1) Let o & 8 — 81, ap & 10+ 151 and B X 2 — 31, and let 1 % (B) be the principal ideal of
Z[i] generated by (.

(a) Compute the quotient and remainders of the divisions of oy and «ay by 57

Solution. We divide ay by 3:

8 — 8i (8—81)(2+3i)_40+8i_3+i+1—5i
2-3i (2-3i)(2+3i) 13 ~~ 13 °

Hence, a; = - ¢ + r1, where r; = (8 — 8i) — (2 — 3i)(3 +1i) = —1 —i. So,

(8 —8i) = (2—3i) (3+1)+ (=1 —1).

q1 T1
[Note |r1]* =2 < |2 — 3i]* = 13]
We divide as by 3:
0+15i _ (104+15)(2+31) _ =25+600 _ , . 1-5i
= == = — 1 .
2 —3i (2 — 31)(2 + 3i) 13 —— " 13

q2
Hence, ag = - ga + 72, where 79 = (10 + 151) — (2 — 3i)(—2 + 5i) = —1 —i. So,

(10 + 151) = (2 — 3i) (=2 4 5i) + (=1 — i) .

q2 T2

[Note |ry]* =2 < |2 — 3i]* = 13]

(b) Is @y = ap (mod I)?

i), we have a1 —ap = ((2—31)(34+1) +7r1) — ((2—

Solution. Yes. Since r; =1y = (—1—
+i) — (—=2+5i)) = (2—3i)(5 —4i). Hence, oy —ay € 1,

31)(—2 -+ 51) + 12) = (2 — 31)((
i.e., indeed oy = ay (mod 1)

O



2) Let ¢, & ¢27/11, Prove that there are exactly four intermediate extension of Q[¢13]/Q
[including Q and QI[(33]]. [You do not have to find them.]

Proof. As seen in class, for all prime p, we have Q[(,]/Q is Galois, with G(Q[(,]/Q) = C,—1.

Hence, since G & G(Q[¢11]/Q) = Cyp is cyclic, it has exactly one subgroup [which is in
fact also cyclic] for each divisor of the order, i.e., one subgroup of order 1 [i.e., {id}], one
subgroup of order 2, one subgroup of order 5, and one subgroup of order 10 [i.e., GI.

By the Main Theorem of Galois Theory [since Q[(11]/Q)] is Galois], there is a one-to-
one correspondence between subgroups of G and intermediate extensions of Q[(11]/Q. Since
there are four subgroups, there are four intermediate fields, with degree equal to the indices:

1 [i.e., Q[C11]], 2, 5, and 10 [i.e, QJ.
O



3) Let R be a ring [which you can assume is commutative with identity, but it is not
necessary| and a € R. Let ¢ : R — R’ be a homomorphism such that a € ker ¢. Prove that

the map ¢ : R/(a) — R', defined by ¥(b + (a)) o o(b) gives a well-defined [you have to

prove that it is well-defined| ring homomorphism.

Proof. 1. Well-defined: Let b' € R such that b+ (a) = b’ + (a). Then, we have that there
is ra € (a) [with r € R, such that ¥’ = b+ ra. Then

w<b/ + (a)) = (ﬁ(b’) = ¢(b+ra) [defn. of ]
— 6(b) + 6(r)6(a) (65 a homom]
= ¢(b) + 0r = ¢(b) [a € ker ¢]
= (b + (a)) [defn. of ]
2. Takes 1)) to 1g: We have:
Y(1r/(a)) = ¢(1r + (a))
= ¢(1r) [defn. of ]
= 1p [¢ is a homom.]
3. Additive: We have:
V(b4 () + (c+ () =((b+¢) + (a)) [addition in R/(a)]
= ¢(b+ c) [defn. of ]
= ¢(b) + ¢(c) [¢ is a homom.]
= ¢(b + (a)) + 1/1(0 + (a)) [defn. of ]

4. Multiplicative: We have:

D((b+(a) - (e + (@) = ((be) + (a)) [mult. in R/ (a)
= ¢(bc) [defn. of 1]
= ¢(b) - ¢(c [¢ is a homom.]
= (b +(a) - P(c+ (a)) [defn. of ]



4) Prove that if F'is a field and F[[z]] represents formal power series over F [as in the second
extra-credit problem]|, then all non-zero ideals of F[[x]] are of the form (z™) where n is a
non-negative integer. [You can use any fact in the statement of the extra-credit problem.|

Proof. Since F|[z]] is an Euclidean domain [by the extra credit problem], it is a PID. So, if
I be a non-zero ideal of F[[z]], there is a € F|[[z]] — {0} such that I = (a).

By part (b) of the extra credit problem, we can write a = z"a’ [n o o(a) in the extra
credit problem| where @’ is a unit. Then, a and 2" are associates, and hence (a) = (™). O



5) Construct a field with 8 elements. [Hint: Extend some known field.|

Solution. Let f = 23+ 2 + 1 € Fy[z]. Then, f(0) =1, f(1) = 1, and f has no root in F,.
Since f has degree 3, this means that f is irreducible. Hence, F & Folz]/(z® + 2 + 1) is an
extension field of Fy of degree 3.

Thus, if « L7 e F, we have that F = Fy[a], with Fy-basis {1, a, @?}, and hence F has
8 elements: {0,1,a,1+ a,a?, 1+ o, a+a* 1+ a+ a?}. O



def

6) Let F be a field of characteristic p # 0, for which the polynomial f(z) = 2? —z—a € Flx]
is irreducible. Let o be a root of f(x) [in some extension of F.

(a) Prove that o + 1 is also a root of f(z).

Proof. Since we are in characteristic p, we have that (a 4+ b)? = a? + 0. So, f(a+1) =
(a+1)P—(a+1l)—a=acP+1l—a—-1—a=ao”—a—a= f(a) =0 [since a is a root
of f by hypothesis]. O]

Prove that F[a] is the splitting field of f(z) over F. [Hint: Use (a) to find all roots
of f]

Proof. Repeating the argument above, we have that since a + 1 is a root, then o + 2

is a root. In this way, we have that o, a + 1, ... , @+ (p — 1) are roots. [Note that
a+p = «a.] Since these gives us p distinct roots of f, and deg f = p, these are all roots
of f. But, a +i € Fla]. So, F[a] is the splitting field. O

Prove that G(F[a]/F) = C,.

Solution. Since F[a] is a splitting field of f(z) over F', we have that F[a]/F is Galois.
Hence, |G(F[a]/F)| = [F|a] : F]. But since f is monic and irreducible [by hypothesis]
and f(a) =0, we have that f = min, r, and so |G(F|a]/F)| = [F[a] : F] = deg f = p.
Since p is prime, and G(F|a]/F) = C, [every group of prime order is cyclic].

O



7) Let K < Q[V/2, ).

(a)

Find [K : Q.

Solution. We have that [K : Q] = [K : Q[v/2] - [Q[v/2 : Q).
Since x* — 2 is irreducible [by a Eisenstein’s criterion], we have that [Q[v/2 : Q] =

4.
Moreover, since Q[v/2] C R, but K ¢ R, we have K # Q[v/2]. Hence, [K : Q[v 2]] 2
and since i is a root of 22 4 1, we must have [K : Q[v/2]] < 2. So, [K : Q[v/2]] =

Therefore, [K : Q] =2-4=8.

Give a Q-basis for K [as a vector space over Q).

Solution. We have that {1, v/2, v/4, v/8} is a Q-basis of Q[v/2]. Also, {1,i} is a Q[v/2]-
basis of K. Hence, a Q-basis of K is {1-1,1-v/2,1-v/4,1-v/8,i-1,i-v/2,1-v/4,i-v8} =
{1,V/2,V4,v/8,1,i-v2,i-v4,i- v/8}. O

Prove that K/Q is Galois.

Proof. Since f % 24 — 2 = (z — V/2)(x — iV/2)(x — (—v/2))(z — (—i/2)), the splitting
field of f is L % Q[v/2,1v/2]. Clearly L C K [since i, v/2 € K]. But since v/2,i/2 € L,
then i & (iv/2)/v/2 € L. Hence, K = L.

Since K is a splitting field over Q, we have that K/Q is Galois. O

If 0 € G(K/Q), then what are the possible values of ¢(v/2) and o(i)?

Solution. Since o fixes Q and v/2 and i are roots of z* — 2 and z2 + 1, respectively,
both of which have coefficients in Q, then ¢ must take v/2 to another root of z* — 2,
namely, ++v/2 or +iv/2, and i to another root of 2 + 1, namely +i.

O



8) In this problem we will show that if R is commutative ring with identity, and a € R is
such that a” = 0 for some positive integer n, then a is in every maximal ideal of R. [Note
that if a # 0, then R is not an integral domain!|

(a) Let I be an ideal and a € R. Prove that

(Ia)®{z+ra : z€landr € R}
is an ideal of R that contains I and a.

Proof. 1. Non-empty (and containment): Clearly, 0+ 1-a=a € (I,a). Also, for all
rel,x=x+0-a€ (I,a). So, I C (I,a).

2. Additive: Let x4+ ra,y+ sa € (I,a) [with z,y € I and r,s € R]. Then (z+ra) +
(y +sa) = (x +y) + (r + s)a. Since I and R are closed under addition, we have
that (z+y) € I and (r+ s) € R. Thus, (z 4 ra) + (y + sa) € (1, a).

3. Multiplicative: Let s € R and x +ra € (I,a) [with z € I and r € R|. Then
s(x 4+ ra) = sx + (sr)a. Since R is closed under multiplication, we have sr € R,
and since [ is an ideal, and z € I, sx € I. Thus, s(z +ra) € (I,a).

O

(b) Prove that if M is a mazimal ideal and @™ = 0 [and you can assume a™~ ' # 0] for
some positive integer n, with a ¢ M, then "' € M. [Hint: Start by proving that
1r € (M,a), and then use (a).]

Proof. Since M C (M, a) [from (a)] and a € (M,a) but a ¢ M, we have M & (M, a) C
R. Since M is a maximal [and (M, a) is an ideal], we have (M,a) = R. Therefore,
1 € (M,a). So, there are © € M and r € R such that 1 = z + ra. Multiplying by
a™ !t we have a"! = a" "'z 4+ ra” = a" "'z [since a” = 0]. Since x € M [an ideal] and
a" ' = a" 'z € M, we have that a"~' € M. [Note that since we might no be in a

domain, we cannot cancel the a"~! abovel]
O

(c) Prove that since "' € M, we actually have a € M [which is then a contradiction to
the fact that a & M].

Proof. Since M is maximal, it is a prime ideal. Since M is prime, and a"~* € M, we
have a € M. [



