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Abstract. Traditionally, symmetries in music are based on geometry. More pre-

cisely they are symmetries of regular polygons (a dodecadon, most commonly),

which, algebraically, are given by dihedral groups. In this paper we take an al-

gebraic approach and discuss how to replace the traditional dihedral group with

other groups that are still (algebraically) isomorphic to the original. In turn, this

allows us to create new musical systems where not only the notion of symmetry is

replaced, but the notion of interval as well. Two concrete examples are given by

rewriting pieces by Webern and the band Muse using these new systems.

1. Introduction

Symmetries have been extensively used in music theory and composition. With the

Pythagoreans, who already noted the symmetries in the natural scale, in the Renais-

sance, where the symmetric relations of reflection, augmentations, and diminution

in modal counterpoint are explored, with Bach (Baroque), who also employed these

relations in counterpoint but in the tonal system, and in late of the 19th century and

especially in the 20th century, with the exploration of the regular divisions of the

octave. (Messiaen’s modes of limited transposition provide an excellent example of

this kind of transpositive symmetry.)

This notion of symmetry in music is geometric, more precisely, they are based on

symmetries of regular polygons, and thus come from dihedral groups, which give the

symmetries of such objects. Our idea in this paper is to replace the classical dihedral

groups with other subgroups of the symmetric group, and thus take an algebraic

approach to symmetries, rather than geometric.

There are countless choices to replace the dihedral groups, some of which partially

preserve geometric symmetries, some of which preserve only algebraic properties, and
1
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some which completely break with the usual structure, thus giving us a wide palette

of choices.

These choices give new musical systems which can be used in compositions where the

notion of symmetry is completely replaced by this algebraic view.

Here is a brief description of the contents of the remaining this paper. In Section 2

we review some of the mathematics necessary for the development of the theory. In

Section 3 we discuss the a generalization of the Webern matrix, which can be used in

twelve-tone compositions. In Section 4 we give a short analysis of two pieces: the first

eight bars of the first movement of Webern’s Concerto for Nine Instruments, Op. 24,

and the first section on the song Take a Bow by Matthew Bellamy, with special

attention give to their use of symmetries. In Section 5 we go back to mathematics

and discuss possible alternatives to the dihedral group, while in Section 6 we use this

alternatives to create alternative musical systems. In Section 8 we see how the new

systems relate to permutations of pitch classes. In Section 7 we give some alternatives

to Weben matrix in new systems, which are applied in Sections 9 to rewrite Webern’s

example from Section 4. Finally, in Section 10 we apply new systems to rewrite

Muse’s Take a Bow (analyzed in Section 4).

2. Mathematical Background for Symmetries

In this section we quickly review the mathematical background for the application

of symmetries in music. Any introductory text in basic abstract algebra or group

theory, e.g., [8] or [4], should provide the details for what follows. Also, many texts

even establish the connection between group theory and music, e.g., [13].

We denote by Sn the symmetric group in n-elements, more precisely, the group of

permutations of {0, 1 . . . , (n − 1)}. Although it is more common in mathematics to

see the elements of Sn as permutations on {1, 2, . . . , n}, here it will be more convenient

to take the former approach, as we identify {0, 1, 2, . . . , 11} with the set of pitch space,

which is algebraically identified with Z/12Z (integers modulo 12).
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As mentioned above, symmetries in music are usually given by dihedral groups. Re-

member that the dihedral group Dn, for n ≥ 3, is the group of symmetries of a

regular n-gon. This group is generated by a rotation of 2π/n radians (or 360/n

degrees) around the center, which we denote by ρ, and a reflection through a line

bisecting one of its internal angles, which we denote by φ. Remember then that these

elements satisfy ρn = 1, φ2 = 1, and φρk = ρn−kφ for every k. Thus, the 2n elements

of Dn can be represented as

Dn = 〈ρ, φ〉 = {1, ρ, ρ2, . . . , ρn−1, φ, ρφ, ρ2φ, . . . , ρn−1φ}. (2.1)

In music we see symmetries as permutations of pitches, or often, as permutations of

pitch classes. Therefore, the geometric symmetries of the dihedral group needs to

be identified with a subgroup of Sn. This is done by labeling the positions of the n

vertices of a regular n-gon with numbers 0 through n− 1. Assuming that the labels

are ordered clockwise, the rotation ρ is also clockwise, and that the reflection φ is

through the vertex labeled 0, we can represent ρ and φ, as elements of Sn (using

disjoint cycles representation), as

ρ = (0 1 2 3 . . . n− 1), (2.2)

φ =

(1 n− 1)(2 n− 2) . . . ((n− 2)/2 (n+ 2)/2), if n is even,

(1 n− 1)(2 n− 2) . . . ((n− 1)/2 (n+ 1)/2), if n is odd.
(2.3)

Therefore, seeing these as permutations of Z/nZ, we have that their actions on some

x ∈ Z/nZ are given by

ρ(x) = x+ 1 and φ(x) = −x. (2.4)

Figures 2.1 and 2.2 illustrate the actions of ρ and φ, respectively, for n = 5. Note that

in these, the numbers represent the positions, while the letters represent the physical

vertices of the polygon.

From now on, when we refer to the dihedral group Dn, we will always mean the

subgroup of Sn generated by ρ and φ as in Eqs. (2.2) and (2.3).

In concrete applications in music, the symmetries are either applied to the whole

pitch class space, or one might only consider classes in a fixed scale, in which case we
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Figure 2.1. Action of ρ on the pentagon.
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Figure 2.2. Action of φ on the pentagon.

can only regard seven of the pitch classes, and then consider the space to be Z/7Z
(instead of Z/12Z). Therefore, we work with either D12 (seen as a subgroup of S12),

the modulo 12 case, or D7 (seen as a subgroup of S7), the modulo 7 case.

We finish this section with some remarks about notation. We here mostly follow

the common notation of mathematics, although the use of the letters ρ and φ are

not universal. In music the map ρk is often denoted by Tk, where the T stands

for transposition. The map ρkφ is usually denoted by TkI, where the I stands for

inversion. (See [9, Chapter 2].) When focusing on music, rather than mathematics,

we shall switch to this latter notation.

Finally, contrary to what is sometimes done in group theory, we denote the compo-

sition of functions in groups in the usual way we do it in mathematics in general.

Therefore, if we write σ · τ(k), we mean σ(τ(k)), and not τ(σ(k)).
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3. The Webern Matrix

In Section 4 we will give some concrete examples of symmetries in music. One of

them will be Webern’s Concerto for Nine Instruments, which makes extensive use of

symmetries. These symmetries are derived from Webern’s matrix, which we describe

in more detail below. In this section we shall discuss a general method to construct

matrices similar to Webern’s and describe their properties.

3.1. Construction. Consider a reordering of the twelve pitch classes, say

r0 = (a0,0, a0,1, a0,2, . . . , a0,11).

(So, {a0,0, a1,1, a0,2, . . . , a0,11} = Z/12Z as sets.) Here we use the double indices as

usual for representation of matrices in mathematics: the first index represents the

row while the second index represents the column.

Now, there is a single reflection ρi0φ in D12 such that ρi0φ(a0,0) = a0,0. We then define

ai,0
def
= ρi0φ(a0,i), for i ∈ {1, 2, . . . , 11},

c0
def
= (a0,0, a1,0, a2,0, . . . , a11,0).

So, each coordinate of c0 is obtained by applying ρi0φ to the corresponding coordinate

of r0. In this situation we will simply write c0 = ρi0φ(r0).

Since both r0 and c0 start with a0,0 by construction, we can start our 12× 12 matrix

by setting the first row as r0 and the first column as c0:

a0,0 a0,1 a0,2 · · · a0,11

a1,0

a2,0
...

a11,0
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Now, given some k ∈ {0, 1, . . . , 11}, there is a single rotation ρjk such that ρjk(a0,0) =

ak,0. So, defining

ak,l
def
= ρjk(a0,l) for l ∈ {1, 2, . . . , 11},

rk
def
= (ak,0, ak,1, ak,2, . . . , , ak,11) = ρjk(r0),

we can set the remaining rows of our matrix as rk:

W (r0)
def
=



a0,0 a0,1 a0,2 · · · a0,11

a1,0 a1,1 a1,2 · · · a1,11

a2,0 a2,1 a2,2 · · · a2,11
...

...
...

...

a11,0 a11,1 a11,2 · · · a11,11


. (3.1)

We might refer to the matrix W (r0) as the Webern matrix of r0. (Note that it depends

only on the choice of the first row r0.)

Therefore, each row rk in this matrix is obtained by applying some rotation ρjk to

the first row r0, and the first column c0 is obtained by applying a reflection ρi0φ to

the first row r0.

Now, let

bi,j
def
= a11−i,11−j for i, j ∈ {0, 1, 2, . . . , 11},

r′i
def
= (bi,0, bi,1, . . . , bi,11).

Then, for instance, we have that r′0 be the last row of the matrix, but in reversed

order, i.e.,

r′0 = (a11,11, a11,10, a11,9, . . . , a11,0),

or, more generally, r′i is r11−i in reversed order, the so called the retrograde of r11−i.

Similarly, let

c′j = (b0,j, b1,j, . . . , b11,j),

and hence c′j is the column c11−j in reversed order, i.e., its retrograde.
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3.2. Properties. We now list the properties of the Webern matrix:

Proposition 3.1. Let W (r0) be the Webern matrix of r0 (given by Eq. (3.1)), as

constructed in the previous section. We have:

(1) Each row rk of W (r0) is obtained by applying some rotation of D12 to r0.

(2) Each column cl of W (r0) is obtained by applying some reflection of D12 to r0.

(3) We have that ak,k = a0,0 for all k ∈ {1, 2, . . . , 11}.
(4) Each retrograde row r′k of W (r0) is obtained by applying some rotation of D12

to r′0.

(5) Each retrograde column c′l of W (r0) is obtained by applying some reflection of

D12 to r′0.

(6) If dividing the first row in d equal length parts we have that these parts are in

the same set class, then every part of the division of any row and column in

d equal parts is also in this same set class.

Proof. Part 1 follows from the construction, as rk = ρjk(r0).

For Part 2, we start by observing that c0 is obtained from r0 by the reflection ρi0φ

by construction. So, we must now prove that the other columns are also obtained by

reflections.

We have

cl = (a0,l, a1,l, a2,l, . . . , a11,l),

and we know that there is a (single) rotation, say ρsl such that ρsl(a0,0) = a0,l. Also,

since ρjk(r0) = rk (by construction, or from the Part 1), we have that ρjk(a0,0) = ak,0.

Then, for any k, we have

ρsl(ak,0) = ρsl(ρjk(a0,0)) = ρsl+jk(a0,0) = ρjk(ρsl(a0,0)) = ρjk(a0,l) = ak,l.

But this means that ρsl(c0) = cl, and thus cl is obtained from c0 by the rotation ρsl .

Hence, since c0 = ρi0φ(r0), we have cl = ρsl(c0) = ρsl+i0φ(r0), proving Part 2.

For Part 3, we first note that, by construction, for all k ∈ {0, 1, . . . , 11} we have

ρjk(a0,l) = ak,l for all l ∈ {0, 1, . . . , 11}, and ρi0φ(a0,k) = ak,0 (which also means
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ρi0φ(ak,0) = a0,k) for all k. Therefore,

ak,k = ρjk(a0,k) = ρjk(ρi0φ(ak,0))

= ρjk+i0φ(ak,0) = ρjk+i0φ(ρjk(a0,0)) =

= ρjk+i0−jkφ(a0,0) = ρi0φ(a0,0)

= a0,0.

For Part 4, note that since ρjk(r0) = rk, clearly we have ρjk(r′11) = r′11−k, as ρjk(b11,j) =

ρjk(a0,11−j) = ak,11−j = b11−k,j. Thus, we have that ρj11(r′11) = r′0 and ρj11−k(r′11) = r′k.

Putting these together, we have that

ρj11−k−j11(r′0) = ρj11−k(r′11) = r′k,

proving Part 4.

For Part 5, remember that ρj11(r0) = r11 and, by Part 2, given l there some il such

that ρilφ(r0) = cl, we have

c11−l = ρi11−lφ(r0) = ρi11−lφρ−j11(r11) = ρi11−l+j11φ(r11).

The result follows from observing that c′l and r′0 are simply c11−l and r11 in reversed

order.

Finally, Part 6 is a triviality, since the rows and columns are obtained from elements

of D12. �

3.3. The Original Webern Matrix. We now describe Webern’s original construc-

tion. We start with a set of three pitch classes: {0, 3, 11}. Then, taking σ =

ρ7φ, ρ6, ρφ, we have that {σ(0), σ(3), σ(11)} becomes {4, 7, 8}, {5, 6, 9}, and {1, 2, 10},
respectively. (So, of course, these for sets are in the same set class, namely (014).)

Note that these four sets give all the twelve pitch classes and therefore can be used

in the general construction. We can then arrange the elements of each of these sets

in an arbitrary way. Webern chose:

r0 = (0, 11, 3, 4, 8, 7, 9, 5, 6, 1, 2, 10). (3.2)
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Note that this choice of r0 satisfies the requirement of Part 6 of Proposition 3.1 in two

ways: by dividing the first row in four trichords or in two hexachords. The former can

be seen from the construction, while for the latter just note that both {0, 11, 2, 3, 8, 7}
and {9, 5, 6, 1, 2, 10} belong to the set class (014589). Note also that these hexachords

are fixed by exactly three rotations (i.e., transpositions) and three reflections (i.e.,

inversions) of D12, namely 1 = ρ0, ρ4, ρ8, ρ3φ, ρ7φ, and ρ11φ.

Table 3.1 on the following page shows Webern’s matrix W (r0), obtained by choosing

the first row r0 as in Eq. (3.2) above.

To make the symmetries explicit, we write on the left of the our representation of

the Webern matrix the maps that give the rotation that take the first row to the

corresponding row. For instance, since ρ9 appears in the left of the third row, this

row can be obtained by applying ρ9 to the first row, i.e., ρ9(r0) = r2. Similarly,

the maps on the top of the matrix give the map that takes the first row to the

corresponding column, the maps on right indicate the maps that takes r′0 to the

corresponding retrograde row, and the ones on the bottom give the map that takes

r′0 to the corresponding retrograde column.

Note that many other choices can be made to obtain a similar matrix. As we’ve seen,

any row r0 containing all pitch classes can be used to produce a matrix where the

rows and columns are all related by symmetries.

3.4. Notation in Music. In music theory, the rows and columns of Webern’s matrix

are referred to as series, i.e., ordered sets. The rows themselves are called prime

orderings and each one is denoted by the letter P (for prime) and with an index

corresponding the first element of the series. So, for instance, we have that the third

row of Webern’s matrix (in Table 3.1) is P9, since it starts with 9.

The columns of this matrix correspond to the so called inversion orderings and each

one is denoted by the letter I and a subscript which is again the first element of the

series.

We also have the retrograde and retrograde-inversion orderings, corresponding to rows

and columns in reversed order. They are denoted by R and RI respectively, and the

index now represents the last entry of the series. So, Rk is just Pk in reversed order,

and RIk is just Ik in reversed order.
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φ ρ11φ ρ3φ ρ4φ ρ8φ ρ7φ ρ9φ ρ5φ ρ6φ ρφ ρ2φ ρ10φ

1 0 11 3 4 8 7 9 5 6 1 2 10 ρ10

ρ 1 0 4 5 9 8 10 6 7 2 3 11 ρ11

ρ9 9 8 0 1 5 4 6 2 3 10 11 7 ρ7

ρ8 8 7 11 0 4 3 5 1 2 9 10 6 ρ6

ρ4 4 3 7 8 0 11 1 9 10 5 6 2 ρ2

ρ5 5 4 8 9 1 0 2 10 11 6 7 3 ρ3

ρ3 3 2 6 7 11 10 0 8 9 4 5 1 ρ

ρ7 7 6 10 11 3 2 4 0 1 8 9 5 ρ5

ρ6 6 5 9 10 2 1 3 11 0 7 8 4 ρ4

ρ11 11 10 2 3 7 6 8 4 5 0 1 9 ρ9

ρ10 10 9 1 2 6 5 7 3 4 11 0 8 ρ8

ρ2 2 1 5 6 10 9 11 7 8 3 4 0 1

ρ2φ ρφ ρ5φ ρ6φ ρ10φ ρ9φ ρ11φ ρ7φ ρ8φ ρ3φ ρ4φ φ

Table 3.1. Webern’s Matrix

4. Examples of Symmetries in Music

In this section we provide two examples of symmetries in composition. Since this

section is dedicate to the applications in music, we shall use the notation most com-

monly used in this context. Therefore, the terms transposition and inversion will

be used instead of rotation and reflection, which were used when dealing with the

mathematical background. Similarly, we shall use Tn and TnI instead of ρn and ρnφ

for the symmetry operations.

The examples we give here are the first eight bars of the first movement of Webern’s

Concerto for Nine Instruments, Op. 24, composed in 1934, and the first section on

the song Take a Bow by Matthew Bellamy and recorded by the British band Muse

in 2006.

Figure 4.1 on the next page shows the first eight bars from the first movement of

Webern’s Concerto for Nine Instruments. In this short segment, four series from
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Figure 4.1. Webern’s Concerto for Nine Instruments, Op. 24, first
movement, mm. 1-8.

Webern’s matrix (seen in Table 3.1) occur: P11 (mm. 1-3), RI2 (mm. 4-5), RI1 (mm. 6-

7), and P0 (mm. 7-8). Although clearly in any twelve-tone composition all series

are related by symmetry, Figure 4.1 explicitly shows how in this work of Webern

each series can be subdivided in smaller sets which are also related by symmetry.

As observed in Section 3, each series is divided in two hexatonic collections of set

class (014589) and each of these can be divided in two trichords of set class (014)1.

Figure 4.2 on the following page shows the symmetry relations that connect these

1The division of the series of Webern’s Concerto into two collections of hexatonics and four trichords
of set class (014) was first observed by M. Babbitt in [7].
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Figure 4.2. Symmetric operations relating the hexachords and tri-
chords of the four series in the beginning of Webern’s Concerto.

subseries, with the corresponding operations indicated below each series2, showing

that the series of Webern’s Concerto also posses many internal symmetries.

The next example also explores the operations of transposition and inversion, but

with a special focus on contextual inversions, which will be indicated with the labels

2Although the coefficients of the inversion operations change between the series, the second author’s
analysis [11, pgs. 27-30] showed that these operations are connected by the same axis of contextual
inversion J and D in all series of Weber’s Concerto.
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of the transformations from Neo-Riemannian theory.3 The first section of Take a

Bow (mm. 1–65) by Matthew Bellamy is constructed entirely of major, minor, and

augmented triads played by a synthesizer in ostinatos of arpeggios. The sequence of

these arpeggios follows a chain of transformations 〈PL′〉4 for the members of the set

class (037) of consonant triads, and thus all musical phrases with a length of eight

bars of this section have its harmony polarized between two triads related by L′.

The connection between the phrases always occur between two triads related by P.

Therefore, the musical phrases repeat the same musical content under transposition.

In Figure 4.3 on the next page one can observe the cycles formed by 〈PL′〉 and the

sequence of major and minor triads in this section of Take a Bow.

The augmented triads, set class (048), are introduced between the consonant triads

that are related by L′ to soften the voice leading and to make the connection between

all triads happen by the displacement of single semitone.5 Figure 4.4 on page 15

shows how the connections between these eighteen triads occur and how they relate

with the operations of Tn and TnI.

Figure 4.4 shows how the sequences of three triads from each musical phrase are

connected by T7. It also shows that the triads that are related by transformations are

operated by TnI, where n is always even for the transformations L′, and odd for the

transformations P. As the augmented triads are not in the same class as the consonant

ones, they are not symmetrically related to the triads that come immediately before

3This Neo-Riemannian approach to the song Take a Bow was inspired by L. Bigo’s video [1].
4In [6], R. Morris defines the transformations between the consonant triads according to how the
intervals are preserved or moved in these operations: “L preserves ic 3, P preserves ic 5, and
R preserves ic 4. To these are added what I call their obverse transforms, L′, P′, and R′. In
obverse operation, one note is held invariant while other two change. L′ retains one note while the
complementary ic 3 in the triad changes and therefore is related to L. P’ and R’ are similarly related
to P and R.”
5This role that the set class (048) has of connecting two consonant triads that are two semitones
apart in the voice leading, led the second author to refer to its members as pivot sets in [12]. Many
graphs in Neo-Riemannian theory feature sets that play this role.
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Figure 4.3. The cycle formed by the chain 〈PL′〉 and the sequence of
consonant triads in section A of Take a Bow.

or after them. As previously pointed out, their role in this sequence of triads is to

soften the voice leading.

On the other hand, the set class (048) of the augmented triads is, just as the hex-

atonic collection, transpositionally and inversionally symmetric, i.e., the symmetric

operations occur internally in each one of its members. This feature is common to

almost all set classes that play the role of pivot. The parsimonious voice leading

in the sequence of triads of section A of Take a Bow can be better visualized when

traced in a graph created by Jack Douthett and Peter Steibach in [3], known as Cube

Dance, shown in Figure 4.5 on page 16.
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Figure 4.4. Sequence of all triads of section A of Take a Bow and the
symmetry operations that relate them.

The path of the sequence of triads of section A of Take a Bow traced over the Cube

Dance shows how it goes through the consecutive voice-leading zones in the counter-

clockwise direction of the graph. Conceptualized by R. Cohn in [2], the voice-leading

zones are formed by the triads that stay within the radius of the integers around

the graph. This number represent the sum of the pitch classes of each triad, which

is always in {1, 2, 4, 5, 7, 8, 10, 11} for the consonant triads, and in {0, 3, 6, 9} for the

augmented ones. The voice-leading between triads connected by the edge in two

consecutive zones is always parsimonious, and therefore another kind of symmetry,

not measured by Tn or TnI, occurs in this example, a symmetry in the voice-leading

in which each connection is made by maintaining an interval of the two triads and

displacing the remaining pitch by one semitone.

5. Alternative Dihedral Groups

We now return to mathematics. Remember the our main goal is to replace the dihedral

groups D12 and D7 by other subgroups of S12 and S7 respectively. One first idea is to

replace them by different subgroups that are still isomorphic to dihedral groups, and

hence preserve all their algebraic properties. On the other hand, in the applications
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Figure 4.5. Sequence of all triads in section A of Take a Bow traced
over the Cube Dance.

to music theory we discuss below, it is essential that these dihedral groups have a

12-cycle or a 7-cycle in the cases of D12 and D7, respectively. Therefore, we will

concentrate on these cases in this paper, leaving the discussion of the other cases to

a future publication.

Note that a subgroup H of Sn is isomorphic to Dn if and only if there are elements

ρ̂, φ̂ ∈ H such that:

(1) H =
〈
ρ̂, φ̂
〉

;

(2) |ρ̂| = n;

(3)
∣∣∣φ̂∣∣∣ = 2;

(4) φ̂ρ̂k = ρ̂n−kφ̂ for all k.

In this case we have that

H = {1, ρ̂, ρ̂2, . . . , ρ̂n−1, ρ̂φ̂, ρ̂2φ̂, . . . , ρ̂n−1φ̂},
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and an isomorphism Dn
∼= H can be given by the natural map Φ(ρk) = ρ̂k, Φ(ρkφ) =

ρ̂kφ̂, for k ∈ {0, 1, 2, . . . , n− 1}.

We now try to find all such subgroups of Sn for an arbitrary n, which we can then

specialize to the cases of interest, namely n = 12 and n = 7. The first and easiest

way to obtain such subgroups is to use conjugation: for each σ ∈ Sn, we have that

σDnσ
−1 = {στσ−1 : τ ∈ Dn} is as desired. For example, if we take, say,

σ = (0 9 2)(1 3 10 5 7 11 8 4 6),

when n = 12, then we get

ρ̂ = σρσ−1 = (9 3 0 10 6 7 1 11 4 2 5 8)

= (0 10 6 7 1 11 4 2 5 8 9 3),

φ̂ = σφσ−1 = (3 8)(0 5)(10 2)(6 4)(7 11)

= (0 5)(2 10)(3 8)(4 6)(7 11).

Notice, however, that not all different σ in Sn will give us different subgroups σDnσ
−1.

For instance, if we take σ = φ, then we would get ρ̂ = φρφ = ρn−1 and φ̂ = φφφ = φ.

Thus, in this case, we have that σDnσ
−1 = Dn. But our example above is clearly not

D12 itself, as the ρ̂ above has order 12 and the only elements of D12 of order 12 are

ρ = (0 1 2 3 4 5 6 7 8 9 10 11), (5.1)

ρ5 = (0 5 10 3 8 1 6 11 4 9 2 7), (5.2)

ρ7 = (0 7 2 9 4 11 6 1 8 3 10 5), (5.3)

ρ11 = (0 11 10 9 8 7 6 5 4 3 2 1). (5.4)

So, how many of the elements σ of Sn are such that σDnσ
−1 = Dn? Observe that

ρ̂ = σρσ−1 is an n-cycle, and thus has order n. Moreover, the only elements of order

n in Dn are ρk, for k ∈ {1, 2, . . . , (n − 1)} with gcd(n, k) = 1. The number of such

powers k is denoted by ϕ(n), where ϕ is the so called Euler ϕ-function. (So, in

general, we have that ϕ(n) is simply the number of positive integers less than n and

relatively prime to n.)
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So, before we can count how many σ ∈ Sn are such that σDnσ
−1 = Dn, we count

how many σ ∈ Sn are such that σρσ−1 = ρ. More generally, we have:

Proposition 5.1. Let τ1 = (a1 a2 . . . ar) and τ2 = (b1 b2 . . . br) be two r-cycles

in Sn. Then, there are exactly r((n− r)!) elements σ ∈ Sn such that στ1σ
−1 = τ2.

Proof. We have that στ1σ
−1 = τ2 if and only if

(σ(a1) σ(a2) . . . σ(ar)) = (b1 b2 . . . br).

Since (b1 b2 . . . br) = (b2 b3 . . . br b1) = · · · = (br b1 . . . br−1), we have

r options for where σ can send a1, namely, any of the r possible bi’s. But, after we

choose where a1 is sent, we know where all the ai’s are sent, as they are determined

by the cycle structure. (For example, if σ(a1) = b4, then σ(a2) = b5, σ(a3) = b6, . . . ,

σ(ar−3) = br, σ(ar−2) = b1, σ(ar−1) = b2, σ(ar) = b3.)

Now each element of the (n− r) elements not moved by τ1 can be sent to any of the

(n − r) elements not moved by τ2. This gives (n − r)! choices for each one of the r

choices above. Hence, in total r((n− r)!) possible σ’s in Sn. �

In our case, as r = n, for each ρk with gcd(k, n) = 1, we have n · 0! = n elements

σ ∈ Sn such that σρσ−1 = ρk. Since there ϕ(n) possible exponents k, we have nϕ(n)

elements σ ∈ Sn such that σρσ−1 is another element of order n in Dn.

On the other hand, note that, in principle, not all of these possibilities might actually

give σDnσ
−1 = Dn, as we still need that σφσ−1 = ρiφ for some i ∈ {0, 1, . . . , (n−1)}.

But we claim that all these elements do give Dn:

Lemma 5.2. There are exactly ϕ(n) · n elements σ ∈ Sn such that σDnσ
−1 = Dn.

Proof. Let σ ∈ Sn such that σDnσ
−1 = Dn. As noted above, it is necessary then

that σρσ−1 = ρk for some k with gcd(n, k) = 1. As also seen above, there are exactly

ϕ(n) ·n such σ’s, and so, to finish the proof, it suffices to show that if σρσ−1 = ρk for

some k with gcd(n, k) = 1, then σφσ−1 = ρiφ, for some i ∈ {0, 1, . . . , n− 1}.
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We first observe if we write ρk = (0 a1 a2 . . . an−1), then one of the n permutations

σ that give σρσ−1 = ρk is given by the matrix representation

σk =

(
0 1 2 · · · (n− 1)

0 a1 a2 · · · an−1

)
. (5.5)

Moreover, seeing the entries {0, 1, . . . , n− 1} as elements of Z/nZ, one can see that,

since ρ = (0 1 2 . . . n− 1), we have that σk(i) = ai = k · i. (See Eqs. (5.1) to (5.4)

for the case when n = 12.)

Now, φ is the composition of all the two cycles (a − a) (again, with entries modulo

n). Since gcd(n, k) = 1, we have that the two cycles (σk(a) − σk(a)) = (ka − ka)

that make σkφσ
−1
k are the exactly same two cycles that make φ, only perhaps in a

different order. Hence, we have that σkφσ
−1
k = φ.

Thus, with σk as above, we do have that σkDnσ
−1
k = Dn.

Now, the remaining σ’s such that σρσ−1 = ρk have matrix representations(
0 1 2 · · · (n− 2) (n− 1)

a1 a2 a3 · · · an−1 0

)
,

(
0 1 2 · · · (n− 2) (n− 1)

a2 a3 a4 · · · 0 1

)
, . . .(

0 1 2 · · · (n− 2) (n− 1)

an−2 an−1 0 · · · an−4 an−3

)
,

(
0 1 2 · · · (n− 2) (n− 1)

an−1 0 a1 · · · an−3 an−2

)
.

It’s then easy to see that these are simply given by σkρ
i, with σk as above (given by

Eq. (5.5)) and i ∈ {1, 2, . . . , (n− 1)}. But then:

(σkρ
i)φ(σkρ

i)
−1

= σkρ
iφρ−iσ−1k [since (ab)−1 = b−1a−1]

= σkρ
2iφσ−1k [since φρr = ρ−rφ]

= σkρ
2iσ−1k σkφσ

−1
k [since σ−1k σk = 1]

= (σkρσ
−1
k )

2i
(σkφσ

−1
k ) [since abra−1 = (aba−1)

r
]

= (ρk)
2i
φ [since σkφσ

−1
k = φ and σkρσ

−1
k = ρk]

= ρ2kiφ,

where the exponent of ρ can be taken modulo n (since |ρ| = n). Thus, (σkρ
i)Dn(σkρ

i)
−1

=〈
ρk, ρ2kiφ

〉
, which is equal to Dn.
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Therefore, the ϕ(n) · n possible σ ∈ Sn such that σρσ−1 = ρk with gcd(n, k) = 1 are

exactly all σ ∈ Sn such that σDnσ
−1 = Dn. �

This lemma gives us the following result:

Theorem 5.3. There are exactly (n − 1)!/ϕ(n) different subgroups of Sn that are

conjugates of Dn (and therefore isomorphic to Dn), including Dn itself.

Proof. We use the theory of group actions, which can be found in [8, Section 2.7].

We have that Sn acts on the set of its subgroups by conjugation. Consider then

A = {σDnσ
−1 : σ ∈ Sn}, i.e., A is the set of all conjugates of Dn, the so called

orbit of the subgroup Dn by the group action. Lemma 5.2 basically states that the

stabilizer of Dn by the action has order ϕ(n)·n. Then, by [8, Theorem 2.142], we have

that this orbit A has |Sn| /(ϕ(n) · n) = n!/(ϕ(n) · n) = (n− 1)!/ϕ(n) elements. �

In particular, in our cases of interest, we have:

Corollary 5.4. There are exactly 11!/ϕ(12) = 9,979,200 different subgroups of S12

that are conjugates of D12 (one of them being D12 itself), and there are exactly

6!/ϕ(7) = 120 different subgroups of S7 that are conjugates of D7 (one of them being

D7 itself).

5.1. Dihedral Groups of Order 2n Containing an n-Cycle. If almost 10 million

subgroups isomorphic to D12 in S12 might not seem enough, one might ask if there

are any others, as we only investigated those which arise from conjugation.

So, suppose H ≤ Sn with H ∼= Dn. Then, H =
〈
ρ̂, φ̂
〉

with |ρ̂| = n,
∣∣∣φ̂∣∣∣ = 2, and

φ̂ρ̂ = ρ̂−1φ̂. (If Φ : D12 → H is an isomorphism, then we can take ρ̂
def
= Φ(ρ) and

φ̂
def
= Φ(φ).)

For n = 12, one can take ρ̂ = (0 1 2)(3 4 5 6) and φ̂ = (1 2)(3 6)(4 5), and

indeed we have that H =
〈
ρ̂, φ̂
〉
∼= D12, but H is not a conjugate of D12, as since the

only elements of order 12 in D12 are 12-cycles, we know that no conjugation of D12
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can contain ρ̂. And similarly any conjugate of H is a dihedral group isomorphic to,

but not conjugate of D12.

As it turns out, the case when ρ̂ is an n-cycle (the only case we will consider here)

consists of exactly the conjugates of Dn. In other words, we have:

Theorem 5.5. There are exactly (n − 1)!/ϕ(n) subgroups of Sn that contain an n-

cycle ρ̂ and are isomorphic to Dn, which are exactly the conjugates of Dn.

Proof. Suppose H =
〈
ρ̂, φ̂
〉
∼= Dn, with ρ̂ = (a0 a1 · · · an−1) an n-cycle. We first

want to show that there is some σ ∈ Sn such that H = σDnσ
−1.

Since
∣∣∣φ̂∣∣∣ = 2, we have that φ̂ is either a 2-cycle or a product of disjoint 2-cycles.

Moreover, since φ̂ρ̂ = ρ̂−1φ̂, we have φ̂ρ̂φ̂−1 = ρ̂−1. Now,

ρ̂−1 = (a0 an−1 · · · a2 a1)

= (a1 a0 an−1 · · · a3 a2)

...

= (ak ak−1 · · · ak+2 ak+1)

...

= (an−1 an−2 · · · a1 a0)

and

φ̂ρ̂φ̂−1 = (φ̂(a0) φ̂(a1) · · · φ̂(a11)) = ρ̂−1.

Thus, we must have that φ̂(ai) = ak−i for some k ∈ {0, 1, 2, . . . , (n−1)} (independent

of i), where the indices are considered modulo n. Note that then we have φ̂(ak−i) =

ak−(k−i) = ai. Hence, φ̂ is the product of all 2-cycles of the form (ai ak−i). (Note

that if ai = ak−i, i.e., i ≡ k − i (mod n), then (ai ak−i) is not a 2-cycle, and so it is

not included in the representation of φ̂.)

Let then

σ =

(
0 1 2 · · · (n− 2) (n− 1)

a0 a1 a2 · · · an−2 an−2

)
.

It is clear that σρσ−1 = ρ̂.
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Now, remember that φ is the product of all 2-cycles of the form (i − i) = (i 0− i).
Then, it is easy to see that ρkφ is the product of all 2-cycles of the form (i k − i).

We then have that σ(ρkφ)σ−1 is a product of 2-cycles of the form (σ(i) σ(k − i)) =

(ai ak−i), and hence σ(ρkφ)σ−1 = φ̂. Thus, H =
〈
ρ̂, φ̂
〉

=
〈
σρσ−1, σ(ρkφ)σ−1

〉
=

σ
(〈
ρ, ρkφ

〉)
σ−1 = σDnσ

−1.

Therefore, all subgroups H of Sn isomorphic to Dn and having an n-cycle are conju-

gates of Dn. Of course, the converse is trivial: all conjugates of Dn are isomorphic to

Dn and contain an n-cycle, the conjugate of ρ.

Finally, Theorem 5.3 states that there are exactly (n− 1)!/ϕ(n) different conjugates

of Dn, which then finishes the proof. �

5.2. Dihedral Groups Containing ρ. Suppose we want to replace Dn with another

subgroup of Sn that also contains ρ. Is that possible? In fact, Proposition 5.1 says

that no, the only subgroup of Sn isomorphic to Dn and containing ρ is Dn itself.

Indeed, if H =
〈
ρ, φ̂
〉
∼= Dn, then φ̂ρ(φ̂)

−1
= ρ−1. By Proposition 5.1, there are only

n((n− n)!) = n possible φ̂ ∈ Sn. But we already know n possibilities, namely φ, ρφ,

ρ2φ, . . . , ρn−1φ, and hence φ̂ = ρiφ, for some i ∈ {0, . . . , (n − 1)}. But in this case

we have H =
〈
ρ, φ̂
〉

= Dn.

5.3. Dihedral Groups Containing φ and an n-Cycle. We can explicitly count

the total number of dihedral subgroups of S12 that have φ and a 12-cycle.

Theorem 5.6. There are exactly 960 distinct subgroups of S12 isomorphic to D12

(including D12 itself) that contain φ and a 12-cycle.

Proof. Let H be such a subgroup. Then, H = 〈ρ̂, φ〉, where ρ̂ is a 12-cycle. Let then:

ρ̂ = (0 a1 a2 . . . a11).

Then, we must have φρ̂φ = ρ̂−1, i.e.,

(0 φ(a1) φ(a2) . . . φ(a6) . . . φ(a11)) = (0 a11 a10 . . . a6 . . . a1). (5.6)
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Looking at 6-th entries of these cycles, and since the first entries match, we must have

that φ(a6) = a6. But since a6 6= 0, the only possibility is a6 = 6.

This leaves 10 possible choices for a1: all integers from 1 to 11, except for 6. But,

after that choice, since we have φ(a1) = a11 by Eq. (5.6), there is only one choice for

a11.

This leaves 8 choices for a2, and similarly, since φ(a2) = a10 by Eq. (5.6), there is only

one choice for a10. Proceeding in a similar way, we obtain 6 choices for a3, 4 choices

for a4, and 2 choices for a5, while a7, a8, and a9 have single choice. Hence, we have

10 · 8 · 6 · 4 · 2 = 3840 possible ρ̂’s.

Now, as before, for a given ρ̂, we have that 〈ρ̂, φ〉 =
〈

ˆ̂ρ, φ
〉

if and only if ˆ̂ρ = ρ̂k for

some k ∈ {1, 5, 7, 11}. This means that there are 3840/4 = 960 distinct dihedral

groups 〈ρ̂, φ〉. �

Note that most of those 960 subgroups will only contain φ and no other reflection from

D12. But there are some examples in which we do have another reflection. Before

we show these examples, we start by proving that there is no other subgroup of S12,

besides D12 itself, containing φ and ρ2φ.

Theorem 5.7. There is no subgroup H = 〈ρ̂, φ〉 of S12 such that ρ̂ is a 12-cycle,

H ∼= D12, H 6= D12, and φ, ρ2φ ∈ H.

Proof. Suppose that H = 〈ρ̂, φ〉 with ρ̂ a 12-cycle and φ, ρ2φ ∈ H. Since φ, ρ2φ ∈ H,

we have that φ · φρ2 = ρ2 ∈ H. Since ρ2 = (0 2 4 6 8 10)(1 3 5 7 9 11) and

H ∼= D12, we must have that either ρ̂2 = ρ2 or ρ̂−2 = ρ̂10 = ρ2, as only ρ̂2 and ρ̂−2 give

a product of two 6-cycles in H. Since 〈ρ̂, φ〉 = 〈ρ̂−1, φ〉, we may assume that ρ̂2 = ρ2.

But, ρ̂2 = ρ2 means that

ρ̂ = (0 a 2 a+ 2 4 a+ 4 6 a+ 6 8 a+ 8 10 a+ 10),
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for some a ∈ {1, 3, 5, 7, 9, 11} and where, as usual, we take these sums a+ 2i modulo

12. Now, since we must have φρ̂φ = ρ̂−1, we have

(0 φ(a) 10 φ(a+ 2) 8 φ(a+ 4) 6 φ(a+ 6) 4 φ(a+ 8) 2 φ(a+ 10))

= (0 a+ 10 10 a+ 8 8 a+ 6 6 a+ 4 4 a+ 2 2 a).

Comparing the odd-position coordinates, we have that a + 2i = φ(a + 10 − 2i) =

12 − (a + 10 − 2i), which means that 2a ≡ 2 (mod 12). But this means that a ≡ 1

(mod 6), so a = 1 or a = 7.

Taking a = 1 gives ρ̂ = ρ, while taking a = 7 gives ρ̂ = ρ7. But we have 〈ρ7, φ〉 =

〈ρ, φ〉 = D12, which shows that H = D12. �

On the other hand, we have:

Theorem 5.8. There are exactly 3 subgroups H = 〈ρ̂, φ〉 of S12 such that:

(1) ρ̂ is a 12-cycle,

(2) H ∼= D12,

(3) H 6= D12,

(4) {φ, ρ3φ, ρ6φ, ρ9φ} ⊆ H.

(Note that in these cases we also have {ρ3, ρ6, ρ9} ⊆ H.) These subgroups are given

by taking

ρ̂
def
= (0 a 3− a 3 a+ 3 6− a 6 a+ 6 9− a 9 a+ 9 − a)

with a equal to either 4, 7, or 8.

Proof. The proof is similar. Suppose that H is such group. Since φ, ρ3φ ∈ H, we

have that ρ3 ∈ H. Since ρ3 = (0 3 6 9)(1 4 7 10)(2 5 8 11) and H ∼= D12, we

must have that either ρ̂3 = ρ3 or ρ̂−3 = ρ̂9 = ρ3, as only ρ̂3 and ρ̂−3 give a product of

three 4-cycles in H. Since 〈ρ̂, φ〉 = 〈ρ̂−1, φ〉, we may assume that ρ̂3 = ρ3.

But, ρ̂3 = ρ3 means that

ρ̂
def
= (0 a b 3 a+ 3 b+ 3 6 a+ 6 b+ 6 9 a+ 9 b+ 9), (5.7)
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for some a, b ∈ {1, 2, 4, 5, 7, 8, 10, 11} and where, again, we takes these sums a + 3i

and b+ 3i modulo 12. Now, since we must have φρ̂φ = ρ̂−1, we have

(0 φ(a) φ(b) 9 φ(a+ 3) φ(b+ 3) 6 φ(a+ 6) φ(b+ 6) 3 φ(a+ 9) φ(b+ 9))

= (0 b+ 9 a+ 9 9 b+ 6 a+ 6 6 b+ 3 a+ 3 3 b a).

Comparing coordinates, we have that a+3i = φ(b+9−3i) and b+3i = φ(a+9−3i),

which means that a+ b+ 9 ≡ 0 (mod 12), i.e., b ≡ 3− a (mod 12). Therefore, ρ̂ has

the form given in the statement.

Thus, the possibilities for a are 1, 2, 4, 5, 7, 8, 10, 11. Of these, we have that a = 1

gives ρ̂ = ρ, while a = 5 gives ρ̂ = ρ5, so both give H = D12. By Eqs. (5.1) to (5.4),

none of the others give D12 itself.

We now have to take into account which choices of a would give the same group.

These choices have to produce two 12-cycles in the same group, so they must be in

{ρ̂, ρ̂5, ρ̂7, ρ̂11}. But, the form given above means that ρ̂3(0) = 3, and (ρ̂k)
3
(0) = 3

(for k ∈ {1, 5, 7, 11}) only when k = 5. Therefore, two of the possible choices will

give the same group.

We have that

ρ̂5 = ˆ̂ρ
def
= (0 6− a a+ 9 3 9− a a 6 − a a+ 3 9 3− a a+ 6).

So, with a = 2, we have that ˆ̂ρ is the same as the ρ̂ given by a = 4, and hence these

two cases gives the same H.

Similarly, the cases a = 7 and a = 11, and a = 8 and a = 10, give the same groups.

Thus, we have a total of 3 such H. �

Similarly, we have the following results:

Theorem 5.9. There are exactly 2 subgroups H = 〈ρ̂, φ〉 of S12 such that:

(1) ρ̂ is a 12-cycle,

(2) H ∼= D12,



26 LUÍS R. A. FINOTTI AND CIRO VISCONTI

(3) H 6= D12,

(4) {φ, ρ4φ, ρ8φ} ⊆ H.

(Note that in these cases we also have {ρ4, ρ8} ⊆ H.) These subgroups are given by

taking

ρ̂
def
= (0 a 2 4− a 4 a+ 4 6 8− a 8 a+ 8 10 − a),

with a equal to either 3 or 9.

Theorem 5.10. There are exactly 15 subgroups H = 〈ρ̂, φ〉 of S12 such that:

(1) ρ̂ is a 12-cycle,

(2) H ∼= D12,

(3) H 6= D12,

(4) {φ, ρ6φ} ⊆ H.

(Note that in these cases we also have ρ6 ∈ H.) These subgroups are given by taking

ρ̂
def
= (0 a b c 6− a 6− b 6 a+ 6 b+ 6 c+ 6 − b − a),

with a = 1, b ∈ {2, 4, 8, 10} and c ∈ {3, 6}, except for (a, b, c) = (1, 2, 3) which gives

D12, or with a = 2, b ∈ {1, 5, 7, 11}, and c ∈ {3, 6}.

Moreover, the cases with (a, b, c) equal to (1, 8, 9), (2, 1, 3), and (2, 7, 9) are such that

ρ3, φ ∈ H, which were already accounted for in Theorem 5.8.

Their proofs are follow quite similar ideas to the ones found on Theorem 5.8, and

thus we will omit them here for the sake of brevity.

6. New Systems

Remember that for two pitch classes, say p1 and p2 in the pitch class space P def
=

Z/12Z, the (ordered) pitch class interval between p1 and p2 is simply p2 − p1 seen as

an integer in {0, 1, 2, . . . , 11}, i.e., the residue modulo 12 of p2 − p1.
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We can change perspective a little, and observe that the pitch class interval between

p1 and p2 is the integer k in {0, 1, 2, . . . , 11} such that ρk(p1) = p2. Thus, one can tie

the idea of pitch class interval with the dihedral group D12.

Hence, if one decides to replace the role of D12 by another subgroup of S12 isomorphic

to D12 (i.e., still dihedral of order 24), say H =
〈
ρ̂, φ̂
〉

, and ρ̂ is also a 12-cycle, one

can then redefine the notion of pitch class interval in terms of H: we define then the

pitch class interval between p1 and p2 as the integer k in {0, 1, 2, . . . , 11} such that

ρ̂k(p1) = p2. This clearly generalizes the original notion of pitch class interval.

Note that the requirement that ρ̂ is 12-cycle is essential. For instance, if ρ̂ =

(0 1)(2 3 4 5)(6 7 8 9 10 11) and φ̂ = (3 5)(7 11)(8 10), then〈
ρ̂, φ̂
〉
∼= D12, but there is no power of ρ̂ that would take 0 to 2, so we would not be

able to define the interval between these pitch classes. (The authors have ideas for fix

the definition of interval in these cases, but these will appear in a different article.)

It’s important to note here that in this notion of interval depend on ρ̂ itself, not

simply on the group H. For instance, clearly, we have that H =
〈
ρ̂, φ̂
〉

=
〈
ρ̂5, φ̂

〉
,

but the choice between ρ̂ and ρ̂5 affects how we measure intervals. Thus, even if we

stick with H = D12 itself, we can replace ρ by ρ5, ρ7, or ρ11 and obtain a new system.

Of course, in that case, we do preserve all standard transpositions and inversions.

Remember further that the unordered pitch class interval or interval class between p1

and p2 is simply min{p1 − p2, p2 − p1}, where again, these differences are considered

modulo 12. But again, we can tie this notion with the dihedral group. Immediately,

from the above, we see that if we let k, l ∈ {0, 1, 2, . . . , 11} such that ρk(p1) = p2

and ρl(p2) = p1, then the pitch class interval is min{k, l}. (Of course, we have that

l = 12− k.) On the other hand, note that if ρl(p2) = p1 (and so ρ−l(p1) = p2), then

we have that ρl(φ(p1)) = φ(p2), as

ρl(φ(p1)) = φ(ρ−l(p1)) = φ(p2).

Therefore, we can redefine the interval class as min{k, l}, where k, l ∈ {0, 1, 2, . . . 11},
ρk(p1) = p2 and ρl(φ(p1)) = p2. Then, clearly one can again generalize this for other
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dihedral groups D =
〈
ρ̂, φ̂
〉

, with ρ̂ a 12-cycle, by defining the interval class with

respect to H as min{k, l}, where k, l ∈ {0, 1, 2, . . . 11}, ρ̂k(p1) = p2 and ρ̂l(φ̂(p1)) = p2.

Note that, since in H we have ρ̂φ̂ = φ̂ρ̂−1, we still can define this interval class as

min{k, l}, where k, l ∈ {0, 1, 2, . . . 11}, ρ̂k(p1) = p2, and ρ̂l(p2) = p1, i.e., the interval

class still does remain unordered (in the sense that the interval class between p1 and

p2, and p2 and p1 are equal). Therefore, even though we can see how φ̂ relates to the

notion of interval class, the actual choice of φ̂ does not affect it. It only depends on

ρ̂, and implicitly, on the fact that H =
〈
ρ̂, φ̂
〉

is dihedral. Therefore, replacing φ̂ by

any other reflection ρ̂iφ̂, does not affect the interval class.

In particular, we shall adopt the following convention on the representation of dihedral

groups as H =
〈
ρ̂, φ̂
〉

: we shall always assume that φ̂(0) = 0, as if not, it can be

replaced by some ρ̂iφ̂ that does fix 0, without changing H itself (and the notion of

class interval). This convention helps φ̂ seem more familiar, as this is a property that

the usual φ we also has.

This new concept of class interval allows us to create new music systems, where not

only the notion of symmetry, originally given by D12 = 〈ρ, φ〉, is replaced by some

new dihedral group H =
〈
ρ̂, φ̂
〉

, where ρ̂ is a 12-cycle, but also the notion of ordered

and unordered pitch class intervals is replaced these new ones associated to ρ̂ (and

φ̂).

Let’s consider two examples to illustrate these new systems and how they affect

interval classes. Let’s consider the dihedral groups H1
def
= 〈ρ1, φ1〉 and H2

def
= 〈ρ2, φ2〉,

where

ρ1
def
= (0 4 11 3 7 2 6 10 5 9 1 8)

φ1
def
= φ = (1 11)(2 10)(3 9)(4 8)(5 7),

and

ρ2
def
= (0 10 4 1 8 5 11 2 3 9 6 7)

φ2
def
= (1 9)(2 5)(3 8)(4 6)(7 10).
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Figure 6.1. Ordered and unordered pitch class intervals between C
and A[ in the usual system.

Note that H1 is one of the examples given in Theorem 5.8, and therefore we have

ρ3, φ ∈ H1, and hence it is close to the original D12. On the other hand, the dihedral

group H2 has no element, other than the identity, in common with D12. We shall use

H1 and H2 as our main examples throughout.

Let’s consider than intervals between the pitch classes of C (associated to 0) and A[

(associated to 8). Then, the ordered pitch class interval between them is 8, since

ρ8(0) = 8. The unordered pitch class interval is 4, since ρ4(8) = 0 (and 4 < 8). These

are often visualized in the “clock face”, as seen in Figure 6.1. For the ordered class

interval we move along the clock face clockwise. For unordered class interval, we take

the smaller distance, either by going clockwise or counterclockwise.

When measuring pitch class intervals according to H1 instead, we have that the

ordered pitch class interval between C and A[ is 11, since ρ111 (0) = 8, while the

unordered pitch class interval is 1, since ρ1(8) = 0 (and 1 < 11). We can still visualize

the interval classes in the clock face, but now instead of having the pitch classes move

by a semitone, they are ordered according to ρ1 = (0 4 11 3 7 2 6 10 5 9 1 8).

Therefore, after 0 comes 4, followed by 11, and so on. Figure 6.2 on the next page

shows the clock face for the system given by H1.

Similarly, with system given by H2, we have that the ordered pitch class interval

between C and A[ is 4, since ρ42(0) = 8. In this case, the unordered pitch class

interval is also 4, since ρ8(8) = 0 (and 8 > 4). Figure 6.3 on the following page

illustrates this case.
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Figure 6.2. Ordered and unordered pitch class intervals between C
and A[ in the system given by H1.

Figure 6.3. Ordered and unordered pitch class intervals between C
and A[ in the system given by H2.

One can also use the new systems to measure pitch intervals (instead of pitch class

intervals). In this case, the pitch interval measures the distance between two pitches

in the pitch space. This can be visualized with straight line, with pitches going up by

a semitone as we move to the right. In this case the ordered interval between C4 and

A[5, represented by 0 and 20 respectively, is +20 and the ordered interval between

A[5 and C4 is −20. The unordered interval in both cases is 20. (See Figure 6.4 on

the next page.)

In the new systems we still assign 0 to C4 and “unwrap” the clock face to the line

accordingly. So, in the case of ρ1 = (0 4 11 3 7 2 6 10 5 9 1 8), we have

4 after 0, followed by 11, then 3, etc. After 8 we have 12, followed by 16, then 23,
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Figure 6.4. Interval between C4 and A[5 in the usual system.

Figure 6.5. Intervals between C4 and A[5 in the system given by H1.

Figure 6.6. Intervals between C4 and A[5 in the system given by H2.

etc. Therefore, in this case the ordered interval between C4 and A[5 is +23, and the

ordered interval between A[5 and C4 is −23. The unordered interval, in either order,

is simply 23. Figure 6.5 illustrates this case.

Similarly, for the system given by H2 we have that the ordered interval between

C4 and A[5 is +16, and the ordered interval between A[5 and C4 is −16, and the

unordered interval is simply 23, as illustrated in Figure 6.6.

As another illustration of these different systems, we shall consider their corresponding

Forte tables, as described in [9, Appendix 1].

First, we observe that a set class of pitch class set can be thought as the orbit of the

pitch class set by the dihedral group D12. For example, if S ⊆ P is a set of pitch

classes, say S = {p1, p2, . . . , pk}, then its set class is given by

(S)
def
= {{σ(p) : p ∈ S} : σ ∈ D12}.

It’s usual to represent this class by its prime form, which makes a choice of represen-

tative that start with 0 and is most compressed to the right. (See [9, Chapter 2].)

We can use the same idea with a new system determined by a different dihedral group

H containing a 12-cycle, and think of the class sets as orbits of the pitch class set
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now by H instead. Again, we use the prime form to represent elements, but note that

the prime form is now determined by the corresponding way of measuring pitch class

intervals.

For instance, the pitch class set {0, 1, 2}, in the standard equal temperament system

(to which will refer from now simply as the standard system) has clearly prime form

(012). On the other hand, in the system given by H1, we have that this same set

has prime form (0et), since in this case, for example, the interval between 0 and 11 is

only 2. Similarly, in the system given by H2, the set has, coincidentally prime from

(012) also. But note that in this last case the interval from 0 to 1 is 3 and not 1.

In fact, while in the standard system (012) has interval vector 210000, in the system

given by H2 the interval vector of (012) is 001110: the unordered pitch class interval

from 0 to 1 is 3, from 1 to 2 is 4, and from 2 to 0 is 5.

In the case of the system given by H1, the pitch set class (0et) (of the pitch class set

given by {0, 1, 2}) has interval vector 010020.

We shall now give examples of Forte tables given by these new systems. Note that

traditionally the Forte table also includes identifying “names” each set class, but

since they have no mathematical meaning and no analogue for different systems, we

decided to omit them.

First, Table 6.1 on the facing page gives the Forte table for trichords and nonachords

in the standard system. The corresponding Forte tables, again for trichords and

nonachords, for the systems given by H1 and H2 are given by Tables 6.2 on the next

page and 6.3 on page 34, respectively.

Finally we look at the concept of sum class (see [10]). Algebraically, the sum class

of a pitch set or pitch class set is just the sum of the numerical values of the pitches

or pitch classes in the set reduced modulo 12. On the other hand, as seen in cited

reference, the notion comes from the idea of having a balance between ascending and

descending motion. The sum class in the standard system captures this idea: if two

set classes have the same sum class, then ascending and descending motions balance

each other. This happens since the numerical value of the pitches or pitch classes
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Trichords Nonachords

(012) 210000 1, 1 876663 (012345678)

(013) 111000 1, 0 777663 (012345679)

(014) 101100 1, 0 767763 (012345689)

(015) 100110 1, 0 766773 (012345789)

(016) 100011 1, 0 766674 (012346789)

(024) 020100 1, 1 686763 (01234568t)

(025) 011010 1, 0 677673 (01234578t)

(026) 010101 1, 0 676764 (01234678t)

(027) 010020 1, 1 676683 (01235678t)

(036) 002001 1, 1 668664 (01234679t)

(037) 001110 1, 0 667773 (01235679t)

(048) 000300 3, 3 666963 (01245689t)

Table 6.1. Forte Table for Trichords and Nonachords.

Trichords Nonachords

(036) 002001 1, 1 668664 (04e376t91)

(03t) 001110 1, 0 667773 (04e326t91)

(042) 100110 1, 0 766773 (04e372t59)

(043) 111000 1, 0 777663 (04e3726t9)

(046) 100011 1, 0 766674 (04e376t59)

(047) 101100 1, 0 767763 (04e372659)

(04e) 210000 1, 1 876663 (04e3726t5)

(075) 000300 3, 3 666963 (04e726591)

(0e2) 011010 1, 0 677673 (04e372t51)

(0e6) 010101 1, 0 676764 (04e376t51)

(0e7) 020100 1, 1 686763 (04e372651)

(0et) 010020 1, 1 676683 (04e326t51)

Table 6.2. Forte Table for Trichords and Nonachords for the system
given by H1.

can be interpreted as the intervals or interval class between the corresponding pitch

or pitch class to the fixed reference of 0. This is not the case in new systems as, in

general, the interval between 0 and a pitch or pitch class p is not p.
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Trichords Nonachords

(012) 001110 1, 0 667773 (0t415e296)

(01e) 002001 1, 1 668664 (0t418e296)

(042) 010020 1, 1 676683 (0t415e236)

(045) 011010 1, 0 677673 (0t4185236)

(048) 020100 1, 1 686763 (0t4185e36)

(04e) 010101 1, 0 676764 (0t418e236)

(083) 000300 3, 3 666963 (0t485e396)

(0t1) 111000 1, 0 777663 (0t4185e29)

(0t4) 210000 1, 1 876663 (0t4185e23)

(0t5) 100110 1, 0 766773 (0t4185239)

(0t8) 101100 1, 0 767763 (0t4185e39)

(0te) 100011 1, 0 766674 (0t418e239)

Table 6.3. Forte Table for Trichords and Nonachords for the system
given by H2.

Therefore, in order to define a corresponding notion of the sum class in the new

systems we need to take this interval notion of sum class, and not simply a numeric

approach. Hence we define in any system the sum class of the pitch set [a1, a2, . . . , ak]

to be the reduction modulo 12 of the sum of the intervals between ai and 0, and

similarly, using interval classes, for pitch class sets. This then captures the idea that

two pitch sets (or classes) have the same sum class if and only if the ascending and

descending motions, measured with this notion of interval, are balanced.

For example, in the standard system the class sum of [11, 0, 3] is 11 + 0 + 3 = 2 (in

Z/12Z). On the other hand, in the system given by H1, we have that [0, 11, 3] (the

normal form of {0, 3, 11} in this system) has sum class equal to 0 + 2 + 3 = 5, as the

interval between 0 and 0 is 0, between 0 and 11 is 2, and between 0 and 3 is 3. In

the system given by H2, the class sum of [11, 3, 0] is 6 + 8 + 0 = 2.

We close this section with a final observation about notation. We shall use the nota-

tion Tn and TnI for the corresponding transposition and inversion in every system.

While in the standard system these correspond to ρn and ρnφ, respectively, in the

system given by H1, for instance, they correspond to ρn1 and ρn1φ1 instead.
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7. New Webern Matrices

We can also use the other systems, i.e., other dihedral groups, to create Webern

matrices.

We start with an example for H1. We first need to find the first row. Choosing the

set class (042) (in this system), for example, we observe that

ρ1φ1({0, 4, 2}) = {4, 0, 5},

ρ71φ1({0, 4, 2}) = {10, 6, 11},

ρ41({0, 4, 2}) = {7, 2, 9},

ρ101 ({0, 4, 2}) = {1, 8, 3},

and thus we can take, for instance, the first row to be

r0 = (0, 5, 4, 11, 6, 10, 7, 9, 2, 3, 1, 8),

which yields the Webern matrix in Table 7.1 on the next page.

Note that the first and second hexachords, [0, 4, 11, 6, 10, 5] and [3, 7, 2, 9, 1, 8], have

two inner symmetries by rotations (the identity and ρ61) and two inner symmetries

by reflection (ρ21φ and ρ81φ1), and the first can be mapped into the second by two

rotations (ρ31 and ρ91) and two reflections (ρ51φ1 and ρ111 φ1). Thus, as in Webern’s

original series, this new example also posses many internal symmetries, not only for

trichords, but also for hexachords. (Although here the hexachords have only two,

instead of three, symmetries by transposition and reflection, there are many choices

of the first row/series in this system that would also yield three of each instead.)

Although this system is fairly close to the standard one, as ρi1 = ρi for i = 3, 6, 9,

and φ1 = φ, and thus have three of the eleven non-trivial transpositions and four of

the twelve inversions, using other dihedral groups can yield widely different systems.

The example of H2 illustrates this point.
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φ ρ̂8φ ρ̂φ ρ̂2φ ρ̂6φ ρ̂7φ ρ̂4φ ρ̂9φ ρ̂5φ ρ̂3φ ρ̂10φ ρ̂11φ

1 0 5 4 11 6 10 7 9 2 3 1 8 ρ̂11

ρ̂4 7 0 2 6 1 8 5 4 9 10 11 3 ρ̂3

ρ̂11 8 10 0 4 2 6 3 5 7 11 9 1 ρ̂10

ρ̂10 1 6 8 0 7 2 11 10 3 4 5 9 ρ̂9

ρ̂6 6 11 10 5 0 4 1 3 8 9 7 2 ρ̂5

ρ̂5 2 4 6 10 8 0 9 11 1 5 3 7 ρ̂4

ρ̂8 5 7 9 1 11 3 0 2 4 8 6 10 ρ̂7

ρ̂3 3 8 7 2 9 1 10 0 5 6 4 11 ρ̂2

ρ̂7 10 3 5 9 4 11 8 7 0 1 2 6 ρ̂6

ρ̂9 9 2 1 8 3 7 4 6 11 0 10 5 ρ̂8

ρ̂2 11 1 3 7 5 9 6 8 10 2 0 4 ρ̂

ρ̂ 4 9 11 3 10 5 2 1 6 7 8 0 1

ρ̂φ ρ̂9φ ρ̂2φ ρ̂3φ ρ̂7φ ρ̂8φ ρ̂5φ ρ̂10φ ρ̂6φ ρ̂4φ ρ̂11φ φ

Table 7.1. Webern’s Matrix for H1.

We can start with {0, 10, 3} (in the set class (0t5)). Then:

ρ52φ2({0, 10, 3}) = {5, 8, 9},

ρ32φ2({0, 10, 3}) = {1, 4, 2},

ρ102 ({0, 11, 2}) = {6, 7, 11},

and hence we can choose the first row

r0 = (0, 10, 3, 5, 9, 8, 4, 2, 1, 11, 6, 7).

This gives the Webern matrix shown in Table 7.2 on the facing page.

In this case, the hexachords [0, 10, 8, 5, 3, 9] and [4, 1, 11, 2, 6, 7] have, as in the orig-

inal Webern matrix, three symmetries by transpositions (ρ22, ρ
6
2, and ρ102 ) and three

symmetries by inversion (ρ32φ2, ρ
7
2φ2, and ρ112 φ2).
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φ̂ ρ̂φ̂ ρ̂8φ̂ ρ̂5φ̂ ρ̂9φ̂ ρ̂4φ̂ ρ̂2φ̂ ρ̂7φ̂ ρ̂3φ̂ ρ̂6φ̂ ρ̂10φ̂ ρ̂11φ̂

1 0 10 3 5 9 8 4 2 1 11 6 7 ρ̂11

ρ̂11 7 0 2 8 3 1 10 11 4 5 9 6 ρ̂10

ρ̂4 8 5 0 9 10 3 11 7 2 6 4 1 ρ̂3

ρ̂7 2 3 1 0 8 7 9 4 6 10 5 11 ρ̂6

ρ̂3 1 8 7 3 0 2 5 6 11 9 10 4 ρ̂2

ρ̂8 3 9 8 10 5 0 6 1 7 4 11 2 ρ̂7

ρ̂10 6 7 11 1 2 4 0 5 10 8 3 9 ρ̂9

ρ̂5 5 11 10 6 4 9 2 0 3 7 1 8 ρ̂4

ρ̂9 9 6 5 4 11 10 7 8 0 1 2 3 ρ̂8

ρ̂6 11 2 4 7 1 6 3 10 9 0 8 5 ρ̂5

ρ̂2 4 1 6 2 7 11 8 9 5 3 0 10 ρ̂

ρ̂ 10 4 9 11 6 5 1 3 8 2 7 0 1

ρ̂φ̂ ρ̂2φ̂ ρ̂9φ̂ ρ̂6φ̂ ρ̂10φ̂ ρ̂5φ̂ ρ̂3φ̂ ρ̂8φ̂ ρ̂4φ̂ ρ̂7φ̂ ρ̂11φ̂ φ̂

Table 7.2. Webern’s Matrix for H2.

8. New Systems and Permutations

By Theorem 5.5, we know that all subgroups H =
〈
ρ̂, φ̂
〉

of S12 that are isomorphic

to D12 and contain a 12-cycle, i.e., the ones we use to construct new systems, are given

by conjugates of D12 itself. This means that there is σ ∈ S12 such that ρ̂ = σρσ−1 and

φ̂ = ρ̂i · (σφσ−1) for some i. (Note that we cannot, in general, simply take φ̂ = σφσ−1

due to our convention that φ̂(0) = 0. But we do have that H = 〈ρ̂, σφσ−1〉.)

For instance, in the example of H1 above, with ρ1 = (0 4 11 3 7 2 6 10 5 9 1 8)

and φ1 = φ, we can take

σ1 =

(
0 1 2 3 4 5 6 7 8 9 10 11

6 10 5 9 1 8 0 4 11 3 7 2

)
= (0 6)(1 10 7 4)(2 5 8 11)(3 9). (8.1)
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In general, since

ρ̂ = σρσ−1 = (σ(0) σ(1) σ(2) . . . σ(11)),

the notion of interval using ρ̂ can be obtained by permuting the original pitch classes.

More precisely, since the pitch class interval from i to i+1 is 1, then in the new system

given by ρ̂ = σρσ−1 (and its corresponding φ̂), the pitch class interval between σ(i)

and σ(i+1) is 1. Thus, this new system can be seen as a permutation of the standard,

where the role of the pitch class i is replaced by σ(i).

The only pitch class that is somewhat special is 0, as we still use it as our first pitch

class, and therefore it will affect the prime form of a set class: in the new system, the

prime form is the one starting at 0 and most “concentrated to left” (in this new way

of measuring intervals).

Note also that this special status of 0 only affects how we represent our set classes,

but have no real effect on the structure.

Since these new systems are simply obtained by permutations, their intrinsic proper-

ties are the same as the standard system (with ρ and φ). For instance, comparing the

Forte tables for D12 (Table 6.1 on page 33) and H1 (Table 6.2 on page 33), one can

see that they have the same number of rows and each row in one corresponds to an

equivalent row in the other. For instance, the last row of the first (the row of (048))

corresponds to the eighth row on the second (the row of (075)).

Indeed, in the last row of the original we have the set class for the trichord [0, 4, 8].

Observe then that, with the σ1 above that gives ρ1, we have σ1(0) = 6, σ1(4) = 1, and

σ1(8) = 11 and the set class of {1, 6, 11} has prime form (in the new system) (075),

since ρ21({1, 6, 11}) = {7, 0, 5}. In a similar manner, one can check that the first row

of the first table corresponds to the seventh row of the second one. Note that the

class interval vector and number of symmetries match for the corresponding rows.

We shall refer to set classes from two systems that can be obtained by the correspond-

ing permutation of pitch classes as equivalent. So, the set class (048) in the standard

system is equivalent to the set class (075) in the system given by H1.
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φ ρ̂11φ ρ̂3φ ρ̂4φ ρ̂8φ ρ̂7φ ρ̂9φ ρ̂5φ ρ̂6φ ρ̂φ ρ̂2φ ρ̂10φ

1 6 2 9 1 11 4 3 8 0 10 5 7 ρ̂10

ρ̂ 10 6 1 8 3 11 7 0 4 5 9 2 ρ̂11

ρ̂9 3 11 6 10 8 1 0 5 9 7 2 4 ρ̂7

ρ̂8 11 4 2 6 1 9 8 10 5 3 7 0 ρ̂6

ρ̂4 1 9 4 11 6 2 10 3 7 8 0 5 ρ̂2

ρ̂5 8 1 11 3 10 6 5 7 2 0 4 9 ρ̂3

ρ̂3 9 5 0 4 2 7 6 11 3 1 8 10 ρ̂

ρ̂7 4 0 7 2 9 5 1 6 10 11 3 8 ρ̂5

ρ̂6 0 8 3 7 5 10 9 2 6 4 11 1 ρ̂4

ρ̂11 2 7 5 9 4 0 11 1 8 6 10 3 ρ̂9

ρ̂10 7 3 10 5 0 8 4 9 1 2 6 11 ρ̂8

ρ̂2 5 10 8 0 7 3 2 4 11 9 1 6 1

ρ̂2φ ρ̂φ ρ̂5φ ρ̂6φ ρ̂10φ ρ̂9φ ρ̂11φ ρ̂7φ ρ̂8φ ρ̂3φ ρ̂4φ φ

Table 8.1. Another Webern’s Matrix for H1.

Similarly, applying σ1 above to every single entry of the original Webern matrix (Ta-

ble 3.1) gives a Webern matrix for the system determined by H1, shown in Table 8.1.

Note how in this case the transformations, shown on left, top, right, and bottom are

exact matches between the two cases.

The example of H2 can be obtained by taking

σ2 = (0 1 8 7 6 9)(2 5 3 11 4),

as

ρ2 = σ2ρσ
−1
2 = (0 10 4 1 8 5 11 2 3 9 6 7),

σ2φσ
−1
2 = (0 11)(2 7)(3 6)(4 8)(5 10).

In this case, the standard choice of φ̂ (fixing 0) is

φ2 = ρ61 · (σφσ−1) = (1 9)(2 5)(3 8)(4 6)(7 10).
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For those interested in using these new systems, the authors have routines for the

math software Sage, along on instructions on how to use them, available at https:

//github.com/lrfinotti/MusicalSystems.

9. Applications I

In the next two sections we use the two systems described in Section 6, i.e., those given

by H1 and H2, in concrete musical examples, namely those described in Section 4.

In this current section we will use these systems to rewrite the first eight bars of

the first movement of Webern’s Concerto for Nine Instruments, Op. 24, while in

the next section we rewrite the first section of the song Take a Bow by Matthew

Bellamy. These examples show how, despite the changes in the pitch classes, the

interval relations and symmetries are preserved in the systems.

The first example, shown in Figure 9.1 on the facing page, rewrites the first eight bars

of Webern’s Concerto for Nine Instruments, Op. 24 by simply permuting the pitch

classes using σ1 as given in Eq. (8.1), which is the permutation that gives the system

determined by H1. It corresponding matrix was given in Table 8.1.

Since all the pitch classes are simply permuted by σ1 above, all its interval and

symmetry properties are preserved in the new system (given by H1 = σ1D12σ
−1
1 ),

and even the maps between the symmetric hexachords and trichords correspond to

the original maps, as seen in Figure 9.2 on page 42. In other words, its analysis is

completely equivalent to the original.

On the other hand, using the matrix from Table 7.1, which also uses the system given

by H1, we have a very different result. Following the same order of the series of the

original composition, but with this different matrix, we produce the example given

on 9.3 on page 43.

Figure 9.4 on page 44 shows the symmetries in this example. Note how the two

hexachords that divide each series are from the set class (04e6t5) and, in contrast

to the example given by Figure 9.1, this set class is not equivalent to the hexatonic

https://github.com/lrfinotti/MusicalSystems
https://github.com/lrfinotti/MusicalSystems
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Figure 9.1. First eight bars of Webern’s Concerto for Nine Instru-
ments rewritten using σ1.

collection, but to the set class (012678) from the standard system6. Although this set

class is also symmetric, its members are mapped by only two transpositions and two

inversions, as show in Figure 9.4.

The trichords that make these hexachrds are all from the set class (042), which are

equivalent to the sec class (015) in the standard system. Thus, it is clear that indeed

this example is not equivalent to the original.

We now give an example with the system given by the group H2. This system is even

more dissimilar to the standard system than H1, as it not only changes operations of

6This hexachord is know as Messiaen’s mode 5. See [5]
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Figure 9.2. Symmetric operations relating the hexachords and tri-
chords of the four series in the beginning of Webern’s Concerto.

transposition (given by ρ), but also the operation of inversion (given φ). Figure 9.5

on page 45 shows the rewriting of Webern’s piece using Table 7.2.

Although the matrix given in Table 7.2 is not equivalent to Webern’s original matrix

(given in Table 3.1), it does share some of the properties of the original, e.g., the two

hexachords that divide the series, which are members of the set class (0t8539), are

related by three transpositions and three inversions (as observed in Section 7).
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Figure 9.3. First eight bars of Webern’s Concerto for Nine Instru-
ments rewritten using Table 7.1.

The set class (0t8539) in this example is equivalent to the set class (014589) in the

standard system, which is the same as in Webern’s original. On the other hand, the

trichords that divide (0t8539) in this new example are in the set class (0t5), which

is not equivalent to the original set class (014) (as seen in Figure 4.2). It is in fact

equivalent to (015) in the standard system.

Figure 9.6 on page 46 shows how the two hexachords that divide the series in this

example are related by three inversions and three transpositions, as in the original.

It also show how this new example differs from the original in that the original the
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Figure 9.4. Symmetric operations relating the hexachords and tri-
chords of the four series in the beginning of the example give in Fig-
ure 9.3.

relations between the trichords were always given by inversion operations, while in this

new example the trichords are related alternatively by transpositions and inversions.

10. Applications II

We now apply our new systems to rewrite the first section of the song Take a Bow

by Matthew Bellamy.
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Figure 9.5. First eight bars of Webern’s Concerto for Nine Instru-
ments rewritten using Table 7.2.

As observed in Section 4, the harmony of this piece is composed of only major and

minor triads, belonging to the set class (037), and augmented triads, belonging to the

set class (048). Figure 4.3 also shows that the sequence of the members of the set

class (037) is part of the chain 〈PL′〉, where P is the Neo-Riemannian transformation

that represents a contextual inversion in which the largest interval class between

the triads is preserved, while the remaining interval class is changed by the smallest

possible displacement (which is simply a semitone in the standard system), and L′

is the Neo-Riemannian transformation that represents the contextual inversion in

which the smallest interval class is displaced by the least possible interval, while the

remaining interval class is preserved.
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Figure 9.6. Symmetric operations relating the hexachords and tri-
chords of the four series in the beginning of the example give in Fig-
ure 9.5.

In the standard system, the set class (037), which contains all major and minor triads,

has interval vector 0001110, which is equivalent to the set class (03t) in the system

given by H1. Figure 10.1 on the facing page shows the members of the chain 〈PL′〉
for the set class (03t) (in the new system) which will be used in the rewriting of the

first section of the song.
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Figure 10.1. The cycle formed by the chain 〈PL′〉 with members of
(03t) in the system given by H1, emphasizing the sets used in the rewrit-
ing.

Observe how Figure 10.1 shows that the sets related by P and L′ have the same

coherence as in the standard system, i.e., in P the largest interval class 5 is preserved,

while the remaining interval class is changed by a minimal interval, and in L′ the

smallest interval class 3 is changed by the smallest interval, while the remaining

interval class is preserved. But, of course, in this new system this smallest interval

is not (necessarily) a semitone, as intervals are measures according to the new ρ (in

this case, ρ1 = (0 4 11 3 7 2 6 10 5 9 1 8)).

For instance, note that the transformation between [10, 1, 11] and [10, 8, 11] is P as

the pitch classes 10 and 11 form the largest interval class of the sets is maintained,

while the pitch class 1 changed by the smallest interval to the pitch class 8.
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Similarly, it can be observed that the transformation between [11, 6, 9] and [10, 1, 11] is

L′, as the pitch classes 6 and 9, which form the smallest interval are changed by single

interval to 10 and 1, respectively, while the remaining pitch class remains unaltered.

Thus, one can see how the entire graph in Figure 10.1 is equivalent to the one in

Figure 4.3 (which shows the chain 〈PL′〉 in the standard system). The permutation

of pitch classes in this case can be seen as

σ =

(
0 1 2 3 4 5 6 7 8 9 10 11

0 4 11 3 7 2 6 10 5 9 1 8

)
= (1 4 7 10)(2 11 8 5).

Figure 4.4 showed the voice leading between the chords of the first section of the

original song, and how an augmented triad was introduced between the consonant

triads. As a consequence, the voice leading in this section is always made by preserving

two pitch classes and changing the remaining pitch class by a smallest interval in every

chord change.

In the system given by H1 the set class equivalent to (048) (which contains the

augmented triads) is (075). Figure 10.2 on the next page shows how the members of

this set class, introduced between the members of (03t) that are related by L′, will

play the same role of softening the voice leading, keeping only the displacement of

one interval between every set.

In the same way we could trace of the path in which the voice leading occurs in

the Cube Dance (Figure 4.5), we can do the same for the voice leading shown in

Figure 10.2 if we adapt the Cube Dance to the system given by H1. This is done

by replacing the set classes by their equivalent set classes, i.e., replacing (048) by

(075) and (037) by (03t). This way, Figure 10.3 on page 50 gives a graph in this new

system equivalent to the original Cube Dance, in which the voice leading between the

sets connected by the edges always preserve two pitch classes, while the remaining is

changed by a single interval.
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Figure 10.2. Voice leading of the first section of Take a Bow adapted
to the system given by H1.

Note that all triads from the original Cube Dance were replaced by the equivalent

ones in the new system, and thus the path followed by the chord progression is the

same in both examples. Moreover, note that with our definition for sum classes in

these new systems (given in Section 6), we have that the sum classes of equivalent

sets are the same, and hence the sets in the same voice-leading zone also have the

same sum class (in the new sense).

Finally, we use the system given by H2 to obtain a new rewrite the song. In this case

the set class (037) in the standard system is equivalent to (012) in the new system.

Figure 10.4 on page 51 shows the chain 〈PL′〉 made by the elements of the set class

(012), again with emphasis on those used in the rewriting.

In this new system, the set class (083) is the one equivalent to the set class of aug-

mented triads (048) from the standard system. Again, the same movement of the

voice-leading as in the original occurs in this example, as Figure 10.5 on page 52

shows.
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Figure 10.3. Sequence of all triads in section A of Take a Bow traced
over the Cube Dance using H1.

Finally, Figure 10.6 on page 52 shows the corresponding graph of the Cube Dance

obtained with this rewriting, placing the members of (083) and (012) in place of the

members of (048) and (037), their respective equivalent sets classes from the original.
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Figure 10.5. Voice leading of the first section of Take a Bow adapted
to the system given by H2.

Figure 10.6. Sequence of all triads in section A of Take a Bow traced
over the Cube Dance using H2.
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