1) Prove that if f € Z[x] is primitive and g € Z[z] divides f in Z[z], then either g or —g is
also primitive.

Proof. Let f = g-q, where ¢ € Q[x]. Write, g = ¢ gy, ¢ = d - qo, where ¢,d € Q and go, qo
are primitive. [So, ¢ and d are the content of g and ¢ respectively.| Since, g,q € Z[z], we
have that ¢, d € Z.

By Gauss’s Lemma, gq - qo is primitive, and then, since f = ¢-q = (cd) - (go - qo), by the
unique representation of a polynomial with rational coefficients as a rational number times
a primitive polynomial, and since f is primitive, we have that ¢d = 1. So, since ¢, d € Z,
we have that ¢ = +1 [and d = ¢]. Hence g = go, and g is primitive, or g = —go, and —g is
primitive.

O



2) Find whether or not the following polynomials are irreducible over Q[z].

(a) filz)=a*+234+2—-6

Solution. Look for rational roots. The possibilities are +1, +2, +3, £6. We have that
fi(=2) = 0. Hence (z + 2) divides f, and so f; is not irreducible. O

(b) fo(x) = 2% — 22° + 142® — 8z + 34

Solution. Applying the Eisenstein’s Criterion with p = 2, we see that f5 is irreducible.
[

(¢) f3(z) = 10023 — 2 + 2008

Solution. Reducing modulo 3, we get fs(2) = 23+22+2. If this polynomial is reducible
in F3[z], it must have a root. But f3(0) = f3(1) = f3(2) = 2. Hence it has no roots

and f3 is irreducible in F3[x]. Therefore f5 is irreducible in Q|x]. O

(d) fa(z)=a*+2*+2>+a+1

Solution. This is ¢5, the cyclotomic polynomial for the prime 5. Hence, it is irreducible.
[You can prove it by applying the Eisenstein’s Criterion to fy(x + 1) with p=5.] O



3) Let F be a field. We say that o € F is a multiple root of f(x) € Flz] if f(z) =
(r — )? - g(x), for some g € F[z].

(a)

Prove that if « is a multiple root of f, then f(a) = f'(a) = 0, where f'(x) is the
derivative of f(x) [as in calculus|. [Note that all calculus formulas for derivatives hold
for polynomials.]

Proof. Since « is a multiple root of f, write f(z) = (x — a)?g(x). We then have:

() = (e = a)gla) = 2z — )gla) + (v — )9 (0).
Hence f'(a) = 2(a — a)g(a) + (o — a)?g(a) = 0. O

Prove that if f(x) € F[z] is irreducible, then f(z) has no multiple roots in any extension
of F, as long as f’(z) # 0. [Hint: What’s the greatest common divisor of f(z) and

f'(x)?]

Proof. Since f(x) is irreducible, we have that if g(z) divides f(x), then g is a [non-zero|
constant or it is associated to f.

Let then g be a common divisor of f and f’. If ¢ is an associate of f, it has the same
degree as f, and so g cannot divide f’, since deg f’ < deg f = degg and f'(x) # 0. [If
we have that f' = ¢ - ¢, then deg f’ = deg g + degq. So, if f’ # 0, then degg < deg f’,
which is a contradiction. But notice that if f' =0, then f'=0-¢g, and so g | f']

So, since g cannot be an associate of f, it has to be a constant [i.e., a unit] and
ged(f, f') = 1.
So, by Bezout’s Theorem, there are r, s € F/[z] such that

r(z)f(z) + () f () = 1.

If v is a multiple root of f(x), by (a) it is also a root of f’(x). Then, plugging = = «
in the equation above would give us 0 = 1, a contradiction. Hence, f has no multiple
roots.

[Note: Let f % 22 + 2 € Fy(¢2)[z]. Then, f has no roots in Fa(2), since f = (z + t)?
[we are in characteristic 2], and so the only root is ¢ & Fy(¢?). Since f has degree 2
and no roots in Fy(#?), it is irreducible in Fy(t?)[x].

But, in the extension Fy(t), f does have multiple roots, namely, ¢ is a double root.
But, as you can expect from the statement, we have f' =2z = 0.]

]



4) Let R be a UFD and let P be a non-zero prime ideal of R such that if P’ is another prime
ideal, with (0) & P’ C P, then P’ = P. Prove that P is principal.

Proof. Since P # (0), thereis a € P, with a # 0. If a is a unit, then P = R, and P would not
be prime. [R = (1) is not prime by definition.] Since R is a UFD, we can write a = p; - - - pg,
where the p; are primes [and irreducible]. Since P is a prime ideal, and a = p;---px € P,
we have p; € P for some i € {1,...,k}.

So, (0) & (pi) C P. Since p; is prime, the ideal (p;) is also prime. [We have seen that in
class, but it is easy to see: ab € (p;) iff p; | ab iff p; | @ or p; | b [definition of prime element]
iff a € (p;) or b € (p;).]

Hence, by hypothesis, (p;) = P, and P is principal.



5) Maximal ideals of polynomial rings with complex coefficients.

(a)

Prove that if I is an ideal of C[z,y] and M is a maximal ideal containing I, then there
is a point (a,b) such that for all f(x,y) € I, we have f(a,b) = 0.

[Observation: This statement is also true for n variables (with an analogous solu-
tion).]

Proof. By the Nullstellensatz, M = (x — a,y — b) for some a,b € C. Since [ C M, for
all f € I, there are f1, fo € Cx,y] such that

flz,y) = (x —a)filz,y) + (y — b) fa(z,y).
But then, f(a,b) = 0.

Let [ = (3x —y — 2,y — 2°) be an ideal of C[z,y]. Find all maximal ideals of C[z, 1]
that contain /.

Solution. By (a), if I C M = (x — a,y — b), then every polynomial in I must vanish
at (a,b), in particular, (a,b) must be a common zero of 3x —y — 2 and y — z%. So, we
just need to solve the system:

3r—y—2 = 0
y—a2> = 0
Solving we find only two points: (1,1) and (2,4).

So, there are only two possible maximal ideals that might contain I: (z — 1,y — 1) and
(x — 2,y —4). Now, if f(x,y) € I, we have that

flzy) = Bz —y—2)fi(z,y) + (y — 2°) fa(x, ),

and thus f(1,1) = f(2,4) = 0. Hence, indeed I is indeed contained in those maximal
ideals. [Remember that f(z,y) € (v — xo,y — yo) iff f(z0,y0) = 0. We used Taylor
expansions around (xg, yo) to prove that.]

]



