
1) Let α1
def
= 8− 8i, α2

def
= 10 + 15i and β

def
= 2− 3i, and let I

def
= (β) be the principal ideal of

Z[i] generated by β.

(a) Compute the quotient and remainders of the divisions of α1 and α2 by β?

Solution. We divide α1 by β:

8− 8i

2− 3i
=

(8− 8i)(2 + 3i)

(2− 3i)(2 + 3i)
=

40 + 8i

13
= 3 + i︸︷︷︸

q1

+
1− 5i

13
.

Hence, α1 = β · q1 + r1, where r1 = (8− 8i)− (2− 3i)(3 + i) = −1− i. So,

(8− 8i) = (2− 3i) (3 + i)︸ ︷︷ ︸
q1

+ (−1− i)︸ ︷︷ ︸
r1

.

[Note |r1|2 = 2 < |2− 3i|2 = 13.]

We divide α2 by β:

10 + 15i

2− 3i
=

(10 + 15i)(2 + 3i)

(2− 3i)(2 + 3i)
=
−25 + 60i

13
= −2 + 5i︸ ︷︷ ︸

q2

+
1− 5i

13
.

Hence, α2 = β · q2 + r2, where r2 = (10 + 15i)− (2− 3i)(−2 + 5i) = −1− i. So,

(10 + 15i) = (2− 3i) (−2 + 5i)︸ ︷︷ ︸
q2

+ (−1− i)︸ ︷︷ ︸
r2

.

[Note |r2|2 = 2 < |2− 3i|2 = 13.]

(b) Is α1 ≡ α2 (mod I)?

Solution. Yes. Since r1 = r2 = (−1− i), we have α1−α2 = ((2−3i)(3+ i)+ r1)− ((2−
3i)(−2 + 5i) + r2) = (2− 3i)((3 + i)− (−2 + 5i)) = (2− 3i)(5− 4i). Hence, α1−α2 ∈ I,
i.e., indeed α1 ≡ α2 (mod I).
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2) Let ζ11
def
= e2πi/11. Prove that there are exactly four intermediate extension of Q[ζ13]/Q

[including Q and Q[ζ13]]. [You do not have to find them.]

Proof. As seen in class, for all prime p, we have Q[ζp]/Q is Galois, with G(Q[ζp]/Q) ∼= Cp−1.

Hence, since G
def
= G(Q[ζ11]/Q) ∼= C10 is cyclic, it has exactly one subgroup [which is in

fact also cyclic] for each divisor of the order, i.e., one subgroup of order 1 [i.e., {id}], one
subgroup of order 2, one subgroup of order 5, and one subgroup of order 10 [i.e., G].

By the Main Theorem of Galois Theory [since Q[ζ11]/Q] is Galois], there is a one-to-
one correspondence between subgroups of G and intermediate extensions of Q[ζ11]/Q. Since
there are four subgroups, there are four intermediate fields, with degree equal to the indices:
1 [i.e., Q[ζ11]], 2, 5, and 10 [i.e, Q].
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3) Let R be a ring [which you can assume is commutative with identity, but it is not
necessary] and a ∈ R. Let φ : R→ R′ be a homomorphism such that a ∈ kerφ. Prove that

the map ψ : R/(a) → R′, defined by ψ(b + (a))
def
= φ(b) gives a well-defined [you have to

prove that it is well-defined] ring homomorphism.

Proof. 1. Well-defined: Let b′ ∈ R such that b+ (a) = b′ + (a). Then, we have that there
is ra ∈ (a) [with r ∈ R], such that b′ = b+ ra. Then

ψ(b′ + (a)) = φ(b′) = φ(b+ ra) [defn. of ψ]

= φ(b) + φ(r)φ(a) [φ is a homom.]

= φ(b) + 0R = φ(b) [a ∈ kerφ]

= ψ(b+ (a)) [defn. of ψ]

2. Takes 1R/(a) to 1R′: We have:

ψ(1R/(a)) = ψ(1R + (a))

= φ(1R) [defn. of ψ]

= 1R′ [φ is a homom.]

3. Additive: We have:

ψ((b+ (a)) + (c+ (a))) = ψ((b+ c) + (a)) [addition in R/(a)]

= φ(b+ c) [defn. of ψ]

= φ(b) + φ(c) [φ is a homom.]

= ψ(b+ (a)) + ψ(c+ (a)) [defn. of ψ]

4. Multiplicative: We have:

ψ((b+ (a)) · (c+ (a))) = ψ((bc) + (a)) [mult. in R/(a)]

= φ(bc) [defn. of ψ]

= φ(b) · φ(c) [φ is a homom.]

= ψ(b+ (a)) · ψ(c+ (a)) [defn. of ψ]
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4) Prove that if F is a field and F [[x]] represents formal power series over F [as in the second
extra-credit problem], then all non-zero ideals of F [[x]] are of the form (xn) where n is a
non-negative integer. [You can use any fact in the statement of the extra-credit problem.]

Proof. Since F [[x]] is an Euclidean domain [by the extra credit problem], it is a PID. So, if
I be a non-zero ideal of F [[x]], there is a ∈ F [[x]]− {0} such that I = (a).

By part (b) of the extra credit problem, we can write a = xna′ [n
def
= σ(a) in the extra

credit problem] where a′ is a unit. Then, a and xn are associates, and hence (a) = (xn).
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5) Construct a field with 8 elements. [Hint: Extend some known field.]

Solution. Let f = x3 + x + 1 ∈ F2[x]. Then, f(0) = 1, f(1) = 1, and f has no root in F2.

Since f has degree 3, this means that f is irreducible. Hence, F
def
= F2[x]/(x

3 + x+ 1) is an
extension field of F2 of degree 3.

Thus, if α
def
= x̄ ∈ F , we have that F = F2[α], with F2-basis {1, α, α2}, and hence F has

8 elements: {0, 1, α, 1 + α, α2, 1 + α2, α+ α2, 1 + α+ α2}.
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6) Let F be a field of characteristic p 6= 0, for which the polynomial f(x)
def
= xp−x−a ∈ F [x]

is irreducible. Let α be a root of f(x) [in some extension of F ].

(a) Prove that α+ 1 is also a root of f(x).

Proof. Since we are in characteristic p, we have that (a+ b)p = ap + bp. So, f(α+1) =
(α+ 1)p − (α+ 1)− a = αp + 1− α− 1− a = αp − α− a = f(α) = 0 [since α is a root
of f by hypothesis].

(b) Prove that F [α] is the splitting field of f(x) over F . [Hint: Use (a) to find all roots
of f .]

Proof. Repeating the argument above, we have that since α + 1 is a root, then α + 2
is a root. In this way, we have that α, α + 1, ... , α + (p − 1) are roots. [Note that
α+ p = α.] Since these gives us p distinct roots of f , and deg f = p, these are all roots
of f . But, α+ i ∈ F [α]. So, F [α] is the splitting field.

(c) Prove that G(F [α]/F ) ∼= Cp.

Solution. Since F [α] is a splitting field of f(x) over F , we have that F [α]/F is Galois.
Hence, |G(F [α]/F )| = [F [α] : F ]. But since f is monic and irreducible [by hypothesis]
and f(α) = 0, we have that f = minα,F , and so |G(F [α]/F )| = [F [α] : F ] = deg f = p.
Since p is prime, and G(F [α]/F ) ∼= Cp [every group of prime order is cyclic].
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7) Let K
def
= Q[ 4

√
2, i].

(a) Find [K : Q].

Solution. We have that [K : Q] = [K : Q[ 4
√

2] · [Q[ 4
√

2 : Q].

Since x4 − 2 is irreducible [by a Eisenstein’s criterion], we have that [Q[ 4
√

2 : Q] = 4.

Moreover, since Q[ 4
√

2] ⊆ R, but K * R, we have K 6= Q[ 4
√

2]. Hence, [K : Q[ 4
√

2]] ≥ 2,

and since i is a root of x2 + 1, we must have [K : Q[ 4
√

2]] ≤ 2. So, [K : Q[ 4
√

2]] = 2.

Therefore, [K : Q] = 2 · 4 = 8.

(b) Give a Q-basis for K [as a vector space over Q].

Solution. We have that {1, 4
√

2, 4
√

4, 4
√

8} is a Q-basis of Q[ 4
√

2]. Also, {1, i} is a Q[ 4
√

2]-
basis of K. Hence, a Q-basis of K is {1 ·1, 1 · 4

√
2, 1 · 4

√
4, 1 · 4

√
8, i ·1, i · 4

√
2, i · 4

√
4, i · 4

√
8} =

{1, 4
√

2, 4
√

4, 4
√

8, i, i · 4
√

2, i · 4
√

4, i · 4
√

8}.

(c) Prove that K/Q is Galois.

Proof. Since f
def
= x4 − 2 = (x− 4

√
2)(x− i 4

√
2)(x− (− 4

√
2))(x− (−i 4

√
2)), the splitting

field of f is L
def
= Q[ 4

√
2, i 4
√

2]. Clearly L ⊆ K [since i, 4
√

2 ∈ K]. But since 4
√

2, i 4
√

2 ∈ L,

then i
def
= (i 4

√
2)/ 4

√
2 ∈ L. Hence, K = L.

Since K is a splitting field over Q, we have that K/Q is Galois.

(d) If σ ∈ G(K/Q), then what are the possible values of σ( 4
√

2) and σ(i)?

Solution. Since σ fixes Q and 4
√

2 and i are roots of x4 − 2 and x2 + 1, respectively,
both of which have coefficients in Q, then σ must take 4

√
2 to another root of x4 − 2,

namely, ± 4
√

2 or ±i 4
√

2, and i to another root of x2 + 1, namely ±i.
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8) In this problem we will show that if R is commutative ring with identity, and a ∈ R is
such that an = 0 for some positive integer n, then a is in every maximal ideal of R. [Note
that if a 6= 0, then R is not an integral domain!]

(a) Let I be an ideal and a ∈ R. Prove that

(I, a)
def
= {x+ ra : x ∈ I and r ∈ R}

is an ideal of R that contains I and a.

Proof. 1. Non-empty (and containment): Clearly, 0 + 1 · a = a ∈ (I, a). Also, for all
x ∈ I, x = x+ 0 · a ∈ (I, a). So, I ⊆ (I, a).

2. Additive: Let x+ ra, y+ sa ∈ (I, a) [with x, y ∈ I and r, s ∈ R]. Then (x+ ra) +
(y + sa) = (x + y) + (r + s)a. Since I and R are closed under addition, we have
that (x+ y) ∈ I and (r + s) ∈ R. Thus, (x+ ra) + (y + sa) ∈ (I, a).

3. Multiplicative: Let s ∈ R and x + ra ∈ (I, a) [with x ∈ I and r ∈ R]. Then
s(x + ra) = sx + (sr)a. Since R is closed under multiplication, we have sr ∈ R,
and since I is an ideal, and x ∈ I, sx ∈ I. Thus, s(x+ ra) ∈ (I, a).

(b) Prove that if M is a maximal ideal and an = 0 [and you can assume an−1 6= 0] for
some positive integer n, with a 6∈ M , then an−1 ∈ M . [Hint: Start by proving that
1R ∈ (M,a), and then use (a).]

Proof. Since M ⊆ (M,a) [from (a)] and a ∈ (M,a) but a 6∈M , we have M $ (M,a) ⊆
R. Since M is a maximal [and (M,a) is an ideal], we have (M,a) = R. Therefore,
1 ∈ (M,a). So, there are x ∈ M and r ∈ R such that 1 = x + ra. Multiplying by
an−1 we have an−1 = an−1x + ran = an−1x [since an = 0]. Since x ∈ M [an ideal] and
an−1 = an−1x ∈ M , we have that an−1 ∈ M . [Note that since we might no be in a
domain, we cannot cancel the an−1 above!]

(c) Prove that since an−1 ∈ M , we actually have a ∈ M [which is then a contradiction to
the fact that a 6∈M ].

Proof. Since M is maximal, it is a prime ideal. Since M is prime, and an−1 ∈ M , we
have a ∈M .
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