1) [8 points| Rewrite the statement [about real numbers]:

—“VzeR, JyeNst[(z>y)— (z+y>0)A(z=y+2))]]

w_”

as a positive statement [without the “—

Solution.

symbol].

JreRstVyeN, [(z>y)A((z+y<0)V(z#y+2))]

2) [8 points] Fill the truth table below.

P Q R PAQ | (mQ)VR | (PAQ) = ((-Q)V R)
T T T T T T
F T T F T T
T T F T F F
F T F F F T




3) [10 points] Prove that AU(BNC)=(AUB)N(AUC).

Proof. Let x € AU(BNC). Then,x € Aorx € BNC.

If z € A, then x € AUB and € AU C, by definition of unions. Thus, z € (AU B) N (AU C), by
definition of intersection.

If x €« BNC, then x € B and x € C. Thus, the former tells us that x € A U B, while the latter
tells us that x € AUC. Hence, z € (AUB)N(AUC).

Thus, AU(BNC)C(AUB)N(AUC).

Now, let z € (AUB)N(AUC). So,zr € AUBand z € AUC.

Suppose that x ¢ A. Since x € AU B, we have that either x € A or x € C. Since z € A, we
conclude that x € B. Similarly, since z € AU C, but x € A, we must have that x € C. Therefore,
ze BNC.

Hence, either z € Aorx € BNC,ie,x € AU(ANC). Thus, AUB)N(AUC)C AU(ANC).

Since we have both inclusions, we have (AUB)N(AUC) =AU (ANC).

4) [10 points] Let F and G be a families of sets. Prove that (((FUG) = (F)N(NG).

Proof. Let x € ((FUG). Thus, for all A € FUG, we have that x € A. In particular, if A € F, then
x€Alas FCFUG], and if A € G, then z € A [as G C FUG]. The former means that x € (| F,
while the latter means that € NG. Therefore, z € (" F)N((NG). Hence, (FUG) C (NF)N(NG)-

Now, let x € (NF)N(NG). Then, x € (F and x € (G. Now, let A € FUG. Then, either A € F
or A € G. If the former holds, then z € A, as € (| F [by definition of the intersection of a family],
and if the latter holds, then, similarly, we have that x € A.

Thus, for all A € F NG, we have that z € A. Therefore, x € ((F UG) [by definition]. Hence,

NF)IN(NG) SNFUG).

Since we have both inclusions, the sets are equal.



5) [10 points| Let A be a set with partial order R and a € A the smallest element of A. Show that

A has a unique minimal element. [What could this element be? In fact, we did this in class.]

Proof. This unique minimal element must be the smallest element. [I actually tell you that in the

next problem!] So, that’s what we will show.

[Remember, x € X is minimal if for all y € X, yRx implies y = x. Also, x € X is the smallest
element if for all y € X, we have xRy.]

[@ is minimal:] Let b € A and suppose that bRa. Since a is the least element, we have also that

aRb [as b € A]. Hence, since R is anti-symmetric, we have a = b, and hence a is minimal.

[a is the unique minimal:] Suppose ¢ € A is minimal. Since a is the smallest element, we have that
aRc. Thus, by definition of minimal, we have that ¢ = a. Thus, every minimal element must be

equal to a. ]



6) [12 points| Given n € {1,2,3,4,...}, let (0,1/n) be [as usual in Calculus] the open interval of R
given by (0,1/n) ={z R : 0 <z <1/n}.

Let

F={{0}}u{(0,1/n) : n€{1,2,3,4,...}}
= {{0},(0,1),(0,1/2),(0,1/3),(0,1/4),...},

and consider the partial order in F given by containment [as usual for sets].

(a)

Show that {0} is a minimal element of F.

Proof. Suppose that A € F is such that A C {0}. [We need to show A = {0}.] Then, since
A has only one element, either A = @ or A = {0}. But the former cannot occur, as @ ¢ F.

[Another way: if A e F, A C {0}, but A # {0}, then A = (0,1/n) for some n. But this is a
contradiction, as 1/(2n) € (0,1/n), but 1/(2n) & {0}.] O

Show that for any n € {1,2,3,...}, (0,1/n) is not a minimal element of F.
Proof. We have that (0,1/(n+ 1)) C (0,1/n), but (0,1/(n+ 1)) # (0,1/n). O

Show that F has no smallest element. [Hint: Remember that if A € F is a smallest element,

then it is also a minimal element.]

Proof. Since the only minimal element is {0} [as seen above], it would have to be the smallest
element of F has such an element. But {0} ¢ (0,1/2), so it is not the smallest element. Thus,

F does not have a smallest element. O

[Note: This shows that a set can have only one minimal element, but no smallest element.]



7) [10 points] Let R be the equivalence relation on R given by aRb if (a —b) € Z. [You do not need

to prove it is an equivalence relation.]

(a) Show that [0]g = Z. [Remember that [0]g is the equivalence class of 0 with respect to the

relation R given above.]
Proof. We have:

ze0lg f ze{yeR : yRO}
iff zre{yeR: (y—0)eZ}
if ze{yeR :yelZ}
ifft xeZ.

Thus, [0]r = Z. O
(b) Find a real number = with 0 < x < 1, such that [2.31|g = [z]r.

Solution. Remember: [2.31|p = [z|g iff xR2.31.

We have that = 0.31 is such that 0 < 0.31 <1 and zR2.31, as x — 2.31 = -2 € Z. ]



8) [12 points|] Let R be an equivalence relation on a set A.

(a)

Show that both Ran(R) [the range of R] and Dom(R) [the domain of R] are equal to A.

Proof. Let a € A. Since (a,a) € R [as R is reflexive], we have that a € Dom(R) and
a € Ran(R). So, A is contained in both. Since both domain and range are subsets of A by

definition, we have the equalities. ]
Show that R™! [the inverse relation] is equal to R.

Proof. Let (a,b) € R. Since R is symmetric, we have that (b,a) € R. Then, (a,b) € R~! by

definition of the inverse relation. Thus, R C R~

Let (a,b) € R~!. Then, (b,a) € R. Since R is symmetric, we have that (a,b) € R. Thus,
R'CR.

Since we have both inclusions, the sets must be equal. O

Show that R o R [the composition] is also equal to R.

Proof. Let (a,c) € Ro R. Then, by definition, there is b € A such that (a,b), (b,c) € R. Since
R is transitive, this means that (a,c) € R. Hence, Ro R C R.

Now, let (a,b) € R. Since R is reflexive, we have that (a,a) € R. Since then (a,a), (a,b) € R,
we have [by definition of composition] that (a,b) € Ro R. Thus, R C Ro R.

Since we have both inclusions, the sets must be equal. ]



9) [10 points|] Prove that for n > 0 we have

1 p
0-1+1'2+2'3+...+n.(n+1):”(n+ ;(n+ )

Proof. We prove it by induction on n. For n = 0 we have that:

0-1-2
0-1=0=
3
Now assume that
1 2
0-1+1-2+2.3+...+n,(n+1):n(n+ ;(n+ )

Then,

0-1+1-24--4+n-(n+1)+(n+1)-(n+2)

Hence, the formula works for (n + 1), which finishes the induction.



10) [10 points] Remember that the Fibonacci sequence is given by:

Fy =0, =1,

F,=F, o+ F,_1, forn>2.

Consider now the recursively defined sequence given by

ag =0, ap =1, az =1,
1 3 1
Qp = §an_3 + ian—Q + ia’rb—17 for n Z 3.

Prove that a,, = F,, for all n > 0.
[Hint: %an_g = %an_z + ap—2.]

Proof. We prove it by [strong] induction on n. We need three first steps:

ag = 0 = Fyp, a1 =1=Fj, as=1=140= F5.

Assume now that for some n > 2 and all £ < n we have ap = Fj. Then:

1 3 1
ap+1 = Qan,Q + ianil + ian [recursive formula (as n+ 1 > 3)]
1 3 1
= §Fn—2 + §Fn—1 + §Fn [by ind. hyp.]
1 1 1 ) ]
= B n—2 + §Fn_1 + F, 1+ iFn [as in the hint]
1 1
= §(Fn_2 + Fn—l) + F,_1+ §Fn [factor 1/2]
1 1 )
= §Fn + F,_1+ §Fn [recursive formula for F3,]
=F,+F,_; [add (1/2)F,’s]
= I+l [recursive formula for Fj11]

Thus, the formula holds for n + 1, finishing the proof.



