1) Prove that if $f \in \mathbb{Z}[x]$ is primitive and $g \in \mathbb{Z}[x]$ divides f in $\mathbb{Z}[x]$, then either g or -g is also primitive.

Proof. Let $f = g \cdot q$, where $q \in \mathbb{Q}[x]$. Write, $g = c \cdot g_0$, $q = d \cdot q_0$, where $c, d \in \mathbb{Q}$ and g_0, q_0 are primitive. [So, c and d are the content of g and q respectively.] Since, $g, q \in \mathbb{Z}[x]$, we have that $c, d \in \mathbb{Z}$.

By Gauss's Lemma, $g_0 \cdot q_0$ is primitive, and then, since $f = g \cdot q = (cd) \cdot (g_0 \cdot q_0)$, by the unique representation of a polynomial with rational coefficients as a rational number times a primitive polynomial, and since f is primitive, we have that cd = 1. So, since $c, d \in \mathbb{Z}$, we have that $c = \pm 1$ [and d = c]. Hence $g = g_0$, and g is primitive, or $g = -g_0$, and g is primitive.

2) Find whether or not the following polynomials are irreducible over $\mathbb{Q}[x]$.

(a)
$$f_1(x) = x^4 + x^3 + x - 6$$

Solution. Look for rational roots. The possibilities are $\pm 1, \pm 2, \pm 3, \pm 6$. We have that $f_1(-2) = 0$. Hence (x + 2) divides f_1 , and so f_1 is not irreducible.

(b)
$$f_2(x) = x^6 - 2x^5 + 14x^2 - 8x + 34$$

Solution. Applying the Eisenstein's Criterion with p=2, we see that f_2 is *irreducible*.

(c)
$$f_3(x) = 100x^3 - x + 2008$$

Solution. Reducing modulo 3, we get $\bar{f}_3(x) = x^3 + \bar{2}x + \bar{2}$. If this polynomial is reducible in $\mathbb{F}_3[x]$, it must have a root. But $\bar{f}_3(\bar{0}) = \bar{f}_3(\bar{1}) = \bar{f}_3(\bar{2}) = \bar{2}$. Hence it has no roots and \bar{f}_3 is irreducible in $\mathbb{F}_3[x]$. Therefore f_3 is irreducible in $\mathbb{Q}[x]$.

(d)
$$f_4(x) = x^4 + x^3 + x^2 + x + 1$$

Solution. This is ϕ_5 , the cyclotomic polynomial for the prime 5. Hence, it is irreducible. [You can prove it by applying the Eisenstein's Criterion to $f_4(x+1)$ with p=5.]

- **3)** Let F be a field. We say that $\alpha \in F$ is a multiple root of $f(x) \in F[x]$ if $f(x) = (x \alpha)^2 \cdot g(x)$, for some $g \in F[x]$.
 - (a) Prove that if α is a multiple root of f, then $f(\alpha) = f'(\alpha) = 0$, where f'(x) is the derivative of f(x) [as in calculus]. [Note that all calculus formulas for derivatives hold for polynomials.]

Proof. Since α is a multiple root of f, write $f(x) = (x - \alpha)^2 g(x)$. We then have:

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x}(x - \alpha)^2 g(x) = 2(x - \alpha)g(x) + (x - \alpha)^2 g'(x).$$

Hence $f'(\alpha) = 2(\alpha - \alpha)g(\alpha) + (\alpha - \alpha)^2 g(\alpha) = 0$.

(b) Prove that if $f(x) \in F[x]$ is irreducible, then f(x) has no multiple roots in any extension of F, as long as $f'(x) \neq 0$. [Hint: What's the greatest common divisor of f(x) and f'(x)?]

Proof. Since f(x) is irreducible, we have that if g(x) divides f(x), then g is a [non-zero] constant or it is associated to f.

Let then g be a common divisor of f and f'. If g is an associate of f, it has the same degree as f, and so g cannot divide f', since $\deg f' < \deg f = \deg g$ and $f'(x) \neq 0$. [If we have that $f' = g \cdot q$, then $\deg f' = \deg g + \deg q$. So, if $f' \neq 0$, then $\deg g \leq \deg f'$, which is a contradiction. But notice that if f' = 0, then $f' = 0 \cdot g$, and so $g \mid f'$.]

So, since g cannot be an associate of f, it has to be a constant [i.e., a unit] and gcd(f, f') = 1.

So, by Bezout's Theorem, there are $r, s \in F[x]$ such that

$$r(x)f(x) + s(x)f'(x) = 1.$$

If α is a multiple root of f(x), by (a) it is also a root of f'(x). Then, plugging $x = \alpha$ in the equation above would give us 0 = 1, a contradiction. Hence, f has no multiple roots.

[Note: Let $f \stackrel{\text{def}}{=} x^2 + t^2 \in \mathbb{F}_2(t^2)[x]$. Then, f has no roots in $\mathbb{F}_2(t^2)$, since $f = (x+t)^2$ [we are in characteristic 2], and so the only root is $t \notin \mathbb{F}_2(t^2)$. Since f has degree 2 and no roots in $\mathbb{F}_2(t^2)$, it is irreducible in $\mathbb{F}_2(t^2)[x]$.

But, in the extension $\mathbb{F}_2(t)$, f does have multiple roots, namely, t is a double root. But, as you can expect from the statement, we have f' = 2x = 0.]

4) Let R be a UFD and let P be a non-zero *prime* ideal of R such that if P' is another prime ideal, with $(0) \subsetneq P' \subseteq P$, then P' = P. Prove that P is principal.

Proof. Since $P \neq (0)$, there is $a \in P$, with $a \neq 0$. If a is a unit, then P = R, and P would not be prime. [R = (1) is not prime by definition.] Since R is a UFD, we can write $a = p_1 \cdots p_k$, where the p_i are primes [and irreducible]. Since P is a prime ideal, and $a = p_1 \cdots p_k \in P$, we have $p_i \in P$ for some $i \in \{1, \ldots, k\}$.

So, $(0) \subsetneq (p_i) \subseteq P$. Since p_i is prime, the ideal (p_i) is also prime. [We have seen that in class, but it is easy to see: $ab \in (p_i)$ iff $p_i \mid ab$ iff $p_i \mid a$ or $p_i \mid b$ [definition of prime element] iff $a \in (p_i)$ or $b \in (p_i)$.]

Hence, by hypothesis, $(p_i) = P$, and P is principal.

- 5) Maximal ideals of polynomial rings with complex coefficients.
 - (a) Prove that if I is an ideal of $\mathbb{C}[x,y]$ and M is a maximal ideal containing I, then there is a point (a,b) such that for all $f(x,y) \in I$, we have f(a,b) = 0.

[Observation: This statement is also true for n variables (with an analogous solution).]

Proof. By the Nullstellensatz, M = (x - a, y - b) for some $a, b \in \mathbb{C}$. Since $I \subseteq M$, for all $f \in I$, there are $f_1, f_2 \in \mathbb{C}[x, y]$ such that

$$f(x,y) = (x-a)f_1(x,y) + (y-b)f_2(x,y).$$

But then, f(a, b) = 0.

(b) Let $I = (3x - y - 2, y - x^2)$ be an ideal of $\mathbb{C}[x, y]$. Find all maximal ideals of $\mathbb{C}[x, y]$ that contain I.

Solution. By (a), if $I \subseteq M = (x - a, y - b)$, then every polynomial in I must vanish at (a, b), in particular, (a, b) must be a common zero of 3x - y - 2 and $y - x^2$. So, we just need to solve the system:

$$\begin{cases} 3x - y - 2 &= 0 \\ y - x^2 &= 0 \end{cases}$$

Solving we find only two points: (1,1) and (2,4).

So, there are only two possible maximal ideals that might contain I: (x-1, y-1) and (x-2, y-4). Now, if $f(x, y) \in I$, we have that

$$f(x,y) = (3x - y - 2)f_1(x,y) + (y - x^2)f_2(x,y),$$

and thus f(1,1) = f(2,4) = 0. Hence, indeed I is indeed contained in those maximal ideals. [Remember that $f(x,y) \in (x-x_0,y-y_0)$ iff $f(x_0,y_0) = 0$. We used Taylor expansions around (x_0,y_0) to prove that.]