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34

(c) Let the Vandermonde determinant be

1 x, - xtli—l
d-1
x, o xd
V(X4y... Xg) = . | =116 —x)
Do : i<j
1 x, - x4t

Suppose that the equation g(T) = 0 has d roots and that there is a factoriza-
tion

d
9(T) = lj[l (T = x,).
Substituting x; for x with i = 1, ..., d and using Cramer's rule on the resulting
system of linear equations, yields
Aay(F) = A(F)

where A is the Vandermonde determinant, and A,(F) is obtained by replacing
the j-th column by {(F(x,),..., F(x,)), so

1 X, F(xl) xtli 1

1 .-« F(x d-1
Aj(F) _ x:z (. 2) Xz

1 X, F(x,,) . x:—l

If A # 0 then we can write
a(F) = A(F)/A.

Remark. If F(T) is a power series in R[[T]] and if R is a complete local ring,
with x,, ..., x, in the maximal ideal, and x = x; for some i, then we can evaluate
F(x) because the series converges. The above formula for the coefficients a;(F)
remains valid.

Let x4, ..., x, be independent variables, and let A be the ring

d
QLlxy, -, x1] [T]/'_l-[1 (T —xy).
Substituting some x; for T induces a natural homomorphism ¢, of A onto

Q[[Zla (R xd]] = R,

and the map z+(,(2), -- -, @4(2)) gives an embedding of A into the product of R
with itself d times.
Let k be an integer, and consider the formal power series

)eT x; d
F(T) = " H ———-——,-," e T h(T — x;)
- i=1
where h(t) = te'/(e' — 1). It is a formal power series in T, T — x,, ..., T — x,,

Under substitution of some x; for T it becomes a power series in x; and X —
and thus converges in Q[[xl, ,x.1]
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(a) Verify that
F(T) = ag(F) + -+ + 6y (F)T*"* mod [] (T — x)
i=1

where ao(F), ..., a;-,(F) e Q[[xy, ..., x,1], and that the formula given in the
preceding exercise for these coefficients in terms of Vandermonde determi-
nants is valid.

(b) Show that a,_(F)=0if —(d - 1)<k <O0and a;_(F)=1ifk=0.

Remark. The assertion in (a) is a simple limit. The assertion in (b) is a fact
which has been used in the proof of the Hirzebruch—Grothendieck—Riemann—
Roch theorem and as far as I know there was no simple known proof until Roger
Howe pointed out that it could be done by the formula of the preceding exercise
as follows. We have

1 x; - x{°% F(x,)
V(xly"'yxn)ad—l(F)= : .
1 x;, -+ x¥?2 F(x,)
Furthermore,
(x; — x,)e*™*n
F ) = kx; J n
(xj)=e 'Llj e _ |

We use the inductive relation of Vandermonde determinants

V(X1yooy Xg) = V(Xy, ooy Rjy ooy X)(— 1) l;[j(xj - X,).

We expand the determinant for a,_,(F) according to the last column to get

d
G (F) = et ]

A nij e — e

Using the inductive relation backward, and replacing x; by e* which we denote
by y; for typographical reasons, we get

1oy, - oy oyt
V(Ylv""y‘i)ad—l(p)=
L T S 7

If k # 0 then two columns on the right are the same, so the determinant is 0. If
k =0 then we get the Vandermonde determinant on the right, so a,_,(F)=1.
This proves the desired value.






CHAPTER VI

Galois Theory

This chapter contains the core of Galois theory. We study the group of
automorphisms of a finite (and sometimes infinite) Galois extension at length,
and give examples, such as cyclotomic extensions, abelian extensions, and even
non-abelian ones, leading into the study of matrix representations of the Galois
group and their classifications. We shall mention a number of fundamental
unsolved problems, the most notable of which is whether given a finite group
G, there exists a Galois extension of Q having this group as Galois group. Three
surveys give recent points of view on those questions and sizeable bibliographies:

B. MATZAT, Konstruktive Galoistheorie, Springer Lecture Notes 1284, 1987

B. MaTzAT, Uber das Umkehrproblem der Galoisschen Theorie, Jahrsbericht Deutsch.
Mat.-Verein. 90 (1988), pp. 155-183

J. P. SERRE, Topics in Galois theory, course at Harvard, 1989, Jones and Bartlett,
Boston 1992

More specific references will be given in the text at the appropriate moment
concerning this problem and the problem of determining Galois groups over
specific fields, especially the rational numbers.

§1. GALOIS EXTENSIONS

Let K be a field and let G be a group of automorphisms of K. We denote
by K€ the subset of K consisting of all elements x € K such that x° = x for all
o€G. Itis also called the fixed field of G. It is a field because if x, y € K¢ then

x+y)y=x"+)y"=x+y

261



262 GALOIS THEORY Vi, §1

for all ¢ € G, and similarly, one verifies that K is closed under multiplication,
subtraction, and multiplicative inverse. Furthermore, K¢ contains 0 and 1,
hence contains the prime field.

An algebraic extension K of a field k is called Galeis if it is normal and
separable. We consider K as embedded in an algebraic closure. The group of
automorphisms of K over k is called the Galois group of K over k, and is denoted
by G(K/k), Gg, Gal(K/k), or simply G. It coincides with the set of embeddings
of K in K? over k.

For the convenience of the reader, we shall now state the main result of the
Galois theory for finite Galois extensions.

Theorem 1.1. Let K be a finite Galois extension of k, with Galois group G.
There is a bijection between the set of subfields E of K containing k, and the
set of subgroups H of G, given by E = K". The field E is Galois over k if and
only if H is normal in G, and if that is the case, then the map o — o | E induces
an isomorphism of G/H onto the Galois group of E over k.

We shall give the proofs step by step, and as far as possible, we give them for
infinite extensions.

Theorem 1.2. Let K be a Galois extension of k. Let G be its Galois group.
Thenk = K€. If F is an intermediate field, k = F < K, then K is Galois over
F. The map

F— G(K/F)
from the set of intermediate fields into the set of subgroups of G is injective.

Proof. Let o€ K®. Let o be any embedding of k(a) in K?, inducing the
identity on k. Extend o to an embedding of K into K?, and call this extension ¢
also. Then ¢ is an automorphism of K over k, hence is an element of G. By
assumption, ¢ leaves a fixed. Therefore

[k(e): k] = 1.

Since o is separable over k, we have k(a) = kand « is an element of k. This proves
our first assertion.

Let F be an intermediate field. Then K is normal and separable over F by
Theorem 3.4 and Theorem 4.5 of Chapter V. Hence K is Galois over F. If H =
G(K/F) then by what we proved above we conclude that F = K. If F, F’ are
intermediate fields, and H = G(K/F), H' = G(K/F’), then

F=K" and F =KY.
If H = H' we conclude that F = F’, whence our map
F+ G(K/F)

is injective, thereby proving our theorem.
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We shall sometimes call the group G(K/F) of an intermediate field the group
associated with F. We say that a subgroup H of G belongs to an intermediate
field F if H = G(K/F).

Corollary 1.3. Let K/k be Galois with group G. Let F, F' be two inter-
mediate fields, and let H, H' be the subgroups of G belonging to F, F' respec-
tively. Then H n H' belongs to FF'.

Proof. Every element of H n H' leaves FF' fixed, and every element of G
which leaves FF' fixed also leaves F and F’ fixed and hence lies in H n H'.
This proves our assertion.

Corollary 1.4. Let the notation be as in Corollary 1.3. The fixed field of the
smallest subgroup of G containing H, H' is F n F'.

Proof. Obvious.

Corollary 1.5. Let the notation be as in Corollary 1.3. Then F = F' if
and only if H' < H.

Proof. If F < F' and o € H' leaves F' fixed then ¢ leaves F fixed, so ¢ lies
in H. Conversely, if H' — H then the fixed field of H is contained in the fixed
field of H',so F = F'.

Corollary 1.6. Let E be a finite separable extension of a field k. Let K be
the smallest normal extension of k containing E. Then K is finite Galois over
k. There is only a finite number of intermediate fields F such thatk = F < E.

Proof. We know that K is normal and separable, and K is finite over k
since we saw that it is the finite compositum of the finite number of conjugates
of E. The Galois group of K/k has only a finite number of subgroups. Hence
there is only a finite number of subfields of K containing k, whence a fortiori a
finite number of subfields of E containing k.

Of course, the last assertion of Corollary 1.6 has been proved in the preceding
chapter, but we get another proof here from another point of view.

Lemma 1.7. Let E be an algebraic separable extension of k. Assume that
there is an integer n 2 1 such that every element a of E is of degree < n over k.
Then E is finite over k and [E : k] < n.

Proof. Let a be an element of E such that the degree [k(«) : k] is maximal,
say m < n. We contend that k() = E. If this is not true, then there exists an
element B € E such that B ¢ k(«), and by the primitive element theorem, there
exists an element y € k(, f) such that k(a, ) = k(y). But from the tower

k < k(o) = k(a, )

we see that [k(a, B) : k] > m whence y has degree > m over k, contradiction.
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Theorem 1.8. (Artin). Let K be a field and let G be a finite group of auto-
morphisms of K, of order n. Let k = K be the fixed field. Then K is a finite
Galois extension of k, and its Galois group is G. We have [K : k] = n.

Proof. LetaeK and leto,,..., s, be a maximal set of elements of G such
that ¢,a, ..., o,a are distinct. If e G then (10,a,..., t0,a) differs from
(012, ..., 0,a) by a permutation, because t is injective, and every 7a;0 is among
the set {04, ..., g,a}; otherwise this set is not maximal. Hence « is a root of
the polynomial

100 = T1X - 00,

and for any 1€ G, f* = f. Hence the coefficients of f lie in K¢ = k. Further-
more, f is separable. Hence every element « of K is a root of a separable
polynomial of degree <n with coefficients in k. Furthermore, this poly-
nomial splits in linear factors in K. Hence K is separable over k, is normal
over k, hence Galois over k. By Lemma 1.7, we have [K : k] < n. The Galois
group of K over k has order =[K:k] (by Theorem 4.1 of Chapter V), and hence
G must be the full Galois group. This proves all our assertions.

Corollary 1.9. Let K be a finite Galois extension of k and let G be its Galois

group. Then every subgroup of G belongs to some subfield F such that
k< F cK.

Proof. Let H be a subgroup of G and let F = KH. By Artin’s theorem we
know that K is Galois over F with group H.

Remark. When K is an infinite Galois extension of k, then the preceding
corollary is not true any more. This shows that some counting argument
must be used in the proof of the finite case. In the present treatment, we have
used an old-fashioned argument. The reader can look up Artin’s own proof in
his book Galois Theory. In the infinite case, one defines the Krull topology on
the Galois group G (cf. exercises 43—45), and G becomes a compact totally
disconnected group. The subgroups which belong to the intermediate fields are
the closed subgroups. The reader may disregard the infinite case entirely through-
out our discussions without impairing understanding. The proofs in the infinite
case are usually identical with those in the finite case.

The notions of a Galois extension and a Galois group are defined completely
algebraically. Hence they behave formally under isomorphisms the way one
expects from objects in any category. We describe this behavior more explicitly
in the present case.

Let K be a Galois extension of k. Let

A:K - AK
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be an isomorphism. Then AK is a Galois extension of Ak.
2 AK

|

M

Let G be the Galois group of K over k. Then the map
Gr>AogoA!

gives a homomorphism of G into the Galois group of AK over Ak, whose inverse
is given by

A lotodT
Hence G(AK/Ak) is isomorphic to G(K/k) under the above map. We may write
G(AK/Ak)* = G(K/k)
or
G(AK/Ak) = AG(K/k)A™!,

where the exponent 4 is “conjugation,”

o' =21"1ogoA
There is no avoiding the contravariance if we wish to preserve the rule

(6% = o™

when we compose mappings 4 and w.

In particular, let F be an intermediate field, k =« F = K, and let A: F — AF
be an embedding of F in K, which we assume is extended to an automorphism
of K. Then AK = K. Hence

G(K/AF)* = G(K/F)
and
G(K/AF) = AG(K/F)A™ 1.
Theorem 1.10. Let K be a Galois extension of k with group G. Let F be a

subfield, k = F = K, and let H = G(K/F). Then F is normal over k if and
onlyif Hisnormalin G. IfF is normal over k, then the restriction map ¢ — o | F
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is a homomorphism of G onto the Galois group of F over k, whose kernel is H.
We thus have G(F/k) ~ G/H.

Proof. Assume F is normal over k, and let G’ be its Galois group. The
restriction map ¢ — ¢|F maps G into G, and by definition, its kernel is H.
Hence H is normal in G. Furthermore, any element 7 € G’ extends to an em-
bedding of K in K?, which must be an automorphism of K, so the restriction
map is surjective. This proves the last statement. Finally, assume that F is not
normal over k. Then there exists an embedding A of F in K over k which is not
an automorphism, i.e. AF # F. Extend A to an automorphism of K over k.
The Galois groups G(K/AF) and G(K/F) are conjugate, and they belong to
distinct subfields, hence cannot be equal. Hence H is not normal in G.

A Galois extension K /k is said to be abelian (resp. cyclic) if its Galois group G
is abelian (resp. cyclic).

Corollary 1.11. Let K/k be abelian (resp. cyclic). If F is an intermediate
field, k = F = K, then F is Galois over k and abelian (resp. cyclic).

Proof. This follows at once from the fact that a subgroup of an abelian
group is normal, and a factor group of an abelian (resp. cyclic) group is abelian
(resp. cyclic).

Theorem 1.12. Let K be a Galois extension of k, let F be an arbitrary exten-
sion and assume that K, F are subfields of some other field. Then KF is Galois
over F, and K is Galois over K n F. Let H be the Galois group of KF over F,
and G the Galois group of K over k. If a € H then the restriction of 6 to K is
in G, and the map

o—o|K

gives an isomorphism of H on the Galois group of K over K n F.

Proof. Let o e H. The restriction of ¢ to K is an embedding of K over k,
whence an element of G since K is normal over k. The map o ¢|K is clearlya
homomorphism. If ¢|K is the identity, then ¢ must be the identity of KF
(since every element of KF can be expressed as a combination of sums, products,
and quotients of elements in K and F). Hence our homomorphism ¢+ ¢ |K is
injective. Let H' be its image. Then H' leaves K n F fixed, and conversely, if an
element o« € K is fixed under H', we see that « is also fixed under H, whence
o€ F and ae K n F. Therefore K N F is the fixed field. If K is finite over k,
or even KF finite over F, then by Theorem 1.8, we know that H' is the Galois
group of K over K n F, and the theorem is proved in that case.

(In the infinite case, one must add the remark that for the Krull topology,
our map o > o|K is continuous, whence its image is closed since H is compact.
See Theorem 14.1; Chapter I, Theorem 10.1; and Exercise 43.)
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The diagram illustrating Theorem 1.12 is as follows:
KF
/ &
F
K\ /

KnF

=

It is suggestive to think of the opposite sides of a parallelogram as being equal.

Corollary 1.13. Let K be a finite Galois extension of k. Let F be an arbitrary
extension of k. Then [KF : F] divides [K : k].

Proof. Notation being as above, we know that the order of H divides the
order of G, so our assertion follows.

Warning. The assertion of the corollary is not usually valid if K is not
Galois over k. For instance, let o = \3/5 be the real cube root of 2, let { be a

cube root of 1, { # 1, say
C= _1+\/—3
2 ’

and let B = {a. Let E = Q(B). Since B is complex and « real, we have

Q(p) # Qo).

Let F = Q(a). Then E n F is a subfield of E whose degree over Q divides 3.
Hence this degree is 3 or 1, and must be 1 since E # F. But

EF = Q(a, B) = Q(a, {) = Q(a, \/ —3).
Hence EF has degree 2 over F.

Theorem 1.14. Let K, and K, be Galois extensions of a field k, with Galois
groups G, and G, respectively. Assume K,, K, are subfields of some field.
Then KK, is Galois over k. Let G be its Galois group. Map G —» G, x G,
by restriction, namely

o—(0|K,, o|K,).

This map is injective. If K| n K, = k then the map is an isomorphism.
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Proof. Normality and separability are preserved in taking the compositum
of two fields, so KK, is Galois over k. Our map is obviously a homomorphism
of G into G; x G,. If an element ¢ € G induces the identity on K, and K,
then it induces the identity on their compositum, so our map is injective. Assume
that K, n K, = k. According to Theorem 1.12, given an element ¢, € G, there
exists an element ¢ of the Galois group of K,K, over K, which induces ¢, on
K. This o is a fortiori in G, and induces the identity on K,. Hence G, x {e,}
is contained in the image of our homomorphism (where ¢, is the unit element of
G,). Similarly, {e,} x G, is contained in this image. Hence their product is
contained in the image, and their product is precisely G, x G,. This proves
Theorem 1.14.

KK,
Kl K2
Klr"wKz
k

Corollary 1.15. Let K,,..., K, be Galois extensions of k with Galois
groups Gy, ...,G,. Assume that K,,,n(K,---K,) =k for each
i=1,...,n— 1. Then the Galois group of K, --- K, is isomorphic to the
product G, x --- x G, in the natural way.

Proof. Induction.

Corollary 1.16. Let K be a finite Galois extension of k with group G, and
assume that G can be written as a direct product G = G, x --- x G,. Let
K; be the fixed field of

Gy x - x{l} x-x G,

where the group with 1 element occurs in the i-th place. Then K is Galois over
k,and K;,y n (K, --- K;) = k. Furthermore K = K, --- K,.

Proof. By Corollary 1.3, the compositum of all K; belongs to the intersection
of their corresponding groups, which is clearly the identity. Hence the composi-
tum is equal to K. Each factor of G is normal in G, so K; is Galois over k. By
Corollary 1.4, the intersection of normal extensions belongs to the product of
their Galois groups, and it is then clear that K;,; n (K, --- K;) = k.
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Theorem 1.17. Assume all fields contained in some common field.

(i) If K, L are abelian over k, so is the composite KL.
(ii) IfK is abelian over k and E is any extension of k, then K E is abelian over E.

(ii) IfK is abelianover k and K > E > k where E is an intermediate field, then
E is abelian over k and K is abelian over E.

Proof. Immediate from Theorems 1.12 and 1.14.

If k is a field, the composite of all abelian extensions of k in a given algebraic
closure k* is called the maximum abelian extension of &, and is denoted by k®°.

Remark on notation. We have used systematically the notation:
k* = algebraic closure of k;
k® = separable closure of k;

k*® = abelian closure of k = maximal abelian extension.

We have replaced other people’s notation k (and mine as well in the first edition)
with k? in order to make the notation functorial with respect to the ideas.

§2. EXAMPLES AND APPLICATIONS

Let k be a field and f(X) a separable polynomial of degree = 1 in k[X]. Let
JX) =X — o) (X — )

be its factorization in a splitting field K over k. Let G be the Galois group of K
over k. We call G the Galois group of f over k. Then the elements of G permute
the roots of f. Thus we have an injective homomorphism of G into the symmetric
group S, on n elements. Not every permutation need be given by an element
of G. We shall discuss examples below.

Example 1. Quadratic extensions. Let k be a field and a € k. If a is not
a square in k, then the polynomial X2 — a has no root in k and is therefore
irreducible. Assume char k # 2. Then the polynomial is separable (because
2 # 0), and if « is a root, then k(a) is the splitting field, is Galois, and its
Galois group is cyclic of order 2.

Conversely, given an extension K of k of degree 2, there exists a € k such that
K = k(@) and &® = a. This comes from completing the square and the quadratic
formula as in elementary school. The formula is valid as long as the characteristic
of kis # 2.
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Example 2. Cubic extensions. Let k be a field of characteristic # 2 or
3. Let
f(X)=X*+aX +b.
Any polynomial of degree 3 can be brought into this form by completing the
cube. Assume that f has no root in k. Then f is irreducible because any factoriza-
tion must have a factor of degree 1. Let a be a root of f(X). Then

[k(a): k] = 3.

Let K be the splitting field. Since char k # 2, 3, f is separable. Let G be the
Galois group. Then G has order 3 or 6 since G is a subgroup of the symmetric
group S;. In the second case, k(a) is not normal over k.

There is an easy way to test whether the Galois group is the full symmetric
group. We consider the discriminant. If o, a,, a5 are the distinct roots of
f(X), we let

0= (0 — )y —a3)(ot; —a3) and A = 62

If G is the Galois group and ¢ € G then ¢(5) = +5. Hence o leaves A fixed.
Thus A is in the ground field k, and in Chapter IV, §6, we have seen that

A = —4a3 - 272

The set of o in G which leave 6 fixed is precisely the set of even permutations.
Thus G is the symmetric group if and only if A is not a square in k. We may
summarize the above remarks as follows.

Let f(X) be a cubic polynomial in k[X], and assume char k + 2, 3. Then:

(a) f is irreducible over k if and only if f has no root in k.

(b) Assume f irreducible. Then the Galois group of f is S5 if and only if the
discriminant of f is not a square in k. If the discriminant is a square, then
the Galois group is cyclic of order 3, equal to the alternating group A as
a permutation of the roots of f.

For instance, consider
fX)=X>-X+1

over the rational numbers. Any rational root must be 1 or — 1, and so f(X) is
irreducible over Q. The discriminant is —23, and is not a square. Hence the
Galois group is the symmetric group. The splitting field contains a subfield of
degree 2, namely k(8) = k(VA).

On the other hand, let f(X) = X3 — 3X + 1. Then f has no root in Z, whence
no root in Q, so f is irreducible. The discriminant is 81, which is a square, so
the Galois group is cyclic of order 3.

Example 3. We consider the polynomial f(X) = X* — 2 over the
rationals Q. It is irreducible by Eisenstein’s criterion. Let o be a real root.
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Leti =,/ —1. Then +aand +ix are the four roots of f(X), and

[Q(a) : Q] = 4.
Hence the splitting field of f(X) is
K = Q(a, i).

The field Q() n Q(i) has degree 1 or 2 over Q. The degree cannot be 2 otherwise
i € Q(a), which is impossible since « is real. Hence the degree is 1. Hence i has
degree 2 over Q(x) and therefore [K : Q] = 8. The Galois group of f(X) has
order 8.

There exists an automorphism t of K leaving Q(«) fixed, sending i to —i,
because K is Galois over Q(«), of degree 2. Then 12 = id.

Qo i) = K
2 4
Q(=) Q@)
4 2
Q

By the multiplicativity of degrees in towers, we see that the degrees are as
indicated in the diagram. Thus X* — 2 is irreducible over Q(i). Also, K is
normal over Q(i). There exists an automorphism g of K over Q(i) mapping the
root a of X* — 2 to the root ia. Then one verifies at once that 1, o, o2, o> are
distinct and ¢* = id. Thus o generates a cyclic group of order 4. We denote it
by (o). Since 1 ¢ (o) it follows that G = {a, 1) is generated by ¢ and t because
(o) has index 2. Furthermore, one verifies directly that

10 = 01,

because this relation is true when applied to « and i which generate K over Q.
This gives us the structure of G. It is then easy to verify that the lattice of sub-
groups is as follows:

a2, 01, 01)

<1 I 9
/ 1’ otd \<1, a1

>
<1,r> <1 o’t s /

G
T~
<la ‘to"t a2,
I
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Exampled. Let k be a field and let ¢4, ..., t, be algebraically independent
over k. Let K = k(ty,...,t,). The symmetric group G on n letters operates on
K by permuting (¢4, ..., t,) and its fixed field is the field of symmetric functions,
by definition the field of those elements of K fixed under G. Lets,,...,s, be the
elementary symmetric polynomials, and let

00 = [1X =0

Up to a sign, the coefficients of f are s,, ..., s,. We let F = K°. We contend
that F = k(s,, ..., s,). Indeed,

k(s(, ..., 8, < F.

On the other hand, K is the splitting field of f(X), and its degree over F is n!.
Its degree over k(s,, . . ., s,)is < n!and hence we have equality, F = k(sy, .. .,s,).

The polynomial f(X) above is called the general polynomial of degree n.
We have just constructed a Galois extension whose Galois group is the sym-
metric group.

Using the Hilbert irreducibility theorem, one can construct a Galois extension
of Q whose Galois group is the symmetric group. (Cf. Chapter VII, end of §2,
and [La 83], Chapter IX.) It is unknown whether given a finite group G, there
exists a Galois extension of Q whose Galois group is G. By specializing para-
meters, Emmy Noether remarked that one could prove this if one knew that every
field E such that

Q(syy.-.hs) < EcQ(ty, ..., t)

is isomorphic to a field generated by n algebraically independent elements.
However, matters are not so simple, because Swan proved that the fixed field
of a cyclic subgroup of the symmetric group is not necessarily generated by
algebraically independent elements over k [Sw 69], [Sw 83].

Example 5. We shall prove that the complex numbers are algebraically
closed. This will illustrate almost all the theorems we have proved previously.

We use the following properties of the real numbers R: It is an ordered field,
every positive element is a square, and every polynomial of odd degree in R[ X]
has a root in R. We shall discuss ordered fields in general later, and our argu-
ments apply to any ordered field having the above properties.

Let i = ./ —1 (in other words a root of X2 + 1). Every element in R(i)
has a square root. If a + bi e R(i), a, b € R, then the square root is given by
¢ + di, where

p_atyal+b? o, —a+/at+ b

¢ 2 2

Each element on the right of our equalities is positive and hence has a square root
in R. Itis then trivial to determine the sign of ¢ and d so that (¢ + di)®> = a + bi.
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Since R has characteristic 0, every finite extension is separable. Every finite
extension of R(i) is contained in an extension K which is finite and Galois over
R. We must show that K = R(i). Let G be the Galois group over R and let H
be a 2-Sylow subgroup of G. Let F be its fixed field. Counting degrees and
orders, we find that the degree of F over R is odd. By the primitive element
theorem, there exists an element o € F such that F = R(«). Then « is the root of
an irreducible polynomial in R[X] of odd degree. This can happen only if this
degree is 1. Hence G = H is a 2-group.

We now see that K is Galois over R(i). Let G, be its Galois group. Since G,
is a p-group (with p = 2), if G, is not the trivial group, then G, has a subgroup
G, of index 2. Let F be the fixed field of G,. Then F is of degree 2 over R(i); it
is a quadratic extension. But we saw that every element of R(i) has a square
root, and hence that R(i) has no extensions of degree 2. It follows that G, is the
trivial group and K = R(i), which is what we wanted.

(The basic ideas of the above proof were already in Gauss. The variation
of the ideas which we have selected, making a particularly efficient use of the
Sylow group, is due to Artin.)

Example 6. Let f(X) be an irreducible polynomial over the field k, and
assume that f is separable. Then the Galois group G of the splitting field is
represented as a group of permutations of the n roots, where n = deg f. When-
ever one has a criterion for this group to be the full symmetric group S,,, then
one can see if it applies to this representation of G. For example, it is an easy
exercise (cf. Chapter I, Exercise 38) that for p prime, S, is generated by
(123 - - - p] and any transposition. We then have the following resulit.

Let f(X) be an irreducible polynomial with rational coefficients and of degree
p prime. If f has precisely two nonreal roots in the complex numbers, then the
Galois group of fis S,,.

Proof. The order of G is divisible by p, and hence by Sylow’s theorem, G
contains an element of order p. Since G is a subgroup of S, which has order p!,
it follows that an element of order p can be represented by a p-cycle [123 - - - p]
after a suitable ordering of the roots, because any smaller cycle has order less
than p, so relatively prime to p. But the pair of complex conjugate roots shows
that complex conjugation induces a transposition in G. Hence the group is all
of §,.

A specific case is easily given. Drawing the graph of
fX)=X>—-4X +2

shows that f has exactly three real roots, so exactly two complex conjugate roots.
Furthermore f is irreducible over Q by Eisenstein’s criterion, so we can apply
the general statement proved above to conclude that the Galois group of f
over Q is Ss. See also Exercise 17 of Chapter IV.
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Example 7. The preceding example determines a Galois group by finding
some subgroups passing to an extension field of the ground field. There are
other possible extensions of Q rather than the reals, for instance p-adic fields
which will be discussed later in this book. However, instead of passing to an
extension field, it is possible to use reduction mod p. For our purposes here, we
assume the following statement, which will be proved in Chapter VII, theorem
2.9.

Let f(X)e Z[X] be a polynomial with integral coefficients, and leading
coefficient 1. Let p be a prime number. Let f(X) = f(X) mod p be the
polynomial obtained by reducing the coefficients mod p. Assume that f has
no multiple roots in an algebraic closure of F,. Then there exists a bijection

(ay,...,0) =@, ..., a%,)

of the roots of f onto those of f, and an embedding of the Galois group of fas a
subgroup of the Galois group of f, which gives an isomorphism of the action of
those groups on the set of roots.

The embedding will be made precise in Chapter VII, but here we just want to
use this result to compute Galois groups.

For instance, consider X> — X — 1 over Z. Reducing mod 5 shows that
this polynomial is irreducible. Reducing mod 2 gives the irreducible factors

X2+ X +1)X3+ X*+ 1) (mod2).

Hence the Galois group over the rationals contains a 5-cycle and a product of a
2-cycle and a 3-cycle. The third power of the product of the 2-cycle and 3-cycle
is a 2-cycle, which is a transposition. Hence the Galois group contains a trans-
position and the cycle [123 - - - p], which generate S, (cf. the exercises of Chapter
I on the symmetric group). Thus the Galois group of X°> — X — 1 is S,

Example 8. The technique of reducing mod primes to get lots of elements
in a Galois group was used by Schur to determine the Galois groups of classical
polynomials [Schur 31]. For instance, Schur proves that the Galois group over
Q of the following polynomials over Q is the symmetric group:

n
(a) f(X) = 2 X™/m! (in other words, the truncated exponential series), if
m=0
n is not divisible by 4. If n is divisible by 4, he gets the alternating group.
(b) Let
= m,X2/2 ar -X2/2
H,(X) = (—1)"e W(E )
be the m-th Hermite polynomial. Put
Hy(X) = KP(X?) and  Hy, 1 (X) = XKP(X).

Then the Galois group of K{)(X) over Q is the symmetric group S, for i = 0,
1, provided n > 12. The remaining cases were settled in [Schulz 37].
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Example 9. This example is addressed to those who know something
about Riemann surfaces and coverings. Let t be transcendental over the com-
plex numbers C, and let k = C(t). The values of t in C, or oo, correspond to the
points of the Gauss sphere S, viewed as a Riemann surface. Let P,,...,P,,, be
distinct points of S. The finite coverings of S — {Py,..., P,_,} are in bijection
with certain finite extensions of C(t), those which are unramified outside
Py,...,P,_;. Let K be the union of all these extension fields corresponding to
such covermgs and let 7rl ) be the fundamental group of

S_ {Pl""7Pn+l}'

Then it is known that n{" is a free group on n generators, and has an embedding
in the Galois group of K over C(t), such that the finite subfields of K over
C(t) are in bijection with the subgroups of z{” which are of finite index. Givena
finite group G generated by n elements o,, ..., g, we can find a surjective
homomorphism nﬁ") — G mapping the generators of n(l") onay,...,0,. Let H
be the kernel. Then H belongs to a subfield K# of K which is normal over C()
and whose Galois group is G. In the language of coverings, H belongs to a

finite covering of
S—{Pi,...,Pp1}.

Over the field C(¢) one can use analytic techniques to determine the Galois
group. The Galois group is the completion of a free group, as proved by
Douady [Dou 64]. For extensions to characteristic p, see [Pop 95]. A funda-
mental problem is to determine the Galois group over Q(#), which requires
much deeper insight into the number theoretic nature of this field. Basic con-
tributions were made by Belyi [Be 80], [Be 83], who also considered the field
Q(p)(#), where Q(p) is the field obtained by adjoining all roots of unity to the
rationals. Belyi proved that over this latter field, essentially all the classical fi-
nite groups occur as Galois groups. See also Conjecture 14.2 below.

For Galois groups over Q(t), see the survey [Se 88], which contains a
bibliography. One method is called the rigidity method, first applied by Shih
[Shi 74], which I summarize because it gives examples of various notions defined
throughout this book. The problem is to descend extensions of C(¢) with a given
Galois group G to extensions of Q(¢) with the same Galois group. If this extension
is K over Q(t), one also wants the extension to be regular over Q (see the
definition in Chapter VIII, §4). To give a sufficient condition, we need some
definitions. Let G be a finite group with trivial center. Let C,, C,, C3 be conjugacy
classes. Let P = P(C,, C,, C3) be the set of elements

(915 92, 93) € C; X C; X (5

such that g,g9,9; = 1. Let P’ be the subset of P consisting of all elements
(91, 92, 93) € P such that G is generated by g,, g,, g3. We say that the family
(C,, C,, C5) is rigid if G operates transitively on P’, and P’ is not empty.
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We define a conjugacy class C of G to be rational if given g € C and a
positive integer s relatively prime to the order of g, then g* € C. (Assuming that
the reader knows the terminology of characters defined in Chapter XVIII, this
condition of rationality is equivalent to the condition that every character x of
G has values in the rational numbers Q.) One then has the following theorem,
which is contained in the works of Shih, Fried, Belyi, Matzat and Thompson.

Rigidity theorem. Let G be a finite group with trivial center, and let
C,, C,, C3 be conjugacy classes which are rational, and such that the family
(Cy, C3, Cy) is rigid. Then there exists a Galois extension of Q(t) with Galois
group G (and such that the extension is regular over Q).
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§3. ROOTS OF UNITY

Let k be a field. By a root of unity (in k) we shall mean an element { e k
such that (" = 1 for some integer n 2 1. If the characteristic of k is p, then the
equation

X" =1

has only one root, namely 1, and hence there is no p™-th root of unity except 1.
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Let n be an integer > 1 and not divisible by the characteristic. The polynomial
X" -1

is separable because its derivative is nX"~! 3 0, and the only root of the deriva-
tive is 0, so there is no common root. Hence in k* the polynomial X" — 1 hasn
distinct roots, which are roots of unity. They obviously form a group, and we
know that every finite multiplicative group in a field is cyclic (Chapter IV,
Theorem 1.9). Thus the group of n-th roots of unity is cyclic. A generator for
this group is called a primitive n-th root of unity.

If p,, denotes the group of all n-th roots of unity in k* and m, n are relatively
prime integers, then

Pon = Py X My

This follows because p,, p, cannot have any element in common except 1,
and because p,p, consequently has mn elements, each of which is an mn-th
root of unity. Hence p,,p, = p,.., and the decomposition is that of a direct
product.

As a matter of notation, to avoid double indices, especially in the prime
power case, we write p[n] for m,. So if p is a prime, w[p’] is the group of
p’-th roots of unity. Then w[p™] denotes the union of all w[p"] for all
positive integers r. See the comments in §14.

Let k be any field. Let n be not divisible by the characteristic p. Let { =
¢, be a primitive n-th root of unity in k*. Let o be an embedding of k(¢) in k®
over k. Then

(00" =a((") =1

so that ¢ is an n-th root of unity also. Hence 6{ = (' for some integer i = i(g),
uniquely determined mod n. It follows that ¢ maps k({) into itself, and hence
that k({) is normal over k. If 7 is another automorphism of k() over k then

O.,[C — Ci(O)i(t)-

Since ¢ and 7 are automorphisms, it follows that i(¢) and i(z) are prime to n
(otherwise, 6 would have a period smaller than n). In this way we get a homo-
morphism of the Galois group G of k({) over k into the multiplicative group
(Z/nZ)* of integers prime to n, mod n. Our homomorphism is clearly injective
since i(o) is uniquely determined by ¢ mod n, and the effect of ¢ on k({) is
determined by its effect on {. We conclude that k({) is abelian over k.

We know that the order of (Z/nZ)* is ¢(n). Hence the degree [k({):k]
divides ¢(n).

For a specific field k, the question arises whether the image of G, ;). in
(Z/nZ)* is all of (Z/nZ)*. Looking at k = R or C, one sees that this is not
always the case. We now give an important example when it is the case.
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Theorem 3.1. Let { be a primitive n-th root of unity. Then
[QD): Q] = o(n),

Where ¢ is the Euler function. The map o > i(0) gives an isomorphism
Gowrq = (Z/nZ)*.

Proof. Let f(X) be the irreducible polynomial of { over Q. Then f(X)
divides X" — 1,say X" — 1 = f(X)h(X), where both, h have leading coefficient
1. By the Gauss lemma, it follows that £, h have integral coefficients. We shall
now prove that if p is a prime number not dividing n, then (? is also a root of f.
Since {? is also a primitive n-th root of unity, and since any primitive n-th root of
unity can be obtained by raising { to a succession of prime powers, with primes
not dividing n, this will imply that all the primitive n-th roots of unity are roots
of f, which must therefore have degree = ¢(n), and hence precisely ¢(n).

Suppose (* is not a root of f. Then (” is a root of h, and ( itself is a root
of h(X?). Hence f(X) divides h(X?), and we can write

h(X?) = f(X)g(X).

Since f has integral coefficients and leading coefficient 1, we see that g has
integral coefficients. Since a? = a (mod p) for any integer a, we conclude that

h(X?) = (X)” (mod p),
and hence

h(X)? = f(X)g(X) (mod p).

In particular, if we denote by f and h the polynomials in Z/pZ obtained by
reducing f and h respectively mod p, we see that f and h are not relatively
prime, i.e. have a factor in common. But X" — T = f(X)h(X), and hence
X" — 1 has multiple roots. This is impossible, as one sees by taking the de-
rivative, and our theorem is proved.

Corollary 3.2. If n, m are relative prime integers = 1, then

Q) N Qm) = Q.

Proof. We note that {, and (,, are both contained in Q((,,,) since {5, is a
primitive m-th root of unity. Furthermore, {,,{, is a primitive mn-th root of
unity. Hence

QL)) = QCmn)-

Our assertion follows from the multiplicativity ¢(mn) = @(m)p(n).
Suppose that n is a prime number p (having nothing to do with the character-
istic). Then
XP—1=(X-1DX"" 4.+ 1)
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Any primitive p-th root of unity is a root of the second factor on the right of this
equation. Since there are exactly p — 1 primitive p-th roots of unity, we con-
clude that these roots are precisely the roots of

XPl+ o+ L

We saw in Chapter IV, §3 that this polynomial could be transformed into
an Eisenstein polynomial over the rationals. This gives another proof that

[Q(%):Ql =p — L

We investigate more closely the factorization of X" — 1, and suppose that
we are in characteristic O for simplicity.

We have

w—1=ga—n

where the product is taken over all n-th roots of unity. Collect together all terms
belonging to roots of unity having the same period. Let

o= Il x-0
period {=d
Then

Xn—1= L—[(I)d(X).

We see that @;(X) = X — 1, and that

®,(X) = L__l_
ﬂ d,(X)
d<n

From this we can compute @ (X) recursively, and we see that ®,(X) is a polynomial
in Q[X] because we divide recursively by polynomials having coefficients in Q.
All our polynomials have leading coefficient 1, so that in fact ®,(X) has integer
coefficients by Theorem 1.1 of Chapter IV. Thus our construction is essentially
universal and would hold over any field (whose characteristic does not divide
n).

We call ®,(X) the n-th cyclotomic polynomial.

The roots of ®,, are precisely the primitive n-th roots of unity, and hence

deg @, = @(n).
From Theorem 3.1 we conclude that ®,, is irreducible over Q, and hence

Q,(X) = Irr(¢,, Q, X).
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We leave the proofs of the following recursion formulas as exercises:

1. If p is a prime number, then

O,(X) =XP7! + XP2 4+ -+ 1,
and for an integer r 2> 1,
r— 1
D, (X) = D X7 ).
2. Letn = p7' --- p? be a positive integer with its prime factorization. Then
Q)n(X) = (I)p' . .ps(pr’ -t opheT 1).

3. If nis odd > 1, then ®,,(X) = ®,(—X).
4. If p is a prime number, not dividing n, then

_ 2,XP)
q)pn(X) - q)n(X) .
On the other hand, if p|n, then ®,,(X) = ®,(X?).

5. We have
®,(X) = LI(X”“ — @,
n

As usual, u is the Mo6bius function:

0 if n is divisible by p? for some prime p,
un) =3 (=1) ifn = p;---p,is a product of distinct primes,
1 ifn=1.

As an exercise, show that

dln 0 ifn>1.

Example. Inlight of Exercise 21 of Chapter V, we note that the association
n — ®,(X) can be viewed as a function from the positive integers into the
multiplicative group of non-zero rational functions. The multiplication formula
X" —-1= n‘bd(X) can therefore be inverted by the general formalism of
convolutions. Computations of a number of cyclotomic polynomials show that
for low values of n, they have coefficients equal to O or =1. However, I am
indebted to Keith Conrad for bringing to my attention an extensive literature on
the subject, starting with Bang in 1895. I include only the first and last items:

A. S. BANG, Om Ligningen ®,,(X) = 0, Nyt Tidsskrift for Matematik (B) 6 (1895),
pp. 6-12

H. L. MONTGOMERY and R. C. VAUGHN, The order of magnitude of the m-th coef-
ficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), pp. 143-159
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In particular, if ®,(X) = Za,; X, define L(j) = log max,|a,;|. Then Montgomery
and Vaughn prove that
j1/2 <L - jl/2
(g )7 <= LD <= Gog i

where the sign << means that the left-hand side is at most a positive constant
times the right-hand side for j — . Bang also points out that ®,¢5(X) is a
cyclotomic polynomial of smallest degree having coefficients # 0 or *=1: the
coefficient of X7 and X#! is —2 (all others are 0 or *1).

If { is an n-th root of unity and { # 1, then

1—¢
1-¢

This is trivial, but useful.

Let F_ be the finite field with g elements, g equal to a power of the odd prime
number p. Then F} has ¢ — 1 elements and is a cyclic group. Hence we have
the index

=1+{+---+{"'=0

(F*:F}?) = 2.

If v is a non-zero integer not divisible by p, let

(v) 3 { 1 ifv=x* (mod p) for some x,
p/  |—1 ifv#x® (mod p) for all x.
This is known as the quadratic symbol, and depends only on the residue class
of v mod p.

From our preceding remark, we see that there are as many quadratic residues
as there are non-residues mod p.

Theorem 3.3. Let { be a primitive p-th root of unity, and let

=T

the sum being taken over non-zero residue classes mod p. Then

Every quadratic extension of Q is contained in a cyclotomic extension.

Proof. The last statement follows at once from the explicit expression of
+p as a square in Q({), because the square root of an integer is contained in the
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field obtained by adjoining the square root of the prime factors in its factoriza-

tion, and also ./ — 1. Furthermore, for the prime 2, we have (1 + i)* = 2i. We
now prove our assertlon concerning S?>. We have

-3

As v ranges over non-zero residue classes, so does vu for any fixed u, and hence
replacing v by vu yields

s? = vu ) wv+ 1) (X) av+ 1)
- Z( )Co + Z (X)ZC‘“””.
vE—1 p u

But 1 + {+ ---+ (7! =0, and the sum on the right over u consequently
yields —1. Hence

52 = (—pl)(p -+ 3 ( )
-(3)-2()
- p(}‘)
as desired.

We see that Q(\/;)) is contained in Q({, / —1) or Q({), depending on the
sign of the quadratic symbol with —1. An extension of a field is said to be
cyclotomic if it is contained in a field obtained by adjoining roots of unity.
We have shown above that quadratic extensions of Q are cyclotomic. A
theorem of Kronecker asserts that every abelian extension of Q is cyclotomic,
but the proof needs techniques which cannot be covered in this book.

§4. LINEAR INDEPENDENCE OF
CHARACTERS

Let G be a monoid and K a field. By a character of G in K (in this chapter),
we shall mean a homomorphism

1. G —- K*

of G into the multiplicative group of K. The trivial character is the homo-
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morphism taking the constant value 1. Functions f;: G — K are called linearly
independent over K if whenever we have a relation

afi+ o t+afa=0

with g; € K, then all g; = 0.

Examples. Characters will occur in various contexts in this book. First,
the various conjugate embeddings of an extension field in an algebraic closure
can be viewed as characters. These are the characters which most concern us in
this chapter. Second, we shall meet characters in Chapter XVIII, when we shall
extend the next theorem to a more general kind of character in connection with
group representations.

Next, one meets characters in analysis. For instance, given an integer m, the
function f: R/Z — C* such that f(x) = €™ is a character on R/Z. It can be
shown that all continuous homomorphisms of R/Z into C* are of this type.
Similarly, given a real number y, the function x > €>™* is a continuous character
on R, and it is shown in Fourier analysis that all continuous characters of absolute
value 1 on R are of this type.

Further, let X be a compact space and let R be the ring of continuous complex-
valued functions on X. Let R* be the group of units of R. Then given x € X the
evaluation map f — f(x) is a character of R* into C*. (Actually, this evaluation
map is a ring homomorphism of R onto C.)

Artin found a neat way of expressing a linear independence property which
covers all these cases, as well as others, in the following theorem [Ar 44].

Theorem 4.1. (Artin). Let G be a monoid and K a field. Let x,, ..., X,
be distinct characters of G in K. Then they are linearly independent over K.

Proof. One character is obviously linearly independent. Suppose that we
have a relation

a X1 +"‘+aan=0

with g; € K, not all 0. Take such a relation with n as small as possible. Then
n = 2, and no g; is equal to 0. Since y,, x, are distinct, there exists z € G such
that y,(z) # x.(z). For all xe G we have

a(1(x2) + -+ + ay0a(x2) = 0,
and since y; is a character,
ale(z)Xl +--+ aan(Z)Xn =0.

Divide by x,(z) and subtract from our first relation. The term a,y, cancels, and

we get a relation
<a2 x2(2) _ az)Xz 4. =0
x1(2)
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The first coefficient is not 0, and this is a relation of smaller length than our first
relation, contradiction.

As an application of Artin’s theorem, one can consider the case when K is a
finite normal extension of a field k, and when the characters are distinct auto-
morphisms &4, ..., g, of K over k, viewed as homomorphisms of K* into K*.
This special case had already been considered by Dedekind, who, however,
expressed the theorem in a somewhat different way, considering the determinant
constructed from g;w; where w; is a suitable set of elements of K, and proving in
amore complicated way the fact that this determinant is not 0. The formulation
given above and its particularly elegant proof are due to Artin.

As another application, we have:

Corollary 4.2. Let ay, ..., a, be distinct non-zero elements of a field K. If
a, ..., a, are elements of K such that for all integers v = 0 we have
aay + - +a,on =0
then a; = 0 for all i.
Proof. We apply the theorem to the distinct homomorphisms
Vi ol
of Z~, into K*.

Another interesting application will be given as an exercise (relative in-
variants).

§6. THE NORM AND TRACE

Let E be a finite extension of k. Let [E: k], = r, and let
p* = [E:Kk];

if the characteristic is p > 0, and 1 otherwise. Let o, ..., g, be the distinct
embeddings of E in an algebraic closure k* of k. If a is an element of E, we
define its norm from E to k to be

r r [E: k];
Ngji(@) = Ni(@) = [] o0 = (nava) .
v=1 v=1

Similarly, we define the trace

Tegu(a) = TrEG) = [E:K], S 0,0
v=1

The trace is equal to O if [E:k]; > 1, in other words, if E/k is not separable.
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Thus if E is separable over k, we have
Ni(a) =[] o

where the product is taken over the distinct embeddings of E in k* over k.
Similarly, if E/k is separable, then

Tri(2) = Y oo

Theorem S.1.  Let E/k be a finite extension. Then the norm NE is a multi-
plicative homomorphism of E* into k* and the trace is an additive homo-
morphism of E into k. If E > F D k is a tower of fields, then the two maps are
transitive, in other words,

Nf = NfoNf and Trf = Trf o TrE.
IfE = k(a), and f(X) = Irr(a, k, X) = X" + a,_, X"" ' + .- + a, then
Nia) = (= 1)"ay and Tri®(a) = —a,_,.

Proof. For the first assertion, we note that a” is separable over k if
p* = [E:k];. On the other hand, the product

r
[[o,0™
v=1

is left fixed under any isomorphism into k* because applying such an iso-
morphism simply permutes the factors. Hence this product must lie in k since
aP* is separable over k. A similar reasoning applies to the trace.

For the second assertion, let {t;} be the family of distinct embeddings of F
into k* over k. Extend each t; to an automorphism of k2, and denote this
extension by 7; also. Let {g;} be the family of embeddings of E in k* over F.
(Without loss of generality, we may assume that E < k*) If ¢ is an embedding
of E over k in k*, then for some j, t; ' leaves F fixed, and hence 7} 'e = g, for
some i. Hence ¢ = 7,0, and consequently the family {r;g;} gives all distinct
embeddings of E into k* over k. Since the inseparability degree is multiplicative
in towers, our assertion concerning the transitivity of the norm and trace is
obvious, because we have already shown that Nf maps E into F, and similarly
for the trace.

Suppose now that E = k(). We have

fX)=((X —ay)--(X — ar))[E:k].

ifay, ..., a, are the distinct roots of /. Looking at the constant term of f gives us
the expression for the norm, and looking at the next to highest term gives us the
expression for the trace.

We observe that the trace is a k-linear map of E into k, namely

Trf(ca) = ¢ Tri(a)
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for all a € E and c e k. This is clear since c is fixed under every embedding of
E over k. Thus the trace is a k-linear functional of E into k. For simplicity,

we write Tr = Trf.

Theorem 5.2. Let E be a finite separable extension of k. Then Tr: E — k is
a non-zero functional. The map

(x, ) Tr(xy)
of E x E — k is bilinear, and identifies E with its dual space.

Proof. That Tr is non-zero follows from the theorem on linear indepen-
dence of characters. For each x € E, the map

Tr,:E—-k
such that Tr,(y) = Tr(xy) is obviously a k-linear map, and the map

x> Tr,

is a k-homomorphism of E into its dual space E¥. (We don’t write E* for the
dual space because we use the star to denote the multiplicative group of E.)
If Tr, is the zero map, then Tr(xE) = 0. If x # 0 then xE = E. Hence the
kernel of x+ Tr, is 0. Hence we get an injective homomorphism of E into
the dual space E. Since these spaces have the same finite dimension, it follows
that we get an isomorphism. This proves our theorem.

Corollary 5.3. Let w,, ..., w, be a basis of E over k. Then there exists a
basis w, ..., w, of E over k such that Tr(w;w}) = 6;;.
Proof. The basis wj, ..., w, is none other than the dual basis which we

defined when we considered the dual space of an arbitrary vector space.

Corollary 5.4. Let E be a finite separable extension of k,and let 64, ..., o,
be the distinct set of embeddings of E into k* over k. Let wy, ..., w, be ele-
ments of E. Then the vectors

& =(oywy, ..., 64W,),

én = (Unwla R Unwn)
are linearly independent over E if wy, ..., w, form a basis of E over k.
Proof. Assume that wy, ..., w, form a basis of E/k. Let «,, ..., o, be ele-

ments of E such that
alél +-+ anén =0.

Then we see that
a0y + - + a,0,
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applied to each one of wy, ..., w, gives the value 0. But gy, ..., g, are linearly
independent as characters of the multiplicative group E* into k**. It follows that
a; = 0fori=1,...,n, and our vectors are linearly independent.

Remark. In characteristic 0, one sees much more trivially that the trace is
not identically 0. Indeed, if c € k and ¢ # 0, then Tr(c) = nc where n = [E: k],
and n # 0. This argument also holds in characteristic p when n is prime to p.

Proposition 5.5. Let E = k(a) be a separable extension. Let
f(X) = Irr(e, k, X),
and let {'(X) be its derivative. Let

J(X)
X -

=B+ P X+ -+ B X!

with ;€ E. Then the dual basis of 1, a,...,a" ! is

Bo Buei
f@ 7 f@

Proof. Letay,...,a, be the distinct roots of f. Then

o J(X)
=X for 0r=<n-1
S (X —a) (@) -
To see this, let g(X) be the difference of the left- and right-hand side of this
equality. Then g has degree < n — 1, and has n roots a,, ..., a,. Hence g is
identically zero.
The polynomials

M

JX)
(X — ) f(@)

are all conjugate to each other. If we define the trace of a polynomial with
coefficients in E to be the polynomial obtained by applying the trace to the

coefficients, then
fX) o |
Tr[(X ) f'(a)] X

Looking at the coefficients of each power of X in this equation, we see that

b y
T‘( Fo )) o

thereby proving our proposition.

Finally we establish a connection with determinants, whose basic properties
we now assume. Let E be a finite extension of k, which we view as a finite
dimensional vector space over k. For each @ € E we have the k-linear map
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multiplication by «a,
m,: E— E such that m,(x) = ax.

Then we have the determinant det(m,), which can be computed as the determinant
of the matrix M, representing m, with respect to a basis. Similarly we have the
trace Tr(m,), which is the sum of the diagonal elements of the matrix M,.

Proposition 5.6. Let E be a finite extension of k and let a € E. Then

det(my) = Ngy(a) and Tr(m,) = Trg,(a).

Proof. Let F = k(a). If [F : k] = d, then 1, a,..., @' is a basis
for F over k. Let {w;,..., w,} be a basis for E over F. Then {a'w;}
(i=0,...,d—1;,j=1,...,7r)is a basis for E over k. Let

fX)=X4+a;_ X'+ ...+ q

be the irreducible polynomial of a over k. Then Ng,(a) = (—1)%a,, and by the
transitivity of the norm, we have

Ngjp(a) = Nep(a)'

The reader can verify directly on the above basis that Ng . («)" is the determinant
of m, on F, and then that N, (a)? is the determinant of m, on E, thus concluding
the proof for the determinant. The trace is handled exactly in the same way,
except that Trg,(a) = r - Tre,(a). The trace of the matrix for m, on F is equal
to —a,_,;. From this the statement identifying the two traces is immediate, as it
was for the norm.

§6. CYCLIC EXTENSIONS

We recall that a finite extension is said to be cyclic if it is Galois and its
Galois group is cyclic. The determination of cyclic extensions when enough roots
of unity are in the ground field is based on the following fact.

Theorem 6.1. (Hilbert’s Theorem 90). Ler K/k be cyclic of degree n
with Galois group G. Let o be a generator of G. Let Be K. The norm
NX(B) = N(P) is equal to 1 if and only if there exists an element a # 0 in K
such that B = ajoa.

Proof. Assume such an element o exists. Taking the norm of g we get
N(«)/N(oa). But the norm is the product over all automorphisms in G. Inserting
g just permutes these automorphisms. Hence the norm is equal to 1.

It will be convenient to use an exponential notation as follows. If 7,7 € G
and £ e K we write

€r+ L étct"
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By Artin’s theorem on characters, the map given by
id + ﬁa + ﬂ“’"a’z + o Bl tottono2on—1
on K is not identically zero. Hence there exists 6 € K such that the element
o=0+ ﬂe” + ﬁl +a6a1 4o+ ﬂl +o‘+~‘+a"‘290"_‘

is not equal to 0. It is then clear that fa” = o using the fact that N(f) = 1, and
hence that when we apply o to the last term in the sum, we obtain . We divide
by o’ to conclude the proof.

Theorem 6.2. Let k be a field, n an integer > 0 prime to the characteristic
of k, and assume that there is a primitive n-th root of unity in k.

(i) Let K be a cyclic extension of degree n. Then there exists o € K such that
K = k(x), and o satisfies an equation X" — a = 0 for some a € k.

(ii) Conversely, let ack. Let o be a root of X" — a. Then k() is cyclic over
k, of degree d, d|n, and o° is an element of k.

Proof. Let ( be a primitive n-th root of unity in k, and let K /k be cyclic with
group G. Let g bea generator of G. We have N({™') = ({”*)" = 1. By Hilbert’s
theorem 90, there exists o € K such that ea = (a. Since { is in k, we have
o'a = ('afori =1,...,n Hence the elements {‘x are n distinct conjugates of
over k, whence [k(x): k] is at least equal to n. Since [K : k] = n, it follows that
K = k(a). Furthermore,

a(d™) = o()" = ((a)" = o™

Hence o" is fixed under g, hence is fixed under each power of ¢, hence is fixed
under G. Therefore o" is an element of k, and we let a = «". This proves the
first part of the theorem.

Conversely, let a € k. Let a be a root of X" — a. Then a{ is also a root for
eachi =1, ..., n, and hence all roots lie in k(a) which is therefore normal over
k. All the roots are distinct so k() is Galois over k. Let G be the Galois group.

If o is an automorphism of k(x)/k then o« is also a root of X" — a. Hence
oo = w, o where w, is an n-th root of unity, not necessarily primitive. The map
0 — w, is obviously a homomorphism of G into the group of n-th roots of unity,
and is injective. Since a subgroup of a cyclic group is cyclic, we conclude that
G is cyclic, of order d, and d|n. The image of G is a cyclic group of order d.
If o is a generator of G, then w, is a primitive dth root of unity. Now we get

a(0®) = (o) = (w,0)! = u’.

Hence «“ is fixed under o, and therefore fixed under G. It is an element of k, and
our theorem is proved.
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We now pass to the analogue of Hilbert’s theorem 90 in characteristic p for
cyclic extensions of degree p.

Theorem 6.3. (Hilbert’s Theorem 90, Additive Form). Let k be a field and
K/k a cyclic extension of degree n with group G. Let o be a generator of G.
Let Be K. The trace TrX(P) is equal to O if and only if there exists an element
o € K such that B = a — oo.

Proof. 1If such an element o exists, then we see that the trace is 0 because
the trace is equal to the sum taken over all elements of G, and applying o per-
mutes these elements.

Conversely, assume Tr(f) = 0. There exists an element 6 € K such that
Tr(6) # 0. Let

1

o = Tr(9) [59" + (ﬂ + Gﬂ)()ﬂ + -+ (ﬂ + o'ﬂ + -+ an—ZB)g‘,n—l]'

From this it follows at once that 8 = a — oa.

Theorem 6.4. (Artin-Schreier) Let k be a field of characteristic p.

(i) Let K be a cyclic extension of k of degree p. Then there exists o € K such
that K = k() and a satisfies an equation X? — X — a = 0 with some
ack.

(ii) Conversely, given a € k, the polynomial f(X) = X? — X — a either has
one root in k, in which case all its roots are in k, or it is irreducible. In
this latter case, if « is a root then k(a) is cyclic of degree p over k.

Proof. Let K/k be cyclic of degree p. Then TrK(—1) = 0 (it is just the sum
of —1 with itself p times). Let o be a generator of the Galois group. By the
additive form of Hilbert’s theorem 90, there exists « € K such that o — a = 1,
or in other words, g« = « + 1. Hence o'« = a + i for all integersi = 1,...,p
and « has p distinct conjugates. Hence [k(«): k] = p. It follows that K = k().
We note that

ago? —a)=0a0@)f —a(@)=(@+ 1P —(x+1)=0af — 0.

Hence o” — a is fixed under o, hence it is fixed under the powers of a4, and
therefore under G. It lies in the fixed field k. If we let a = a? — « we see that
our first assertion is proved.

Conversely, let aek. If « is a root of X — X — a then « + i is also a
root for i = 1,...,p. Thus f(X) has p distinct roots. If one root lies in k
then all roots lie in k. Assume that no root lies in k. We contend that the
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polynomial is irreducible. Suppose that
S(X) = g(X)h(X)

with g, hek[X]}and 1 < degg < p. Since
P
X)) =[[X —a=1i)
i=1

we see that g(X) is a product over certain integers i. Let d = degg. The co-
efficient of X?~! in g is a sum of terms —(a + i) taken over precisely d integers
i. Hence it is equal to —da + j for some integer j. But d # 0 in k, and hence
alies in k, because the coefficients of g lie in k, contradiction. We know therefore
that f(X) is irreducible. All roots lie in k(a), which is therefore normal over k.
Since f(X) has no multiple roots, it follows that k(«) is Galois over k. There
exists an automorphism ¢ of k() over k such that o = o + 1 (because o + 1
is also a root). Hence the powers o' of o give 6’a = ¢ + ifori=1,..., p and
are distinct. Hence the Galois group consists of these powers and is cyclic,
thereby proving the theorem.

For cyclic extensions of degree p”, see the exercises on Witt vectors and the
bibliography at the end of §8.

§7. SOLVABLE AND RADICAL EXTENSIONS

A finite extension E/k (which we shall assume separable for convenience) is
said to be solvable if the Galois group of the smallest Galois extension K of k
containing E is a solvable group. This is equivalent to saying that there exists a
solvable Galois extension L of k such that k « E = L. Indeed, we have
k <« E = K = L and G(K/k) is a homomorphic image of G(L/k).

Proposition 7.1. Solvable extensions form a distinguished class of extensions.

Proof. Let E/k be solvable. Let F be a field containing k and assume E, F
are subfields of some algebraically closed field. Let K be Galois solvable over k,
and E < K. Then KF is Galois over F and G(KF/F) is a subgroup of G(K/k)
by Theorem 1.12. Hence EF/F is solvable. It is clear that a subextension of a
solvable extension is solvable. Let E > F o k be a tower, and assume that E/F
is solvable and F/k is solvable. Let K be a finite solvable Galois extension of k
containing F. We just saw that EK/K is solvable. Let L be a solvable Galois
extension of K containing EK. If ¢ is any embedding of L over k in a given
algebraic closure, then K = K and hence gL is a solvable extension of K. We
let M be the compositum of all extensions oL for all embeddings ¢ of L over k.
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Then M is Galois over k, and is therefore Galois over K. The Galois group of
M over K is a subgroup of the product

[1G(eL/K)
by Theorem 1.14. Hence it is solvable. We have a surjective homomorphism
G(M/k) - G(K/k) by Theorem 1.10. Hence the Galois group of M/k has a

solvable normal subgroup whose factor group is solvable. It is therefore
solvable. Since E = M, our proof is complete.

/E
E
K

/

IK

F

l

k

A finite extension F of k is said to be solvable by radicalsif it is separable and
if there exists a finite extension E of k containing F, and admitting a tower
decomposition

k=EycE cE,c---cE,=E
such that each step E;, ,/E; is one of the following types:

1. It is obtained by adjoining a root of unity.

2. It is obtained by adjoining a root of a polynomial X" — g with a € E; and
n prime to the characteristic.

3. It is obtained by adjoining a root of an equation X? — X — g with
a € E; if p is the characteristic > 0.

One can see at once that the class of extensions which are solvable by
radicals is a distinguished class.

Theorem 7.2. Let E be a separable extension of k. Then E is solvable by
radicals if and only if E/k is solvable.

Proof. Assume that E/k is solvable, and let K be a finite solvable Galois
extension of k containing E. Let m be the product of all primes unequal to the
characteristic dividing the degree [K : k], and let F = k({) where { is a primitive
m-th root of unity. Then F/k is abelian. We lift K over F. Then KF is solvable
over F. There is a tower of subfields between F and KF such that each step is
cyclic of prime order, because every solvable group admits a tower of sub-
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groups of the same type, and we can use Theorem 1.10. By Theorems 6.2 and
6.4, we conclude that KF is solvable by radicals over F, and hence is solvable
by radicals over k. This proves that E/k is solvable by radicals.

/\
N

Conversely, assume that E/k is solvable by radicals. For any embedding o
of E in E® over k, the extension gE/k is also solvable by radicals. Hence the
smallest Galois extension K of E containing k, which is a composite of E and
its conjugates is solvable by radicals. Let m be the product of all primes unequal
to the characteristic dividing the degree [K : k] and again let F = k({) where {
is a primitive m-th root of unity. It will suffice to prove that KF is solvable over
F,because it follows then that KF is solvable over k and hence G(K/k) is solvable
because it is a homomorphic image of G(KF/k). But KF/F can be decomposed
into a tower of extensions, such that each step is prime degree and of the type
described in Theorem 6.2 or Theorem 6.4, and the corresponding root of unity
is in the field F. Hence KF/F is solvable, and our theorem is proved.

Remark. One could modify our preceding discussion by not assuming
separability. Then one must deal with normal extensions instead of Galois
extensions, and one must allow equations X? — a in the solvability by radicals,
with p equal to the characteristic. Then we still have the theorem corresponding
to Theorem 7.2. The proof is clear in view of Chapter V, §6.

For a proof that every solvable group is a Galois group over the rationals, I
refer to Shafarevich [Sh 54], as well as contributions of Iwasawa [Iw 53].

[Iw 53] K. Iwasawa, On solvable extension of algebraic number fields, Ann. of Math.
58 (1953), pp. 548-572

[Sh 54] 1. SHAFAREVICH, Construction of fields of algebraic numbers with given solvable
Galois group, Izv. Akad. Nauk SSSR 18 (1954), pp. 525-578 (Amer. Math.
Soc. Transl. 4 (1956), pp. 185-237)

§8. ABELIAN KUMMER THEORY

In this section we shall carry out a generalization of the theorem concerning
cyclic extensions when the ground field contains enough roots of unity.

Let k be a field and m a positive integer. A Galois extension K of k with
group G is said to be of exponent m if ¢™ = 1 forall 6 € G.
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We shall investigate abelian extensions of exponent m. We first assume
that m is prime to the characteristic of k, and that k contains a primitive m-th
root of unity. We denote by p,, the group of m-th roots of unity. We assume
that all our algebraic extensions in this section are contained in a fixed algebraic
closure k*.

Let a e k. The symbol a'™ (or \'75) is not well defined. If «™ = g and ( is
an m-th root of unity, then ({&)™ = a also. We shall use the symbol a'™ to
denote any such element a, which will be called an m-th root of a. Since the
roots of unity are in the ground field, we observe that the field k(«) is the same
no matter which m-th root « of a we select. We denote this field by k(a'/™).

We denote by k*™ the subgroup of k* consisting of all m-th powers of non-
zero elements of k. It is the image of k* under the homomorphism x - x™

Let B be a subgroup of k* containing k*™. We denote by k(B''™) or Ky the
composite of all fields k(a'/™) with a € B. It is uniquely determined by B as a
subfield of k.

Let a € B and let « be an m-th root of a. The polynomial X™ — a splits into
linear factors in Kg, and thus Ky is Galois over k, because this holds for all
aeB. Let G be the Galois group. Let 6 € G. Then ga = w,a for some m-th
root of unity w, € p,, = k*. The map

g W,

is obviously a homomorphism of G into p,,, i.e. for 7, ¢ € G we have
TOU = W, W0 = W, W 0

We may write w, = oa/a. This root of unity w, is independent of the choice
of m-th root of q, for if o is another m-th root, then o' = {a for some {ep,,,
whence
o' /o’ = {aa/la = aaja.
We denote w, by <a, a). The map
(0, a) <0, a)

gives us a map
G x B-p,,.

Ifa,be Band «™ = a, f™ = b then (af)™ = ab and
o(ap)/ap = (oa/a)(ap/p).

We conclude that the map above is bilinear. Furthermore, if a € k*™ it follows
that {(g,a) = 1.

Theorem 8.1. Let k be a field, m an integer > 0O prime to the characteristic of
k, and assume that a primitive m-th root of unity lies in k. Let B be a subgroup
of k* containing k*™ and let Ky = k(BY™). Then K is Galois, and abelian
of exponent m. Let G be its Galois group. We have a bilinear map

G x B—p, givenby (ag,a)— {a,a).



Vi, §8 ABELIAN KUMMER THEORY 295

IfoeGand ae B,and o™ = a then (o,a) = oa/a. The kernel on the left is 1
and the kernel on the right is k*™. The extension K y/k is finite if and only if
(B : k*™) is finite. If that is the case, then

B/k*™ ~ G*,

and in particular we have the equality

[Kg:k] = (B:k*™).

Proof. Let de G. Suppose {a,a) = 1for all ae B. Then for every gener-
ator o of K g such that ™ = a € B we have oo = a. Hence o induces the identity
on K and the kernel on the left is 1. Let a € B and suppose (g, a) = 1 for all
g€ G. Consider the subfield k(a'’™) of K5. If a'/™ is not in k, there exists an
automorphism of k(a'’™) over k which is not the identity. Extend this auto-
morphism to Ky, and call this extension . Then clearly (g, a) # 1. This
proves our contention.

By the duality theorem of Chapter I, §9 we see that G is finite if and only
if B/k*™ is finite, and in that case we have the isomorphism as stated, so that
in particular the order of G is equal to (B : k*™), thereby proving the theorem.

Theorem 8.2. Notation being as in Theorem 8.1, the map B+ K gives a
bijection of the set of subgroups of k* containing k*™ and the abelian extensions
of k of exponent m.

Proof. Let B,, B, be subgroups of k* containing k*". If B, = B, then
k(B}'™) < k(Bi/™). Conversely, assume that k(B!™) = k(Bi'™). We wish to
prove B, = B,. Let be B,. Then k(b'/™) < k(B'™) and k(b*'™) is contained in
a finitely generated subextension of k(B/™). Thus we may assume without loss
of generality that B,/k*™ is finitely generated, hence finite. Let B5 be the sub-
group of k* generated by B, and b. Then k(B3"™) = k(Bi'™) and from what we
saw above, the degree of this field over k is precisely

(B, :k*) or (Bj:k*™).

Thus these two indices are equal, and B, = B;. This proves that B, — B,.

We now have obtained an injection of our set of groups B into the set of
abelian extensions of k of exponent m. Assume finally that K is an abelian
extension of k of exponent m. Any finite subextension is a composite of cyclic
extensions of exponent m because any finite abelian group is a product of
cyclic groups, and we can apply Corollary 1.16. By Theorem 6.2, every cyclic
extension can be obtained by adjoining an m-th root. Hence K can be obtained
by adjoining a family of m-th roots, say m-th roots of elements {b;};., with
b;ek*. Let B be the subgroup of k* generated by all b; and k*". If b" = ba™
with a, b € k then obviously

k('™ = k(b*'™).

Hence k(B''™) = K, as desired.
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When we deal with abelian extensions of exponent p equal to the char-
acteristic, then we have to develop an additive theory, which bears the same
relationship to Theorems 8.1 and 8.2 as Theorem 6.4 bears to Theorem 6.2.

If k is a field, we define the operator @ by

P(x) =xP — x

for x e k. Then g is an additive homomorphism of k into itself. The subgroup
g@(k) plays the same role as the subgroup k*™ in the multiplicative theory,
whenever m is a prime number. The theory concerning a power of p is slightly
more elaborate and is due to Witt.

We now assume k has characteristic p. A root ofthe polynomial X? — X — a
with a e k will be denoted by g ~'a. If B is a subgroup of k containing gk
we let Ky = k(g ~ ! B) be the field obtained by adjoining o ~'ato k for alla € B.
We emphasize the fact that B is an additive subgroup of k.

Theorem 8.3. Let k be a field of characteristic p. The map B+ k(¢ 'B)
is a bijection between subgroups of k containing gk and abelian extensions of
k of exponent p. Let K = Ky = k(o™ 'B), and let G be its Galois group.
IfoeGanda € B,and po = a,let {6,a) = 6a — a. Then we have a bilinear
map

G x B— Z/pZ given by (a,a)— {0, a).

The kernel on the left is 1 and the kernel on the right is k. The extension
Kg/k is finite if and only if (B: pk) is finite and if that is the case, then

[Kg: k] = (B: pk).

Proof. The proof is entirely similar to the proof of Theorems 8.1 and 8.2.
It can be obtained by replacing multiplication by addition, and using the “ gp-th
root” instead of an m-th root. Otherwise, there is no change in the wording of
the proof.

The analogous theorem for abelian extensions of exponent p" requires
Witt vectors, and will be developed in the exercises.
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§9. THE EQUATION X" -a=0

When the roots of unity are not in the ground field, the equation X" — a = 0
is still interesting but a little more subtle to treat.

Theorem 9.1. Let kbe afield and nan integer = 2. Letack,a # 0. Assume
that for all prime numbers p such that p|n we have a¢ k®, and if 4|n then
a¢ —4k*. Then X" — ais irreducible in k[ X].

Proof. Our first assumption means that a is not a p-th power in k. We
shall reduce our theorem to the case when n is a prime power, by induction.
Write n = p"m with p prime to m, and p odd. Let

X" —a=[[(X - a)
v=1

be the factorization of X™ — q into linear factors, and say « = a,. Substituting
X? for X we get

X'—a=X""-a= [][(X" - a,).
v=1
We may assume inductively that X™ — q is irreducible in k[X]. We contend
that a is not a p-th power in k(«x). Otherwise, « = f7, Be k(). Let N be the
norm from k(x) to k. Then

—a = (-1)"N(2) = (- 1)"N(B?) = (- 1)"N(B)".

If m is odd, a is a p-th power, which is impossible. Similarly, if m is even and p
is odd, we also get a contradiction. This proves our contention, because m is
prime to p. If we know our theorem for prime powers, then we conclude that
XP" — «is irreducible over k(a). If A is a root of X?" — a then k < k(a) = k(A)
gives a tower, of which the bottom step has degree m and the top step has degree
p". It follows that 4 has degree n over k and hence that X" — q is irreducible.

We now suppose that n = p” is a prime power.

If p is the characteristic, let « be a p-th root of a. Then X? — a = (X — a)?
and hence X”” — a = (X” ' — )P if r > 2. By an argument even more trivial
than before, we see that « is not a p-th power in k(a), hence inductively
XP"' — ais irreducible over k(). Hence X" — a is irreducible over k.

Suppose that p is not the characteristic. We work inductively again, and
let o be a root of X? — a.

Suppose a is not a p-th power in k. We claim that X? — a is irreducible.
Otherwise a root @ of XP — a generates an extension k(a) of degree d < p
and o” = a. Taking the norm from k(a) to k we get N(a)? = a?. Since d is
prime to p, it follows that « is a p-th power in k, contradiction.
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Letr 2 2. Weleta = a,. We have

P
XP —a= l—[(X—ozv)
v=1
and

14
¥ —a= [l x" - a).
v=1

Assume that « is not a p-th power in k(). Let A be aroot of X7 ™' — «. Ifp
is odd then by induction, A has degree p"~ ! over k(«), hence has degree p” over
k and we are done. If p = 2, suppose « = —4B* with Be k(x). Let N be the
norm from k(a) to k. Then —a = N(a) = 16N(B)*, so —a is a square in k. Since
p =2 we get V—1 € k(a) and @ = (V=1 2%, a contradiction. Hence again
by induction, we find that A has degree p” over k. We therefore assume that
a = (P with some B € k(a), and derive the consequences.

Taking the norm from k(x) to k we find

~a = (—1PN@ = (= 1PN(") = (= 1Y N(BY"

If p is odd, then a is a p-th power in k, contradiction. Hence p = 2, and

~a = N(p)?
is a square in k. Write —a = b? with b e k. Since a is not a square in k we con-
clude that — 1isnotasquareink. Leti? = — 1. Over k(i) we have the factoriza-

tion
XY —a=X"4+b>=(X¥""+ib(X¥ ' —ib)

Each factor is of degree 2"~ ! and we argue inductively. If X2"™' + ibis reducible
over k(i) then +ib is a square in k(i) or lies in —4(k(i))*. In either case, +ibisa
square in k(i), say

+ib = (¢ + di)*> = ¢? + 2cdi — d?

with ¢, d € k. We conclude that ¢ = d? or ¢ = *d, and *ib = 2cdi = *2c%i.
Squaring gives a contradiction, namely

a= —b*= —4c*.

We now conclude by unique factorization that X2 + b? cannot factor in
k[ X1, thereby proving our theorem.

The conditions of our theorem are necessary because
X* + 4b* = (X? + 2bX + 2b*)(X? — 2bX + 2b?).

If n = 4m and a € —4k* then X" — a is reducible.
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Corollary 9.2. Let k be a field and assume that aec k, a # 0, and that a is not
a p-th power for some prime p. If p is equal to the characteristic, or if p is odd,
then for every integer r = 1 the polynomial X?" — a is irreducible over k.

Proof. The assertion is logically weaker than the assertion of the theorem.

Corollary 9.3. Let k be a field and assume that the algebraic closure k* of k
is of finite degree > 1 over k. Then k* = k(i) where i* = —1, and k has
characteristic 0.

Proof. We note that k* is normal over k. If k* is not separable over k, so
char k = p > 0, then k? is purely inseparable over some subfield of degree >
1 (by Chapter V, §6), and hence there is a subfield E containing k, and an element
a € E such that X? — qa is irreducible over E. By Corollary 9.2, k® cannot be of
finite degree over E. (The reader may restrict his or her attention to characteristic
0 if Chapter V, §6 was omitted.)

We may therefore assume that k* is Galois over k. Let k;, = k(i). Then k*
is also Galois over k;. Let G be the Galois group of k*/k,. Suppose that there
is a prime number p dividing the order of G, and let H be a subgroup of order p.
Let F be its fixed field. Then [k*: F] = p. If pis the characteristic, then Exercise
29 at the end of the chapter will give the contradiction. We may assume that p
is not the characteristic. The p-th roots of unity # 1 are the roots of a poly-
nomial of degree < p — 1 (namely X?~! + --- + 1), and hence must lie in F.
By Theorem 6.2, it follows that k* is the splitting field of some polynomial
X? — a with ae F. The polynomial X?* — a is necessarily reducible. By the
theorem, we must have p = 2 and a = —4b* with be F. This implies

k* = F(a"'?) = F().

But we assumed i € k,, contradiction.

Thus we have proved k* = k(i). It remains to prove that char k = 0, and for
this I use an argument shown to me by Keith Conrad. We first show that a sum
of squares in k is a square. It suffices to prove this for a sum of two squares,
and in this case we write an element x + iy € k(i) = k* as a square.

x+iy=(u+iv?, x,y,uvek,

and then x2 + y2 = (u? + v?)2. Then to prove k has characteristic 0, we merely
observe that if the characteristic is > 0, then —1 is a finite sum 1 + ... + 1,
whence a square by what we have just shown, but k¥* = k(i), so this concludes
the proof.

Corollary 9.3 is due to Artin; see [Ar 24], given at the end of Chapter XI.
In that chapter, much more will be proved about the field k.

Example 1. Letk = Q and let Gy = G(Q?/Q). Then the only non-trivial
torsion elements in G have order 2. It follows from Artin’s theory (as given
in Chapter XI) that all such torsion elements are conjugate in Gg. One uses
Chapter XI, Theorems 2.2, 2.4, and 2.9.)
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Example 2. Let k be a field of characteristic not dividing n. Let a € k,
a # 0 and let K be the splitting field of X” — a. Let a be one root of
X" — a, and let { be a primitive n-th root of unity. Then

K = k@, {) = k(a, p,)-

We assume the reader is acquainted with matrices over a commutative ring. Let
o € Ggy. Then (oa)" = a, so there exists some integer b = b(o) uniquely
determined mod n, such that

o(a) = alt®,

Since o induces an automorphism of the cyclic group p,,, there exists an integer
d(o) relatively prime to n and uniquely determined mod n such that o({) =
{49, Let G(n) be the subgroup of GL,(Z/nZ) consisting of all matrices

M= (; 3) with b € Z/nZ and d € (Z/nZ)*.

Observe that #G(n) = ne(n). We obtain an injective map

1 0

o M) = (b(a) d(0)

) of Gg = G(n),

which is immediately verified to be an injective homomorphism. The question
arises, when is it an isomorphism? The next theorem gives an answer over some
fields, applicable especially to the rational numbers.

Theorem 9.4. Let k be a field. Let n be an odd positive integer prime to the
characteristic, and assume that [k(p,) : k] = @(n). Let a € k, and suppose that
for each prime p|n the element a is not a p-th power in k. Let K be the splitting
field of X" — a over k. Then the above homomorphism o +— M(0) is an
isomorphism of Gy, with G(n). The commutator group is Gal(K/k(p,)), so
k() is the maximal abelian subextension of K.

Proof. This is a special case of the general theory of §11, and Exercise 39,
taking into account the representation of G/, in the group of matrices. One need
only use the fact that the order of G/ is ne(n), according to that exercise, and
so #(Ggu) = #G(n), so Ggy = G(n). However, we shall given an independent
proof as an example of techniques of Galois theory. We prove the theorem by
induction.

Suppose first n = p is prime. Since [k(p,) : k] = p — 1 is prime to p, it
follows that if a is a root of X? — a, then k(a) N k(p,) = k because
[k(a) : k] = p. Hence [K : k] = p(p — 1), so Gk, = G(p).

A direct computation of a commutator of elements in G(n) for arbitrary n
shows that the commutator subgroup is contained in the group of matrices

10
(b 1), beZ/nZ,
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and so must be that subgroup because its factor group is isomorphic to (Z/nZ)*
under the projection on the diagonal. This proves the theorem when n = p.

Now let p|n and write n = pm. Then [k(p,,) : k] = ¢(m), immediately from
the hypothesis that [k(p,) : k] = ¢(n). Let a be a root of X" — a, and let
B = aP. Then B is a root of X” — a, and by induction we can apply the theorem
to X™ — a. The field diagram is as follows.

/k(a, w,)
\

k(B, n,)
— k()

k(p)
e

k m

Since a has degree pm over k, it follows that a cannot have lower degree than
p over k(B), so [k(a) : k(B)] = p and XP — B is irreducible over k(). We apply
the first part of the proof to X — B over k(). The property concerning the
maximal abelian subextension of the splitting field shows that

k(a) N k(B, w,) = k(B).

Hence [k(a, p,) : k(B, m,)] = p. By induction, [k(B, p,) : k(p,)] = m, again
because of the maximal abelian subextension of the splitting field of X” — a
over k. This proves that [K : k] = ne(n), whence G, = G(n), and the commutator
statement has already been proved. This concludes the proof of Theorem 9.4.

Remarks. When n is even, there are some complications, because for
instance Q(\/f) is contained in Q(pg), so there are dependence relations among
the fields in question. The non-abelian extensions, as in Theorem 9.4, are of
intrinsic interest because they constitute the first examples of such extensions
that come to mind, but they arose in other important contexts. For instance,
Artin used them to give a probabilistic model for the density of primes p such
that 2 (say) is a primitive root mod p (that is, 2 generates the cyclic group
(Z/pZ)*. Instead of 2 he took any non-square integer # *1. At first, Artin did
not realize explicitly the above type of dependence, and so came to an answer
that was off by some factor in some cases. Lehmer discovered the discrepancy
by computations. As Artin then said, one has to multiply by the “obvious” factor
which reflects the field dependencies. Artin never published his conjecture, but
the matter is discussed in detail by Lang-Tate in the introduction to his collected
papers (Addison-Wesley, Springer Verlag).

Similar conjectural probabilistic models were constructed by Lang-Trotter in
connection with elliptic curves, and more generally with certain p-adic repre-
sentations of the Galois group, in “Primitive points on elliptic curves”, Bull.
AMS 83 No. 2 (1977), pp. 289-292; and [LaT 75] (end of §14).

For further comments on the p-adic representations of Galois groups, see §14
and §15.
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§10. GALOIS COHOMOLOGY

Let G be a group and A an abelian group which we write additively for the
general remarks which we make, preceding our theorems. Let us assume that
G operates on A, by means of a homomorphism G — Aut(4). By a 1-cocycle of
G in A one means a family of elements {a,}, . ; With a, € A4, satisfying the relations

o, + 00, = O,

forallo,t€G. If {a,},c¢ and {B,},.c are 1-cocycles, then we can add them to
get a 1-cocycle {a, + B,},cq- It is then clear that 1-cocycles form a group,
denoted by Z*(G, A). By a 1-coboundary of G in A one means a family of ele-
ments {a,},.c such that there exists an element e A for which o, = o —
for all 0 € G. It is then clear that a 1-coboundary is a 1-cocycle, and that the
1-coboundaries form a group, denoted by B'(G, A). The factor group

Z'(G, A)/B'(G, A4)
is called the first cohomology group of G in A4 and is denoted by H'(G, A).
Remarks. Suppose G is cyclic. Let

Trg: A — A be the homomorphism a +— ZG o(a).
oge

Let v be a generator of G. Let (1 — y)A be the subgroup of A consisting of all
elements a — vy(a) with a € A. Then (1 — y)A is contained in ker Trs;. The
reader will verify as an exercise that there is an isomorphism

ker Trg/(1 = y)A = HY(G, A).

Then the next theorem for a cyclic group is just Hilbert’s Theorem 90 of §6.
Cf. also the cohomology of groups, Chapter XX, Exercise 4, for an even more
general context.

Theorem 10.1. Let K/k be a finite Galois extension with Galois group G.
Then for the operation of G on K* we have H'(G, K*) = 1, and for the
operation of G on the additive group of K we have H'(G, K) = 0. In other
words, the first cohomology group is trivial in both cases.

Proof. Let {0,},.; be a 1-cocycle of G in K*. The multiplicative cocycle
relation reads
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By the linear independence of characters, there exists 0 € K such that the element

B= 3 o)

teG

is # 0. Then
of =Y alot(0) = Y a,.x; 'ot(h)

teG 1eG

=o;'Y a,000) = o, 'B.

teG

We get o, = B/ap, and using B~ ! instead of B gives what we want.

For the additive part of the theorem, we find an element 0 € K such that the
trace Tr(0) is not equal to 0. Given a 1-cocycle {a,} in the additive group of K,
we let

1
B N Tr—@ t;Gar 1(0)

It follows at once that o, = f — o, as desired.

The next lemma will be applied to the non-abelian Kummer theory of the
next section.

Lemma 10.2. (Sah). Let G be a group and let E be a G-module. Let t be in
the center of G. Then H(G, E) is annihilated by the map x+ tx — x on E.
In particular, if this map is an automorphism of E, then H*(G, E) = 0.

Proof. Let f be a 1-cocycle of G in E. Then
f(0) =f(rot™") = f(1) + 1(f(o17")
=@ + 1Lf(o) + of 7]
Therefore
(o) = flo) = —otf(r™ 1) — f(2).
But (1) = f(1) + f(1) implies (1) = 0, and
0= (1) =f(t™ ) =f(®) + (.

This shows that (t — 1)f(g) = (¢ — 1) f (1), so fis a coboundary. This proves
the lemma.
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§11. NON-ABELIAN KUMMER EXTENSIONS

We are interested in the splitting fields of equations X" — a = 0 when the
n-th roots of unity are not contained in the ground field. More generally, we
want to know roughly (or as precisely as possible) the Galois group of simul-
taneous equations of this type. For this purpose, we axiomatize the pattern
of proof to an additive notation, which in fact makes it easier to see what is
going on.

We fix an integer N > 1, and we let M range over positive integers divid-
ing N. We let P be the set of primes dividing N. We let G be a group, and let:

A = G-module such that the isotropy group of any element of A is of finite
index in G. We also assume that A is divisible by the primes p|N,
that is

pA=A forallpeP.

I' = finitely generated subgroup of 4 such that I' is pointwise fixed by G.

1. .
We assume that Ay is finite. Then N I" is also finitely generated. Note that
1
N F s AN‘

Example. For our purposes here, the above situation summarizes the
properties which hold in the following situation. Let K be a finitely generated
field over the rational numbers, or even a finite extension of the rational numbers.
We let A be the multiplicative group of the algebraic closure K* Welet G = G
be the Galois group Gal(K?/K). We let I be a finitely generated subgroup of
the multiplicative group K*. Then all the above properties are satisfied. We

. . . 1
see that Ay = py is the group of N-th roots of unity. The group written N r
in additive notation is written I''/" in multiplicative notation.

Next we define the appropriate groups analogous to the Galois groups of
Kummer theory, as follows. For any G-submodule B of A, we let:

G(B) = image of G in Aut(B),
G(N) = G(Ay) = image of G in Aut(A4y),
H(N) = subgroup of G leaving 4y pointwise fixed,

Hp(M, N) (for M|N) = image of H(N) in Aut(% l").
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Then we have an exact sequence:
1
0—-> H(M,N)—> G(M r+ AN) — G(N) - 0.

Example. In the concrete case mentioned above, the reader will easily
recognize these various groups as Galois groups. For instance, let A be the
multiplicative group. Then we have the following lattice of field extensions
with corresponding Galois groups:

K(my, TV
("N ’l ) Hr(M, N)
GT'™uy)y  K(iy)
| }G(N)
K

In applications, we want to know how much degeneracy there is when we trans-
late K(uy,, T''™) over K(uy) with M|N. This is the reason we play with the
pair M, N rather than a single N.

Let us return to a general Kummer representation as above. We are in-
terested especially in that part of (Z/NZ)* contained in G(N), namely the group
of integers n (mod N) such that there is an element [n] in G(N) such that

[nla = na forallae Ay.

Such elements are always contained in the center of G(N), and are called
homotheties.
Write

N = [IPMW

Let S be a subset of P. We want to make some non-degeneracy assumptions
about G(N). We call S the special set.
There is a product decomposition

(Z/NZ* = [[ (Z/p""Z)*.

PIN

If 2| N we suppose that 2€ S. For each p € S we suppose that there is an integer
c(p) = p’® with f(p) = 1 such that

G(Ay) @ [[Uep x [1@Z/p"PZ)*,
peS pPé¢S

where U, is the subgroup of Z(p") consisting of those elements =1 mod c(p).
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The product decomposition on the right is relative to the direct sum decom-
position

Ay = @ A g
pIN
The above assumption will be called the non-degeneracy assumption. The

integers c¢(p) measure the extent to which G(4y) is degenerate.
Under this assumption, we observe that

[21€ G(A4,,) if M|N and M is not divisible by primes of S;
[1 + c]eG(Ay) if M|N and M is divisible only by primes of S,
where

c=c(S) = []elp)
peS
We can then use [2] — [1] = [1] and [1 + ¢] — [1] = [c] in the context of
Lemma 10.2, since [1] and [c] are in the center of G.
For any M we define

(M) = []cp).
pIM
peS
Define
1
I'==TInA°
N N

and the exponent
e(I""/T") = smallest positive integer e such that el” < T,

It is clear that degeneracy in the Galois group H(M, N) defined above can
arise from lots of roots of unity in the ground field, or at least degeneracy in
the Galois group of roots of unity; and also if we look at an equation

XM _a=0,

from the fact that a is already highly divisible in K. This second degeneracy
would arise from the exponent e(I""/T"), as can be seen by looking at the Galois
group of the divisions of I'. The next theorem shows that these are the only
sources of degeneracy.

We have the abelian Kummer pairing for M| N,

Hy(M,N) x I'/MI" > A4,, givenby (1,x)r>1y — ),

where y is any element such that My = x. The value of the pairing is indepen-
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dent of the choice of y. Thus for x e I', we have a homomorphism
¢ H{(M,N) > Ay
such that
o (1) =1ty —y, where My = x.
Theorem 11.1. Let M|N. Let ¢ be the homomorphism
¢:T" > Hom(H(M, N), A,,)

and let T, be its kernel. Let ep(I") = g.cd. (e(T"/T), M). Under the non-
degeneracy assumption, we have

c(M)ep ()T, = MT.
Proof. Let x eI and suppose ¢, = 0. Let My = x. For 0 e G let
Yo =0y — ).

Then {y,} is a 1-cocycle of G in A,,, and by the hypothesis that ¢, = 0, this
cocycle depends only on the class of ¢ modulo the subgroup of G leaving the
elements of Ay fixed. In other words, we may view {y,} as a cocycle of G(N) in
Apy. Let ¢ = ¢(N). By Lemma 10.2, it follows that {cy,} splits as a cocycle of
G(N) in A,;. In other words, there exists t, € A, such that

CYs = Olo — 1o,
and this equation in fact holds for ¢ € G. Let t be such that ct = t,. Then
coy — ¢y = act — ¢y,

o1
whence c(y — t) is fixed by all g € G, and therefore lies in N I'. Therefore

e(I"/Te(y — t)eT.

We multiply both sides by M and observe that cM(y — t) = cMy = cx. This
shows that

c(N)e(I'"/TT, = MT..

Since I'/MT has exponent M, we may replace e(I"'/T") by the greatest common
divisor as stated in the theorem, and we can replace ¢(N) by ¢(M) to conclude
the proof.

Corollary 11.2. Assume that M is prime to 2(I"' : ') and is not divisible by
any primes of the special set S. Then we have an injection

@:T/MT - Hom(H{(M, N), A,,).
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If in addition T is free with basis {ay, . . ., a,}, and we let ¢; = @,,, then the map
Hl"(M9 N) - Agl) given by T (¢1(T), LR (Pr(T))
is injective. If Ay, is cyclic of order M, this map is an isomorphism.

Proof. Under the hypotheses of the corollary, we have ¢(M) =1 and
cy(ID) = 1in the theorem.

Example. Consider the case of Galois theory when A is the multiplicative
group of K» Letay,...,a, be elements of K* which are multiplicatively inde-
pendent. They generate a group as in the corollary. Furthermore, Ay, = py,
is cyclic, so the corollary applies. If M is prime to 2(I" : T') and is not divisible
by any primes of the special set S, we have an isomorphism

¢ :T/MT - Hom(H(M, N), pp).

§12. ALGEBRAIC INDEPENDENCE OF
HOMOMORPHISMS

Let A be an additive group, and let K be a field. Let 4,,...,4,: 4 —» K be
additive homomorphisms. We shall say that 4,, ..., 4, are algebraically
dependent (over K) if there exists a polynomial f(X,,...,X,) in
K[X;, ..., X,]such that for all x e 4 we have

f(j'l(x)’ R ] A’n(-x)) = 0,

but such that f does not induce the zero function on K™, i.e. on the direct
product of K with itself n times. We know that with each polynomial we can
associate a unique reduced polynomial giving the same function. If K is
infinite, the reduced polynomial is equal to f itself. In our definition of de-
pendence, we could as well assume that f is reduced.

A polynomial f(X,, ..., X,) will be called additive if it induces an additive
homomorphism of K™ into K. Let (Y)=(Y,,...,Y,) be variables inde-
pendent from (X). Let

gX, Y)=f(X + 1) - f(X) - f(Y)

where X + Y is the componentwise vector addition. Then the total degree of
g viewed as a polynomial in (X) with coefficients in K[Y] is strictly less than
the total degree of £, and similarly, its degree in each X; is strictly less than the
degree of fin each X;. One sees this easily by considering the difference of
monomials,
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M(v)(X + Y) - M(v)(X) - M(v)(Y)
= (X + 1) X+ X = Xp e X — Y Y

A similar assertion holds for g viewed as a polynomial in (Y) with coefficients in
K[X].

If f is reduced, it follows that g is reduced. Hence if f is additive, it follows
that g is the zero polynomial.

Example. Let K have characteristic p. Then in one variable, the map
& alt”

for ae K and m > 1 is additive, and given by the additive polynomial aX?™.
We shall see later that this is a typical example.

Theorem 12.1. (Artin). Let A,,...,4,: A - K be additive homomorph-
isms of an additive group into a field. If these homomorphisms are alge-
braically dependent over K, then there exists an additive polynomial

JXy o, X)) #0
in K[ X7 such that
SAy(x), ..., 4,(x) =0

for all x € A.

Proof. Let f(X)=f(X,,...,X,)eK[X] be a reduced polynomial of
lowest possible degree such that f # 0 but for all x € A, f(A(x)) = 0, where
A(x) is the vector (4;(x), ..., 4,(x)). We shall prove that f'is additive.

Letg(X,Y)=f(X + Y) — f(X) — f(Y). Then

9g(Ax), AY)) = f(Alx + ) = f(A(x)) — f(A(Y) =0

for all x, y € A. We shall prove that g induces the zero function on K x K®.
Assume otherwise. We have two cases.

Casel. We have g(&, A(y)) =0 for all éeK™ and all yeA. By
hypothesis, there exists ¢’ e K™ such that g(&, Y) is not identically 0. Let
P(Y) = g(&, Y). Since the degree of g in (Y) is strictly smaller than the degree
of f, we have a contradiction.

Case2. There exist &€ K™ and y' € A such that g(&, A()')) # 0. Let
P(X) = g(X, A(y")). Then P is not the zero polynomial, but P(A(x)) = 0 for all
X € A, again a contradiction.
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We conclude that g induces the zero function on K™ x K™, which proves
what we wanted, namely that fis additive.

We now consider additive polynomials more closely.
Let f be an additive polynomial in n variables over K, and assume that fis
reduced. Let

f(X)=f0,...,X;,...,0)

with X, in the i-th place, and zeros in the other components. By additivity, it
follows that

Sy, X)) = fi(X 1) + - + f(X0)

because the difference of the right-hand side and left-hand side is a reduced
polynomial taking the value 0 on K™. Furthermore, each f; is an additive
polynomial in one variable. We now study such polynomials.

Let f(X) be a reduced polynomial in one variable, which induces a linear
map of K into itself. Suppose that there occurs a monomial a, X" in f with
coefficient a, # 0. Then the monomials of degree r in

9X,Y)=f(X +Y) - f(X) - f(Y)
are given by
a(X+YY —-—aX —aY"

We have already seen that g is identically 0. Hence the above expression is
identically 0. Hence the polynomial

X+Yy-X-Y

is the zero polynomial. It contains the term rX"~'Y. Hence if r > 1, our field
must have characteristic p and r is divisible by p. Write r = p™s where s is
prime to p. Then

0=(X+Y)y =X = Y = (X" + YP") — (XP") — (YP™).

Arguing as before, we conclude that s = 1.
Hence if f'is an additive polynomial in one variable, we have

100 = §ax,

with a, € K. In characteristic 0, the only additive polynomials in one variable
are of type aX with ae K.

As expected, we define 4,, ..., 4, to be algebraically independent if, whenever
fis a reduced polynomial such that f(A(x)) = O for all x € K, then f'is the zero
polynomial.
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We shall apply Theorem 12.1 to the case when 4,,. . ., 4, are automorphisms
of a field, and combine Theorem 12.1 with the theorem on the linear indepen-
dence of characters.

Theorem 12.2. Let K be an infinite field, and let o, ..., 6, be the distinct
elements of a finite group of automorphisms of K. Then oy, ..., o, are alge-
braically independent over K.

Proof. (Artin). In characteristic 0, Theorem 12.1 and the linear inde-
pendence of characters show that our assertion is true. Let the characteristic
be p > 0, and assume that ¢4, ..., g, are algebraically dependent.

There exists an additive polynomial f(X,,...,X,) in K[X] which is
reduced, f # 0, and such that

S(01(x),...,04x)) =0

for all xe K. By what we saw above, we can write this relation in the form
n m
Y 2 ao(x) =0
i=1r=1

for all x € K, and with not all coefficients a;, equal to 0. Therefore by the linear
independence of characters, the automorphisms

{a?"} with i=1,...,n and r=1,...,m
cannot be all distinct. Hence we have
of =o¥
with either i # jor r # 5. Say r <s. For all x e K we have
oi(x)" = a/(x)”".
Extracting p-th roots in characteristic p is unique. Hence
o(x) = Uj(x)ps_r = Uj(xp,-r)

forall xe K. Let o = o;s;. Then

o(x) = xP""
for all x e K. Taking ¢" = id shows that

X o= P

for all xe K. Since K is infinite, this can hold only if s = r. But in that case,
o; = g, contradicting the fact that we started with distinct automorphisms.
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§13. THE NORMAL BASIS THEOREM

Theorem 13.1. Ler K/k be a finite Galois extension of degreen. Leto,,...,0,
be the elements of the Galois group G. Then there exists an element w € K
such that o,w, ..., a,w form a basis of K over k.

Proof. We prove this here only when k is infinite. The case when k is
finite can be proved later by methods of linear algebra, as an exercise.
For each o € G, let X, be a variable,and let¢, . = X,-.,. Let X; = X,,. Let

f(Xy.., X,) = det(t,, ,)-

Then f'is not identically 0, as one sees by substituting 1 for X4 and 0 for X, if
o # id. Since k is infinite, fis reduced. Hence the determinant will not be 0 for
all x € K if we substitute g(x) for X, in f. Hence there exists w € K such that

det(o; 'a)(w)) # 0.

Suppose a,, . . ., a, € k are such that
a,o,(w) + -+ + a,o,w) =0.

Apply o; ! to this relation for cach i = 1,..., n. Since a;e k we get a system of
linear equations, regarding the a; as unknowns. Since the determinant of the
coefficients is # 0, it follows that

a;=0 for j=1,...,n

and hence that w is the desired element.

Remark. In terms of representations as in Chapters III and XVIII, the
normal basis theorem says that the representation of the Galois group on the
additive group of the field is the regular representation. One may also say that
K is free of dimension 1 over the group ring k[G]. Such a result may be viewed
as the first step in much more subtle investigations having to do with algebraic
number theory. Let K be a number field (finite extension of Q) and let o be
its ring of algebraic integers, which will be defined in Chapter VII, §1. Then
one may ask for a description of 0g as a Z[G] module, which is a much more
difficult problem. For fundamental work about this problem, see A. Frohlich,
Galois Module Structures of Algebraic Integers, Ergebnisse der Math. 3 Folge
Vol. 1, Springer Verlag (1983). See also the reference [CCFT 91] given at the
end of Chapter III, §1.
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§14. INFINITE GALOIS EXTENSIONS

Although we have already given some of the basic theorems of Galois theory
already for possibly infinite extensions, the non-finiteness did not really appear
in a substantial way. We now want to discuss its role more extensively.

Let K/k be a Galois extension with group G. For each finite Galois subex-
tension F, we have the Galois groups Gg, and Ggy. Put H = Ggp.
Then H has finite index, equal to #(Gg,) = [F : k]. This just comes as a special
case of the general Galois theory. We have a canonical homomorphism

G- G/H = GF/I(‘

Therefore by the universal property of the inverse limit, we obtain a
homomorphism

G — limG/H,
HeF
where the limit is taken for H in the family F of Galois groups G, as above.

Theorem 14.1. The homomorphism G — lim G/H is an isomorphism.

Proof. Firstthe kernel is trivial, because if ois in the kernel, then o restricted
to every finite subextension of K is trivial, and so is trivial on K. Recall that an
element of the inverse limit is a family {oy} with oy € G/H, satisfying a certain
compatibility condition. This compatibility condition means that we may define
an element o of G as follows. Let @ € K. Then « is contained in some finite
Galois extension F C K. Let H = Gal(K/F). Let ca = oya. The compatibility
condition means that oy« is independent of the choice of F. Then it is immediately
verified that o is an automorphism of K over k, which maps to each gy in the
canonical map of G into G/H. Hence the map G — lim G/H is surjective, thereby
proving the theorem.

Remark. For the topological interpretation, see Chapter I, Theorem 10.1,
and Exercise 43.

Example. Let p[p*] be the union of all groups of roots of unity p[p”],
where p is a prime and n = 1, 2, ... ranges over the positive integers. Let
K = Q(p[p”]). Then K is an abelian infinite extension of Q. Let Z,, be the ring
of p-adic integers, and Z} the group of units. From §3, we know that (Z/p"Z)*
is isomorphic to Gal(Q(j[p”1/Q)). These isomorphisms are compatible in the
tower of p-th roots of unity, so we obtain an isomorphism

Z3 - Gal(Q(p(p~)/Q)).
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Towers of cyclotomic fields have been extensively studied by Iwasawa. Cf.
a systematic exposition and bibliography in [La 90].

For other types of representations in a group GL,(Z,), see Serre [Se 68],
[Se 72], Shimura [Shi 71], and Lang-Trotter [LaT 75]. One general framework
in which the representation of Galois groups on roots of unity can be seen has
to do with commutative algebraic groups, starting with elliptic curves. Specif-
ically, consider an equation

y2=4x" - gyx — g3

with g,, g; € Q and non-zero discriminant: A = g3 — 27g% # 0. The set of
solutions together with a point at infinity is denoted by E. From complex analysis
(or by purely algebraic means), one sees that if K is an extension of Q, then the
set of solutions E(K) with x, y € K and » form a group, called the group of
rational points of E in K. One is interested in the torsion group, say E(Q?),,, of
points in the algebraic closure, or for a given prime p, in the group E(Q?)[p"]
and E(Q%[p~]. As an abelian group, there is an isomorphism

EQ[p") = (Z/p"Z) X (Z/p"D),

so the Galois group operates on the points of order p” via a representation in
GL,(Z/p"Z), rather than GL,(Z/p"Z) = (Z/p"Z)* in the case of roots of unity.
Passing to the inverse limit, one obtains a representation of Gal(Q?/Q) = Go
in GLZ(ZP). One of Serre’s theorems is that the image of Gq in GL2(ZP) is a
subgroup of finite index, equal to GL,(Z,) for all but a finite number of primes
p,ifEnd C (E) = Z.

More generally, using freely the language of algebraic geometry, when A is
a commutative algebraic group, say with coefficients in Q, then one may consider
its group of points A(Q?®),,, and the representation of Gq in a similar way.
Developing the notions to deal with these situations leads into algebraic geometry.

Instead of considering cyclotomic extensions of a ground field, one may also
consider extensions of cyclotomic fields. The following conjecture is due to
Shafarevich. See the references at the end of §7.

Conjecture 14.2. Let ky = Q(p) be the compositum of all cyclotomic exten-
sions of Q in a given algebraic closure Q®. Let k be a finite extension of k.
Let G, = Gal(Q?/k). Then G, is isomorphic to the completion of a free group
on countably many generators.

If G is the free group, then we recall that the completion is the inverse limit
lim G/H, taken over all normal subgroups H of finite index. Readers should
view this conjecture as being in analogy to the situation with Riemann surfaces,
as mentioned in Example 9 of §2. It would be interesting to investigate the extent
to which the conjecture remains valid if Q(p) is replaced by Q(A(Q?),,,), where
A is an elliptic curve. For some results about free groups occurring as Galois
groups, see also Wingberg [Wi 91].
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§15. THE MODULAR CONNECTION

This final section gives a major connection between Galois theory and the
theory of modular forms, which has arisen since the 1960s.

One fundamental question is whether given a finite group G, there exists a
Galois extension K of Q whose Galois group is G. In Exercise 23 you will prove
this when G is abelian.

Already in the nineteenth century, number theorists realized the big difference
between abelian and non-abelian extensions, and started understanding abelian
extensions. Kronecker stated and gave what are today considered incomplete
arguments that every finite abelian extension of Q is contained in some extension
Q({), where { is a root of unity. The difficulty lay in the peculiarities of the
prime 2. The trouble was fixed by Weber at the end of the nineteenth century.
Note that the trouble with 2 has been systematic since then. It arose in Artin’s
conjecture about densities of primitive roots as mentioned in the remarks after
Theorem 9.4. It arose in the Grunwald theorem of class field theory (corrected
by Wang, cf. Artin-Tate [ArT 68], Chapter 10). It arose in Shafarevich’s proof
that given a solvable group, there exists a Galois extension of Q having that
group as Galois group, mentioned at the end of §7.

Abelian extensions of a number field F are harder to describe than over the
rationals, and the fundamental theory giving a description of such extensions is
called class field theory (see the above reference). I shall give one significant
example exhibiting the flavor. Let Ry be the ring of algebraic integers in F. It
can be shown that R is a Dedekind ring. (Cf. [La 70], Chapter I, §6, Theorem
2.) Let P be a prime ideal of Rg. Then P N Z = (p) for some prime number p.
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Furthermore, Rg/P is a finite field with g elements. Let K be a finite Galois
extension of F. It will be shown in Chapter VII that there exists a prime Q of
Ry such that Q N Rx = P. Furthermore, there exists an element

Frp € G = Gal(K/F)
such that Fry(Q) = Q and for all a € R¢ we have
Frpa = af mod Q.

We call Fry a Frobenius element in the Galois group G associated with Q. (See
Chapter VII, Theorem 2.9.) Furthermore, for all but a finite number of @, two
such elements are conjugate to each other in G. We denote any of them by Frp.
If G is abelian, then there is only one element Frp in the Galois group.

Theorem 15.1. There exists a unique finite abelian extension K of F having
the following property. If P,, P, are prime ideals of Rg, then
Frp, = Frp, if and only if there is an element a of K such that aP, = P,.

In a similar but more complicated manner, one can characterize all abelian
extensions of F. This theory is known as class field theory, developed by Kro-
necker, Weber, Hilbert, Takagi, and Artin. The main statement concerning the
Frobenius automorphism as above is Artin’s Reciprocity Law. Artin-Tate’s notes
give a cohomological account of class field theory. My Algebraic Number Theory
gives an account following Artin’s first proof dating back to 1927, with later
simplifications by Artin himself. Both techniques are valuable to know.

Cyclotomic extensions should be viewed in the light of Theorem 15.1. Indeed,
let K = Q({), where { is a primitive n-th root of unity. For a prime p{n, we
have the Frobenius automorphism Fr,, whose effect on { is Fr,({) = {P. Then

Fr, = Fr,, if and only if p, = p, mod n.

To encompass both Theorem 15.1 and the cyclotomic case in one framework,
one has to formulate the result of class field theory for generalized ideal classes,
not just the ordinary ones when two ideals are equivalent if and only if they
differ multiplicatively by a non-zero field element. See my Algebraic Number
Theory for a description of these generalized ideal classes.

The non-abelian case is much more difficult. I shall indicate briefly a special
case which gives some of the flavor of what goes on. The problem is to do for
non-abelian extensions what Artin did for abelian extensions. Artin went as far
as saying that the problem was not to give proofs but to formulate what was to
be proved. The insight of Langlands and others in the sixties shows that actually
Artin was mistaken. The problem lies in both. Shimura made several computations
in this direction involving “modular forms” [Sh 66]. Langlands gave a number
of conjectures relating Galois groups with “automorphic forms”, which showed
that the answer lay in deeper theories, whose formulations, let alone their proofs,
were difficult. Great progress was made in the seventies by Serre and Deligne,
who proved a first case of Langland’s conjecture [DeS 74].
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The study of non-abelian Galois groups occurs via their linear “representa-
tions”. For instance, let [ be a prime number. We can ask whether GL,(F)), or
GL,(F)), or PGL,(F,) occurs as a Galois group over Q, and “how”. The problem
is to find natural objects on which the Galois group operates as a linear map,
such that we get in a natural way an isomorphism of this Galois group with one
of the above linear groups. The theories which indicate in which direction to
find such objects are much beyond the level of this course, and lie in the theory
of modular functions, involving both analysis and algebra, which form a back-
ground for the number theoretic applications. Again I pick a special case to give
the flavor.

Let K be a finite Galois extension of Q, with Galois group

G = Gal(K/Q).
Let
p: G — GLy(F)

be a homomorphism of G into the group of 2 X 2 matrices over the finite field
F, for some prime /. Such a homomorphism is called a representation of G.
From elementary linear algebra, if

a b
M=
(c d)
is a 2 X 2 matrix, we have its trace and determinant defined by

tr(M) =a +d and detM = ad — bc.

Thus we can take the trace and determinant tr p(o) and det p(o) for o € G.
Consider the infinite product with a variable g:

A =qlla-gn*=3 a4
n=1 n=1
The coefficients a, are integers, and a, = 1.

Theorem 15.2. For each prime [ there exists a unique Galois extension K of
Q, with Galois group G, and an injective homomorphism

p: G — GLy(F))

having the following property. For all but a finite number of primes p, if a, is
the coefficient of qP in A(q), then we have

tr p(Fr,) = a, mod | and det p(Fr,) = p'! mod L.

Furthermore, for all primes | # 2, 3, 5, 7, 23, 691, the image p(G) in GL,(F,;)
consists of those matrices M € GL,(F,) such that det M is an eleventh power
in Ff.
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The above theorem was conjectured by Serre in 1968 [Se 68]. A proof of
the existence as in the first statement was given by Deligne [De 68]. The second
statement, describing how big the Galois group actually is in the group of matrices
GL,(F)) is due to Serre and Swinnerton-Dyer [Se 72], [SwD 73].

The point of A(q) is that if we put ¢ = ¢>™, where z is a variable in the
upper half-plane, then A is a modular form of weight 12. For definitions and an
introduction, see the last chapter of [Se 73], [La 73], [La 76], and the following
comments. The general result behind Theorem 15.2 for modular forms of weight
= 2 was given by Deligne [De 73]. For weight 1, it is due to Deligne-Serre
[DeS 74]. We summarize the situation as follows.

Let N be a positive integer. To N we associate the subgroups

') CTy(V) C To)

b

d) € SL,(Z):

of SL,(Z) defined by the conditions for a matrix a = (?

ael'N)ifandonlyifa=d=1mod N and b = ¢ = 0 mod N;
ael'y(N)ifand onlyifa=d =1mod N and ¢ = 0 mod N;
a € T'y(N) if and only if ¢ = 0 mod N.

Let f be a function on the upper half-plane © = {z € C, Im(z) > 0}. Let k&
be an integer. For

a b
Y= (c d) € SLy(R),

define f ° [y]; (an operation on the right) by

az + b
cz+d

feo V@) = (cz + d)"*f(yz) where 7yz =

Let I" be a subgroup of SL,(Z) containing I'(N). We define f to be modular of
weight k on T if:

My 1. fis holomorphic on 9;

My 2. fis holomorphic at the cusps, meaning that for all @ € SL,(Z), the
function f o [a]; has a power series expansion

folal@ = 2 anetmmiM,

My 3. We have fo [y], = fforall yeT.

One says that f is cuspidal if in M, 2 the power series has a zero; that is, the
power starts with n = 1.
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Suppose that f is modular of weight k on I'(N). Then f is modular on I';(N)
if and only if f(z + 1) = f(z), or equivalently f has an expansion of the form

f(z) =foc(qz) = nzoanqn Where q = qz = eZmz.

This power series is called the g-expansion of f.

Suppose f has weight k on I'/(N). If y € I'y(N) and 7y is the above written
matrix, then f o [y]; depends only on the image of d in (Z/NZ)*, and we then
denote f o [y], by fe [d],. Let

€: (Z/NZ)* — C*

be a homomorphism (also called a Dirichlet character). One says that ¢ is odd
if e(—1) = —1, and even if ¢(—1) = 1. One says that f is modular of type
(k, €) on T'y(N) if f has weight k on I';(N), and

feoldly = e(d)f forall de (Z/NZ)*.

It is possible to define an algebra of operators on the space of modular forms
of given type. This requires more extensive background, and I refer the reader
to [La 76] for a systematic exposition. Among all such forms, it is then possible
to distinguish some of them which are eigenvectors for this Hecke algebra, or,
as one says, eigenfunctions for this algebra. One may then state the Deligne-
Serre theorem as follows.

Let f # 0 be a modular form of type (1, ) on Ty(N), so f has weight 1. Assume
that € is odd. Assume that f is an eigenfunction of the Hecke algebra, with gq-
expansion f,,= 2, a,q", normalized so that a, = 1. Then there exists a unique
finite Galois extension K of Q with Galois group G, and a representation
p: G = GLy(C) (actually an injective homomorphism), such that for all
primes p ¥ N the characteristic polynomial of p(Fr,) is

X2 —a,X + &(p).
The representation p is irreducible if and only if f is cuspidal.

Note that the representation p has values in GL,(C). For extensive work of Serre
and his conjectures concerning representations of Galois groups in GL,(F) when
F is a finite field, see [Se 87]. Roughly speaking, the general philosophy started
by a conjecture of Taniyama-Shimura and the Langlands conjectures is that
everything in sight is “modular”. Theorem 15.2 and the Deligne-Serre theorem
are prototypes of results in this direction. For “modular” representations in GL,(F),
when F is a finite field, Serre’s conjectures have been proved, mostly by Ribet
[Ri 90]. As a result, following an idea of Frey, Ribet also showed how the
Taniyama-Shimura conjecture implies Fermat’s last theorem [Ri 90b]. Note that
Serre’s conjectures that certain representations in GL,(F) are modular imply the
Taniyama-Shimura conjecture.
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EXERCISES

1. What is the Galois group of the following polynomials?
@ X3—-X - 1overQ.
(b) X3 — 10 over Q.
(c) X* — 10 over Q(\/E)‘
) X* — 10 over Q(,/-3).
(€) X3 — X — 1 over Q(\/—23).
(M) X* = 5 over Q Q(/3), Q/~3), Qa).

(g) X* — awhere a1s any integer # 0, ¥ + 1 and 1s square free. Over Q.
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(h) X3 — a where a is any square-free integer = 2. Over Q.
(i) X* + 2 over Q, Q(i).
() (X% —2)(X? — 3)(X?% — 5)(X? — T)over Q.
(k) Let p,, ..., p, be distinct prime numbers. What is the Galois group of
(X?=p)---(X* —pyoverQ?
() (X3 = 2)(X3 = 3)(X? - 2) over Q(\/—3).
(m) X" — t, where t is transcendental over the complex numbers C and n is a
positive integer. Over C(2).
(n) X* —t, where t is as before. Over R(¢).

2. Find the Galois groups over Q of the following polynomials.

@ X*+X+1 b) X3 -X+1 ® X*+X2-2X-1
(€ X3 +2Xx +1 d) X3-2X +1
e X*—X-1 ) X3-12X+ 8

3. Let k = C(t) be the field of rational functions in one variable. Find the Galois group
over k of the following polynomaials:

@ X3+ X +1t (b) X3 — X +1t
© X3 +1tX +1 d) X3 —2tX +1t
e) X>*—X —1 ) X3+2x -3

4. Let k be a field of characteristic # 2. Let ¢ € k, ¢ ¢ k% Let F = k(Vc). Let
@ =a+ bVc witha, b € k and not both a, b = 0. Let E = F(V a). Prove that
the following conditions are equivalent.

(1) E is Galois over k.

(2) E = F(Va'), where &’ = a — bVC.

(3) Either aa’ = a? — cb? € k? or caa’ € k2.
Show that when these conditions are satisfied, then E is cyclic over k of degree 4 if
and only if caa’ € k2.

5. Let k be a field of characteristic # 2, 3. Let f(X), g(X) = X? — ¢ be irreducible
polynomials over k, of degree 3 and 2 respectively. Let D be the discriminant of f.

Assume that
[k(DV2) : k] = 2 and k(D'?) # k(c!?).

Let a be a root of fand B a root of g in an algebraic closure. Prove:
(a) The splitting field of fg over k has degree 12.
(b) Let y = a + B. Then [k(y) : k] = 6.

6. (a) Let K be cyclic over k of degree 4, and of characteristic # 2. Let G, = (o).
Let E be the unique subfield of K of degree 2 over k. Since [K : E] = 2, there
exists @ € K such that > = y € E and K = E(a). Prove that there exists
z € E such that

zoz = —1, oa=:za, z*= oy/y.

(b) Conversely, let E be a quadratic extension of k and let Gg, = (7). Let z € E
be an element such that zrz = —1. Prove that there exists y € E such that
22 = 7y/y. Then E = k(y). Let > = v, and let K = k(a). Show that K is
Galois, cyclic of degree 4 over k. Let o be an extension of 7to K. Show that
o is an automorphism of K which generates Gy, satisfying o?a = —a and
oa = *za. Replacing z by —z originally if necessary, one can then have
oa = za.



322 GALOIS THEORY VI, Ex

7. (a) Let K = Q(Va) where a € Z, a < 0. Show that K cannot be embedded in a

cyclic extension whose degree over Q is divisible by 4.

(b) Let f(X) = X* + 30X? + 45. Let a be a root of F. Prove that Q(a) is cyclic of

degree 4 over Q.

(c) Letf(X) = X* + 4x2 + 2. Prove that f is irreducible over Q and that the Galois
group is cyclic.

8. Letf(X) = X* + aX? + b be an irreducible polynomial over Q, with roots + a, + f,
and splitting field K.

(a) Show that Gal(K/Q) is isomorphic to a subgroup of Dg (the non-abelian group
of order 8 other than the quaternion group), and thus is isomorphic to one of the
following:

(i) Z/AZ (i) Z2Z x Z)2Z (iii) Dg.
(b) Show that the first case happens if and only if
a B
8 a € Q.
Case (ii) happens if and only if af € Q or a> — B2 € Q. Case (iii) happens
otherwise. (Actually, in (ii), the case a® — B% € Q cannot occur. It corresponds
to a subgroup Dg C S, which is isomorphic to Z/2Z X Z/2Z, but is not
transitive on {1, 2, 3, 4}).
(c) Find the splitting field K in C of the polynomial

X4 —4xr -1

Determine the Galois group of this splitting field over Q, and describe fully
the lattices of subfields and of subgroups of the Galois group.

9. Let K be a finite separable extension of a field k, of prime degree p. Let 0 € K be
such that K = k(6), and let 0,, ..., 6, be the conjugates of 6 over k in some algebraic
closure. Let 8 = 0,. If 6, € k(0), show that K is Galois and in fact cyclic over k.

10. Let f(X) e Q[X] be a polynomial of degree n, and let K be a splitting field of fover Q.
Suppose that Gal(K/Q) is the symmetric group S, with n > 2.
(a) Show that fis irreducible over Q.
(b) If ais a root of f, show that the only automorphism of Q(«) is the identity.
(c) If n = 4, show that 2" ¢ Q.
11. A polynomial f(X) is said to be reciprocal if whenever « is a root, then 1/x 1s also a
root. We suppose that f has coefficients in a real subfield k of the complex numbers. If
f is irreducible over k, and has a nonreal root of absolute value 1, show that f 1s
reciprocal of even degree.

12. What is the Galois group over the rationals of X° — 4X + 2?

13. What is the Galois group over the rationals of the following polynomials:
(@ X*+2X2+ X +3
(b) X*+3x*-3x -2
(c) X® 4+ 22X5 — 9X* + 12X3 — 37X%2 — 29X — 15
[Hint: Reduce mod 2, 3,5.]
14. Prove that given a symmetric group S,, there exists a polynomial f(X) € Z[ X] with
leading coefficient 1 whose Galois group over Q is S,. [Hint: Reducing mod 2, 3, 5,
show that there exists a polynomial whose reductions are such that the Galois group
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contains enough cycles to generate S,. Use the Chinese remainder theorem, also to
be able to apply Eisenstein’s criterion. ]

Let K/k be a Galois extension, and let F be an intermediate field between k and K.
Let H be the subgroup of Gal(K/k) mapping F into itself. Show that H is the normal-
izer of Gal(K/F) in Gal(K/k).

Let K/k be a finite Galois extension with group G. Let & € K be such that
{oa},cc is a normal basis. For each subset S of G let S(a) = 2, oesoa. Let H be a
subgroup of G and let F be the fixed field of H. Show that there exists a basis of F
over k consisting of elements of the form S(a).

Cyclotomic fields

17.

18.

19.

20.

(@) Let k be a field of characteristic /2n, for some odd integer n = 1, and let ¢ be
a primitive n-th root of unity, in k. Show that k also contains a primitive 2n-th
root of unity.

(b) Let k be a finite extension of the rationals. Show that there is only a finite number
of roots of unity in k.

(@) Determine which roots of unity lie in the following fields: Q(i), Q(V—2),
Q(V2), Q(V-3), Q(V3), QV-5).

(b) For which integers m does a primitive m-th root of unity have degree 2 over Q?

Let { be a primitive n-th root of unity. Let K = Q({).
(@) If n = p” (r = 1) is a prime power, show that Ng,o(1 — {) = p.
(b) If n is composite (divisible by at least two primes) then Ny, (1 — {) = 1.

Let f(X) € Z[X] be a non-constant polynomial with integer coefficients. Show that
the values f(a) with a € Z* are divisible by infinitely many primes.

[Note: This is trivial. A much deeper question is whether there are infinitely many
a such that f(a) is prime. There are three necessary conditions:

The leading coefficient of f is positive.

The polynomial is irreducible.

The set of values f(Z*) has no common divisor > 1.

A conjecture of Bouniakowski [Bo 1854] states that these conditions are sufficient.
The conjecture was rediscovered later and generalized to several polynomials by
Schinzel [Sch 58]. A special case is the conjecture that X2 + 1 represents infinitely
many primes. For a discussion of the general conjecture and a quantitative version
giving a conjectured asymptotic estimate, see Bateman and Horn [BaH 62]. Also see
the comments in [HaR 74]. More precisely, let f}, . . ., f, be polynomials with integer
coefficients satisfying the first two conditions (positive leading coefficient, irre-
ducible). Let

f = fl o fr
be their product, and assume that f satisfies the third condition. Define:
7 H(x) = number of positive integers n = x such that fi(n), . . ., f,(n) are all primes.

(We ignore the finite number of values of n for which some fi(n) is negative.) The
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Bateman-Horn conjecture is that
[ 1
~ e d)! -
gy (x) (d, d) 1C(f) f (og 1" dt,
0

where

cor- (- - ).

p p

the product being taken over all primes p, and N¢(p) is the number of solutions of
the congruence

f(n) =0 mod p.

Bateman and Horn show that the product converges absolutely. When r = 1 and
f(n) = an + b with a, b relatively prime integers, a > 0, then one gets Dirichlet’s
theorem that there are infinitely many primes in an arithmetic progression, together
with the Dirichlet density of such primes.

[BaH 62] P.T.BATEMAN and R. HORN, A heuristic asymptotic formula concerning
the distribution of prime numbers, Math. Comp. 16 (1962) pp. 363-367

[Bo 1854] V. BOUNIAKOWSKY, Sur les diviseurs numériques invariables des fonc-
tions rationnelles entiéres, Mémoires sc. math. et phys. T. VI (1854-
1855) pp. 307-329

[HaR 74] H. HALBERSTAM and H.-E. RICHERT, Sieve methods, Academic Press,
1974

[Sch 58] A. ScHINZEL and W. SIERPINSKI, Sur certaines hypothéses concernant
les nombres premiers, Acta Arith. 4 (1958) pp. 185-208

21. (a) Let a be a non-zero integer, p a prime, n a positive integer, and p ¥ n. Prove
that p | ®,(a) if and only if a has period n in (Z/pZ)*.

(b) Again assume p 4 n Prove that p | ®,(a) for some a € Z if and only if p = 1

mod n. Deduce from this that there are infinitely many primes = 1 mod n, a

special case of Dirichlet’s theorem for the existence of primes in an arithmetic

progression.

22. Let F = F, be the prime field of characteristic p. Let K be the field obtained from
F by adjoining all primitive /-th roots of unity, for all prime numbers ! # p. Prove
that X is algebraically closed. [Hint: Show that if g is a prime number, and r an
integer = 1, there exists a prime / such that the period of p mod ! is g", by using
the following old trick of Van der Waerden: Let / be a prime dividing the number

T — ] r=1 r=1 -
b= (T T g - 4 g,
P -1
If I does not divide p* ' — 1, we are done. Otherwise, [ = g. But in that case q* does

not divide b, and hence there exists a prime | # g such that [ divides b. Then the degree
of F({,) over F is ¢, so K contains subfields of arbitrary degree over F.]

23. (a) Let G be a finite abelian group. Prove that there exists an abelian extension of
Q whose Galois group is G.
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24.

25.

26.

27.

28.

29.

30.

31.

32.

(b) Let k be a finite extension of Q, and let G be a finite abelian group. Prove that
there exist infinitely many abelian extensions of k whose Galois group is G.

Prove that there are infinitely many non-zero integers a, b # 0 such that
—4a® — 27b% is a square in Z.

Let k be a field such that every finite extension is cyclic. Show that there exists an
automorphism o of k2 over k such that k is the fixed field of o.

Let Q2 be a fixed algebraic closure of Q. Let £ be a maximal subfield of Q? not
containing V2 (such a subfield exists by Zorn’s lemma). Show that every finite
extension of E is cyclic. (Your proof should work taking any algebraic irrational
number instead of \/5.)

Let k be a field, k? an algebraic closure, and o an automorphism of k? leaving k
fixed. Let F be the fixed field of o. Show that every finite extension of F is cyclic.
(The above two problems are examples of Artin, showing how to dig holes in an
algebraically closed field.)

Let E be an algebraic extension of k such that every non-constant polynomial f(X)
in k[ X] has at least one root in E. Prove that E is algebraically closed. [Hint: Discuss
the separable and purely inseparable cases separately, and use the primitive element
theorem.]

(a) Let K bea cyclic extension of a field F, with Galois group G generated by 6. Assume
that the characteristic is p, and that [K:F] = p™~' for some integer m = 2.
Let B be an element of K such that TrX(f) = 1. Show that there exists an element
a in K such that

oa —a=pr— B

(b) Prove that the polynomial X? — X — a is irreducible in K[X].

(c) If 0 is a root of this polynomial, prove that F(6) is a Galois, cyclic extension of
degree p™ of F, and that its Galois group is generated by an extension ¢* of ¢
such that

a*(@) =0+ p.

Let A be an abelian group and let G be a finite cyclic group operating on A [by means
of a homomorphism G — Aut(4)]. Let o be a generator of G. We define the trace

Trg = Tr on A by Tr(x) = ) tx. Let Ar, denote the kernel of the trace, and let
teG
(1 — o)A denote the subgroup of A4 consisting of all elements of type y — ay. Show that

H'(G, A) = A1,/(1 — 0)A.
Let F be a finite field and K a finite extension of F. Show that the norm N¥ and the
trace Tr¥ are surjective (as maps from K into F).
Let E be a finite separable extension of k, of degree n. Let W = (w,, ..., w,) be elements
of E. Leto,,...,o, be the distinct embeddings of E mn k® over k. Define the dis-
criminant of W to be
DE/k(W) = det(a’,w])z.

Prove:

(@) If V= (vy,..., v,) is another set of elements of E and C = (cyj) is a matrix

of elements of k such that w; = Ecijvj, then

Dy (W) = det(C)2Dpgy (V).
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(b) The discriminant is an element of k.
(c) Let E = k(x) and let f(X) = Irr(e, k, X). Let ay, ..., o, be the roots of fand
say a = ;. Then

£ = [~ a.
j=2

Show that
Dgu(l, o, ..., 0" 1) = (= 1)~ W2INE(f'(a)).

(d) Let the notation be as in (a). Show that det(Tr(w;w;)) = (det(a,-w,-))z. [Hint:
Let 4 be the matrix (o;w;). Show that ‘44 is the matrix (Tr(w;w))).]

Rational functions

33.

34.

35.

36.

Let K = C(x) where x is transcendental over C, and let { be a primitive cube root of
unity in C. Let ¢ be the automorphism of K over C such that ox = {x. Let 7 be the
automorphism of K over C such that tx = x~'. Show that

o*=1=7 and 70=0"'7

Show that the group of automorphisms G generated by o and 7 has order 6 and the
subfield F of K fixed by G is the field C(y) where y = x3 + x73.

Give an example of a field K which is of degree 2 over two distinct subfields E and F
respectively, but such that K is not algebraic over E N F.

Let k be a field and X a variable over k. Let

fX)
X)=2""1
o(X) 2%)

be a rational function in k(X), expressed as a quotient of two polynomials f, g which
are relatively prime. Define the degree of ¢ to be max(deg f, deg g). Let Y = ¢(X).
(a) Show that the degree of ¢ is equal to the degree of the field extension k(X) over k(Y)

(assuming Y ¢ k). (b) Show that every automorphism of k(X) over k can be represented
by a rational function ¢ of degree 1, and is therefore induced by a map

aX +b
cX +d

—

with a, b, c,dek and ad — bc # 0. (c) Let G be the group of automorphisms of k(X)
over k. Show that G is generated by the following automorphisms:
T, XX +b o6,:X—aX @#0), Xe—X!

with a, bek.
Let k be a finite field with g elements. Let K = k(X) be the rational field in one variable.
Let G be the group of automorphisms of K obtained by the mappings

aX +b
—
cX +d
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with a, b, ¢, d in k and ad — bc # 0. Prove the following statements:
(a) The order of G is ¢*> — g.
(b) The fixed field of G is equal to k(Y) where

(X7 — Xyt

Y = G o

(c) Let H, be the subgroup of G consisting of the mappings X — aX + b with
a # 0. The fixed field of H, is k(T) where T = (X2 — X)7~!,

(d) Let H, be the subgroup of H, consisting of the mappings X — X + b with
bek. The fixed field of H, is equal to k(Z) where Z = X7 — X.

Some aspects of Kummer theory

37. Let k be a field of characteristic 0. Assume that for each finite extension E of k, the
index (E* : E*") is finite for every positive integer n. Show that for each positive integer
n, there exists only a finite number of abelian extensions of k of degree n.

38. Let a # 0, # + 1 be a square-free integer. For each prime number p, let K, be
the splitting field of the polynomial X? — a over Q. Show that [K,: Q] = p(p — 1).
For each square-free integer m > 0, let

Km:nKp

plm

be the compositum of all fields K, for p|m. Let d,, = [K,,: Q] be the degree of K,,
over Q. Show that if m is odd then’ d, = ]_[ d,, and if m is even, m = 2n then d,, = d,

or 2d, according as Va is or is not in the ﬁeld of m-th roots of unity Q({,)-

39. Let K be a field of characteristic O for simplicity. Let I" be a finitely generated subgroup
of K*. Let N be an odd positive integer. Assume that for each prime p|N we have

F=r""nK,

and also that Gal(K(py)/K) = Z(N)*. Prove the following.
(@) T/TN = T/(T N K*N) = TK*N/K*N.
(b) Let Ky = K(ny). Then

CAKEY =TV,

[Hint: If these two groups are not equal, then for some prime p| N there exists
an element a € I' such that

a=>b" with beKy but b¢K.

In other words, a is not a p-th power in K but becomes a p-th power in K. The
equation x? — a is irreducible over K. Show that b has degree p over K(p,),
and that K(p,, a'’?) is not abelian over K, so a'’” has degree p over K(u,).
Finish the proof yourself.]



328 GALOIS THEORY VI, Ex

(c) Conclude that the natural Kummer map
I/ - Hom(H(N), )

is an isomorphism.

(d) Let GH(N) = Gal(K(I''’*, py)/K). Then the commutator subgroup of G(N)
is H{N), and in particular Gal(Ky/K) is the maximal abelian quotient of
G(N).

40. Let K be a field and p a prime number not equal to the characteristic of K. LetI" be a

41.

finitely generated subgroup of K*, and assume that I' is equal to its own p-division
group in K, thatisif ze K and z?€I', then zeT. If p is odd, assume that p, < K, and
if p = 2, assume that p, = K. Let

(C:TP) = pr*t,
Show that I''’? is its own p-division group in K(I'*/?), and
[KIVP™): K] = pmr*h

for all positive integers m.

Relative invariants (Sato). Let k be a field and K an extension of k. Let G be a group
of automorphisms of K over k, and assume that k is the fixed field of G. (We do not
assume that K is algebraic over k.) By a relative invariant of G in K we shall mean an
element Pe K, P # 0, such that for each g € G there exists an element (o) € k for
which P° = y(c)P. Since ¢ is an automorphism, we have y(c) € k*. We say that the
map x: G — k* belongs to P, and call it a character. Prove the following statements:

(a) The map y above is a homomorphism.

(b) If the same character x belongs to relative invariants P and Q then there

exists ¢ € k* such that P = ¢Q.
(c) The relative invariants form a multiplicative group, which we denote by I.

Elements Py, ..., P, of I are called multiplicatively independent mod k* if
their images in the factor group I/k* are multiplicatively independent, i.e. if
given integers v,, ..., v, such that

Py - Ppm = cek*,

thenv, =--- =y, =0.

) If Py, ..., P, are multiplicatively independent mod k* prove that they are
algebraically independent over k. [Hint: Use Artin’s theorem on characters.]

(e) Assume that K = k(X,..., X,) is the quotient field of the polynomial ring
k[X,,...,X,] = k[X], and assume that G induces an automorphism of the
polynomial ring. Prove:If F,(X)and F,(X) are relative invariant polynomials,
then their g.cd. is relative invariant. If P(X) = F,(X)/F,(X) is a relative
invariant, and is the quotient of two relatively prime polynomials, then F,(X)
and F,(X) are relative invariants. Prove that the relative invariant poly-
nomials generate I/k*. Let S be the set of relative invariant polynomials which
cannot be factored into a product of two relative invariant polynomials of
degrees = 1. Show that the elements of S/k* are multiplicatively independent,
and hence that I/k* is a free abelian group. [If you know about transcendence
degree, then using (d) you can conclude that this group is finitely generated.]
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42.

43.

44.

45.

Let f(z) be a rational function with coefficients in a finite extension of the rationals.
Assume that there are infinitely many roots of unity { such that f({) is a root of unity.
Show that there exists an integer n such that f(z) = cz” for some constant ¢ (which is in
fact a root of unity).

This exercise can be generalized as follows: Let I' be a finitely generated multi-
plicative group of complex numbers. Let I be the group of all complex numbers y
such that y™ lies in I, for some integer m # 0. Let f(z) be a rational function with
complex coefficients such that there exist infinitely many y € I' for which f(y) lies in I.
Then again, f(z) = cz" for some ¢ and n. (Cf. Fundamentals of Diophantine Geometry.)

Let K/k be a Galois extension. We define the Krull topology on the group
G(K/k) = G by defining a base for open sets to consist of all sets oH where o € G
and H = G(K/F) for some finite extension F of k contained in K.
(a) Show that if one takes only those sets oH for which F is finite Galois over
k then one obtains another base for the same topology.
(b) The projective limit lim G/H is embedded in the direct product

lim G/H— [1 6/H.
H H

Give the direct product the product topology. By Tychonoff’s theorem in
elementary point set topology, the direct product is compact because it is a
direct product of finite groups, which are compact (and of course also discrete).
Show that the inverse limit lim G/H is closed in the product, and is therefore
compact.

(c) Conclude that G(K/k) is compact.

(d) Show that every closed subgroup of finite index in G(K/k) is open.

(e) Show that the closed subgroups of G(K/k) are precisely those subgroups
which are of the form G(K/F) for some extension F of k contained in K.

(f) Let H be an arbitrary subgroup of G and let F be the fixed field of H. Show
that G(K/F) is the closure of H in G.

Let k be a field such that every finite extension is cyclic, and having one extension of
degree n for each integer n. Show that the Galois group G = G(k*/k) is the inverse limit
lim Z/mZ, as mZ ranges over all ideals of Z, ordered by inclusion. Show that this limit
is isomorphic to the direct product of the limits

[T 1im z/pz = Hz

p n-o
taken over all prime numbers p, in other words, it is isomorphic to the product of all
p-adic integers.

Let k be a perfect field and k? its algebraic closure. Let o € G(k?/k) be an element
of infinite order, and suppose k is the fixed field of o. For each prime p, let K, be
the composite of all cyclic extensions of k of degree a power of p.
(a) Prove that k is the composite of all extensions K.
(b) Prove that either K, = k, or K, is infinite cyclic over k. In other words, K,
cannot be finite cycllc over k and * k.
(c) Suppose k* = K, for some prime p, so k? is an mﬁmte cyclic tower of
p-extensions. Let u be a p-adic unit, u € Z* such that u does not represent
a rational number. Define 0%, and prove that o, o* are linearly independent
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over Z, i.e. the group generated by o and o* is free abelian of rank 2. In
particular {0} and {0, o*} have the same fixed field &.

Witt vectors

46. Let x,, x5, . . . be a sequence of algebraically independent elements over the integers
Z. For each integer n = 1 define
x™ =% dxje.
d|n

Show that x, can be expressed in terms of x'® for d|n, with rational coefficients.
Using vector notation, we call (x,, x,, ...) the Witt components of the vector x,
and call (x), x?, ...) its ghost components. We call x a Witt vector.
Define the power series

£ = [T = x,t").

nz1

Show that

—t ‘% log fi(t) = ¥ x™1".

n21

[By % log f(t) we mean f"(t)/f(t) if f () is a power series, and the derivative f'(t) is taken
formally.]
If x, y are two Witt vectors, define their sum and product componentwise with
respect to the ghost components, i.e.
(x + )™ = x® +y™.
What is (x + y),? Well, show that
£ofm =T + @+ pam = £,

Hence (x + y), is a polynomial with integer coefficients in x, y,, ..., X,, y,. Alsoshow
that

Foty =TT (1 = xgypiemyerm

de21

where m is the least common multiple of d, e and d, e range over all integers = 1. Thus

(xy), is also a polynomial in x,, y, ..., x,, y, with integer coefficients. The above
arguments are due to Witt (oral communication) and differ from those of his original
paper.

If A is a commutative ring, then taking a homomorphic image of the polynomial
ring over Z into A, we see that we can define addition and multiplication of Witt
vectors with components in A4, and that these Witt vectors form a ring W(A4). Show
that W is a functor, i.e. that any ring homomorphism ¢ of 4 into a commutative ring A’
induces a homomorphism W(p): W(A) - W(A').
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47.

48.

49.

50.

Let p be a prime number, and consider the projection of W(A) on vectors whose
components are indexed by a power of p. Now use the log to the base p to index
these components, so that we write x, instead of x,». For instance, xo now denotes
what was x, previously. For a Witt vector x = (xo, xy, ..., x,,, ...) define

Vx = (0, xo, Xy,...) and Fx = (x§, x%,...).
Thus V is a shifting operator. We have V o F = Fo V. Show that
Vx)™ = px*~Y and x™ = (Fx)™ Y 4+ p'x,.
Also from the definition, we have
x® = xg" + pxR" + -+ pm,.

Let k be a field of characteristic p, and consider W(k). Then V is an additive endomorph-
ism of W(k), and F is a ring homomorphism of W (k) into itself. Furthermore, if x € W(k)
then

px = VFx.

If x, y € W(k), then (Vx)(Viy) = VI*i(FPix - FP'y). For aek denote by {a} the Witt
vector (a, 0, 0, ...). Then we can write symbolically

x = i Vi{x;}.
i=0

Show that if x € W(k) and x, # O then x is a unit in W(k). Hint: One has

1—x{xg'} =Vy

and then

x{xg '} g(Vy)" =(1-VyYWy=1
[\]

Let n be an integer = 1 and p a prime number again. Let k be a field of characteristic p.
Let W,(k) be the ring of truncated Witt vectors (x,,. .., X,_;) With components in k.
We view W, (k) as an additive group. If x € W,(k), define go(x) = Fx — x. Then g isa
homomorphism. If K is a Galois extension of k, and o € G(K/k), and x € W,(K) we
can define ox to have component (x,,...,0x,_,). Prove the analogue of Hilbert’s
Theorem 90 for Witt vectors, and prove that the first cohomology group is trivial. (One
takes a vector whose trace is not 0, and finds a coboundary the same way as in the proof
of Theorem 10.1).

If x € W,(k), show that there exists £ € W,(k) such that g(£) = x. Do this inductively,
solving first for the first component, and then showing that a vector (0, a;, ..., a,_,) is
in the image of g if and only if (a4, ..., a,_) is in the image of g. Prove inductively

that if &, & € W, (k') for some extension k' of k and if p& = g@¢& then & — &' is a vector
with components in the prime field. Hence the solutions of p¢& = x for given x € W, (k)
all differ by the vectors with components in the prime field, and there are p" such
vectors. We define

k(é) = k(éOv A ] én—l)’
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or symbolically,
k(g™ 'x).

Prove that it is a Galois extension of k, and show that the cyclic extensions of k, of
degree p", are precisely those of type k(g ~'x) with a vector x such that x, ¢ pk.

51. Develop the Kummer theory for abelian extensions of k of exponent p” by using W, (k).
In other words, show that there is a bijection between subgroups B of W,(k) containing
$ W,(k) and abelian extensions as above, given by

B— Ky

where Kz = k(97 'B). All of this is due to Witt, cf. the references at the end of §8,
especially [Wi 37]. The proofs are the same, mutatis mutandis, as those given for
the Kummer theory in the text.

Further Progress and directions

Major progress was made in the 90s concerning some problems mentioned in the
chapter. Foremost was Wiles’s proof of enough of the Shimura-Taniyama conjecture to
imply Fermat’s Last Theorem [Wil 95], [TaW 95].

[TaW 95] R. TAayLor and A. WILES, Ring-theoretic properties or certain Hecke alge-
bras, Annals of Math. 141 (1995) pp. 553-572

[Wil 95] A. WiLEs, Modular elliptic curves and Fermat’s last theorem, Annals. of
Math. 141 (1995) pp. 443-551

Then a proof of the complete Shimura-Taniyama conjecture was given in [BrCDT 0l].

[BrCDT 01] C. BReulL, B. CONRAD, F. DIAMOND, R. TAYLOR, On the modularity of el-
liptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001)
pp. 843-839

In a quite different direction, Neukirch started the characterization of number fields
by their absolute Galois groups [Ne 68], [Ne 69a], [Ne 69b], and proved it for Galois
extensions of Q. His results were extended and his subsequent conjectures were proved
by Ikeda and Uchida [Ik 77], [Uch 77], [Uch 79], [Uch 81]. These results were extended
to finitely generated extensions of Q (function fields) by Pop [Pop 94], who has a more
extensive bibliography on these and related questions of algebraic geometry. For these
references, see the bibliography at the end of the book.



