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Preface

In teaching a beginning course in abstract algebra, one must suppress the urge
to cover a lot of material and to be as general as possible. The diffi culties in
teaching such a course are pedagogical, not mathematical. The subject matter
is abstract, yet it must be kept meaningful for students meeting abstractness for
perhaps the first time. It is better for a student to know what a theorem says
than to be able to quote it, produce a proof of it detail by detail, and not have
the faintest notion of what it’s all about. However, careful attention must be
paid to rigor, and sloppy thinking and incoherent writing cannot be tolerated.
But rigor should be flavored with understanding. Understanding the content of
a theorem is as important as being able to prove it. I have tried to keep these
things in mind while writing this book.
The specific subject matter chosen here is standard, and the arrangement of

topics is not particularly bizarre. In an algebra course, I believe one should get
on with algebra as soon as possible. This is why I have kept Chapter 1 to a bare
minimum. I didn’t want to include it at all, but the material there is absolutely
essential for Chapter 2, and the students’knowledge of it is apt to be a bit hazy.
Other bits of “set theory”will be expounded upon as the need arises. Zorn’s
Lemma and some of its applications are discussed in the Appendix.
Groups are chosen as the first algebraic system to study for several reasons.

The notion is needed in subsequent topics. The axioms for a group are simpler
than those for the other systems to be studied. Such basic notions as homomor-
phisms and quotient systems appear in their simplest and purest forms. The
student can readily recognize many old friends as abstract groups in concrete
disguise.
The first topic slated for a thorough study is that of vector spaces. It is

this material that is most universally useful, and it is important to present
it as soon as is practical. In fact, the arrangement of Chapters 3 through 5
is a compromise between mathematical effi ciency and getting the essentials of
linear algebra done. Chapter 4 is where it is because its results are beautifully
applicable in Chapter 5 and contain theorems one would do anyway. Besides,
there are some nice applications of Chapter 3 in Chapter 4. Chapter 6 is basic
and should not be slighted in favor of 7 or 8. A feature of Chapter 7 is an
algebraic proof of the fundamental theorem of algebra.
There are many exercises in this book. Mathematics is not a spectator sport,

and is best learned by doing. The exercises are provided so that students can
test their knowledge of the material in the body of the text, practice concocting
proofs on their own, and pick up a few additional facts.



vi CONTENTS

There is no need here to extol the virtues of the abstract approach, and
the importance of algebra to the various areas of mathematics. They are well
known to the professional, and will become fully appreciated by the student
only through experience.

Elbert A. Walker
Las Cruces, New Mexico
March, 1986



Chapter 1

Sets

1.1 Introduction

The purpose of this book is to present some of the basic properties of groups,
rings, fields, and vector spaces. However, some preliminaries are necessary.
There are some facts about sets, mappings, equivalence relations, and the like
that will be used throughout the text, and which are indispensable. This chapter
presents those facts. It is not meant to be an introduction to “set theory.” The
amount of material is kept to a minimum – just what is needed to get started
on algebra.
A few fundamental facts concerning the integers will be assumed. These are

spelled out in Section 1.6.

1.2 Sets and Subsets

Our approach to sets is the naive or intuitive one. An axiomatic approach to
sets here would lead us too far afield and would contribute nothing toward the
understanding of the basic properties of a field, for example.
By the word set, we mean any collection of objects. The objects in the

collection are called the elements of the set. Sets will usually be denoted by
capital letters. If s is an element of a set S, we write s ∈ S, and if s is not an
element of S, we write s /∈ S. For any object s, either s ∈ S or s /∈ S. For the
set Z of all integers, we have −5 ∈ Z, but 1/2 /∈ Z. A set is determined by its
elements. That is, two sets are the same if they have the same elements. Thus
two sets S and T are equal, written S = T , if s ∈ S implies s ∈ T , and t ∈ T
implies t ∈ S.
To specify a set, we must tell what its elements are, and this may be done

in various ways. One way is just to write out an ordinary sentence which does
that. For example, we could say “S is the set whose elements are the integers
1, 2, and 3.” A shorthand has been developed for this sort of thing, however.
S = {1, 2, 3} means that S is the set whose elements are 1, 2, and 3. Thus,

1



2 CHAPTER 1. SETS

one way to define a set is to list its elements and put braces around the list.
If S is a big set, this procedure can be cumbersome. For example, it would be
tiresome to describe the set of positive integers less that 1,000,000 in this way.
The sentence we have just written would be more effi cient. However, there is
a convention that is universally used that is most convenient. Suppose S is a
set, and that it is the set of all elements s which satisfy some property P . Then
S = {s : s satisfies property P} means that S is the set of all elements s which
enjoy property P . For example, S = {n : n is an integer, 0 < n < 1, 000, 000}
is the set of all positive integers less than 1, 000, 000. Here, property P is the
property of being a positive integer less than 1, 000, 000. If we already knew that
Z was the set of integers, we could write S = {n : n ∈ Z, 0 < n < 1, 000, 000}.
This is sometimes written S = {n ∈ Z : 0 < n < 1, 000, 000}. The set of even
integers could be written in any of the following ways:

a. {n ∈ Z : n is even},

b. {n : n is an even integer},

c. {2n : n ∈ Z}, or

d. {n : n = 2m for some m ∈ Z}.

The letter Z will be used throughout this book to denote the set of integers.
Suppose S and T are sets. If every element of S is an element of T , then

S is a subset of T . This is denoted S ⊂ T , or T ⊃ S. Note that S ⊂ T does
not rule out the possibility that S = T . The symbol S $ T means S ⊂ T and
S 6= T , but we will not have much occasion to use this latter notation. If S $ T ,
then S is a proper subset of T . Note that S = T implies both S ⊂ T and
T ⊂ S. Also, if S ⊂ T and T ⊂ S, then S = T . Thus, S = T if and only if both
S ⊂ T and T ⊂ S.
It is convenient to allow the possibility that a set have no elements. Such a

set is called the empty set. There is only one such, since, if S and T are both
empty, then S ⊂ T and T ⊂ S, so S = T . The empty set is denoted ∅. It has
the property that ∅ ⊂ S for any set S.
There are various ways to make new sets from old. For example, given sets

S and T , there are various ways to associate with them a third set. The more
common ones are listed below.

Definition 1.2.1 Let S and T be sets.

a. S ∪ T = {x : x ∈ S or x ∈ T}. This is the union of S and T .

b. S ∩ T = {x : x ∈ S and x ∈ T}. This is the intersection of S and T .

c. S\T = {x : x ∈ S and x /∈ T}. This is the diff erence S minus T , or
the complement of T in S.
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For example, if R denotes the set of real numbers, S = {x ∈ R : 0 < x < 2},
and T = {x ∈ R : 1 ≤ x ≤ 3}, then

S ∪ T = {x ∈ R : 0 < x ≤ 3},

S ∩ T = {x ∈ R : 1 ≤ x < 2},

and
S \ T = {x ∈ R : 0 < x < 1}.

Let’s note some properties of ∪, ∩, and \. First, keep in mind what they
mean. S ∪ T is that set consisting of all the elements of S along with all the
elements of T ; S ∩ T is that set consisting of the elements that are in both S
and T ;. and S\T is that set consisting of the elements that are in S but not in
T .
Let A, B, and C be sets. The following are immediate from the definitions.

a. A ∪A = A; A ∩A = A; A\A = ∅.

b. A ∪B = B ∪A; A ∩B = B ∩A.

c. (A ∪B) ∪ C = A ∪ (B ∪ C); (A ∩B) ∩ C = A ∩ (B ∩ C).

d. A ∪ ∅ = A; A ∩ ∅ = ∅.

Less obvious are the following, which we will prove.

e. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

f. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

g. A\(B ∩ C) = (A\B) ∪ (A\C).

To prove (e), we must show that each element of A ∩ (B ∪C) is an element
of (A∩B)∪ (A∩C), and that each element of (A∩B)∩ (A∩C) is an element
of A ∩ (B ∪ C). Suppose that x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C.
Therefore x ∈ A ∩B or x ∈ A ∩ C. Thus x ∈ (A ∩B) ∪ (A ∩ C).
Now suppose that x ∈ (A ∩ B) ∪ (A ∩ C). Then x ∈ A ∩ B or x ∈ A ∩ C.

Thus x ∈ A, and x ∈ B ∪C. Hence x ∈ A∩ (B ∪C). Therefore (e) is true. One
can prove (f) in a similar fashion, and you are asked to do so in Problem 7 at
the end of this section.
We now prove (g). Suppose that x ∈ A\(B∩C). Then x ∈ A and x /∈ (B∩C).

Thus, x ∈ A\B or x ∈ A\C. Therefore, x ∈ (A\B) ∪ (A\C). Suppose that
x ∈ (A\B) ∪ (A\C). Then x ∈ A\B or x ∈ A\C. Thus, x ∈ A and x /∈ B ∪ C.
Therefore x ∈ A\(B ∩ C), and this proves (g).
When B and C are subsets of A, (g) is one of the De Morgan Rules.

Problem 14 (page 14) is another. For a subset S of A, letting S′ denote A\S,
these two rules become

(B ∩ C)′ = B′ ∪ C ′,
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and
(B ∪ C)′ = B′ ∩ C ′.

Let’s back up and consider (e). It asserts that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

with nothing said about the sets A, B, and C. That is, this equality holds for
all sets A, B, and C. That is what we proved. In our proof, nothing was used
about A, B, and C except that they were sets. No matter what sets we take for
A, B, and C, the equality (e) holds. For example, let B, C, and D be any sets,
and let A = B ∪D, so that A ∩ (B ∪C) = (B ∪D) ∩ (B ∪C). From (e) we get
the equality

(B ∪D) ∩ (B ∪ C) = ((B ∪D) ∩B) ∪ ((B ∪D) ∩ C).

Since (B ∪D) ∩B = B, the equality becomes

(B ∪D) ∩ (B ∪ C) = B ∪ ((B ∪D) ∩ C),

which is B ∪ (D ∩ C). Hence (B ∪D) ∩ (B ∪ C) = B ∪ (D ∩ C) for any sets
B, C and D. This is the equality (f) above. The point to all this is, however,
that once we have an equality such as (e) that holds for any sets A, B, and C,
we can get other equalities by taking A, B, and C to be any particular sets we
wish.

PROBLEMS

1. List all the subsets of the set {a}.

2. List all the subsets of the set {a, b}.

3. List all the subsets of the set {a, b, c}.

4. List all the subsets of the set ∅.

5. List all the subsets of the set {∅}.

6. List all the subsets of the set {a, b, {a, b}}

7. List the elements in {n ∈ Z : mn = 100 for some m ∈ Z}.

8. List the elements in {n ∈ Z : n2 − n < 211}.

9. Prove directly that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

10. Prove that A ∪ ((A ∪B) ∩ C) = A ∪ (B ∩ C).

11. Prove that (A\B) ∩ (B\A) = ∅.

12. Prove that A\B = ∅ if and only if A ⊂ B.



1.3. MAPPINGS 5

13. Prove that (A ∩B)\B = ∅, and (A ∪B)\B = A\B.

14. Prove that A\(B ∪ C) = (A\B) ∩ (A\C).

15. Prove that A ∩ (B \ C) = (A ∩B)\(A ∩ C).

16. Prove that A ∪B = (A ∩B) ∪ (A\B) ∪ (B\A).

17. Derive (A\B) ∪ (B\A) = (A ∪B)\(A ∩B) from property (g) (page 3).

18. Prove that

A ∩ ((B\C) ∪ (C\B)) = ((A ∩B)\(A ∩ C)) ∪ ((A ∩ C)\(A ∩B)).

19. Prove that

(A ∪ ((B ∪ C)\(B ∩ C)))\(A ∩ ((B ∪ C)\(B ∩ C))) =

(((A ∪B)\(A ∩B)) ∪ C)\(((A ∪B)\(A ∩B)) ∩ C).

20. Prove that if (A ∪B)\(A ∩B) = (A ∪ C)\(A ∩ C), then B = C.

21. For two sets A and B, define A+B = (A∪B)\(A∩B), and A ·B = A∩B.

(a) Prove that

i. A+B = B +A;
ii. A+ ∅ = A;
iii. A+A = ∅;
iv. A ·A = A.

(b) Express the equalities in Problems 18, 19, and 20 in terms of + and
·.

1.3 Mappings

The most important concept in mathematics is that of amapping, or function.
We will use the two words interchangeably, with preference going to the former.
Suppose that A and B are sets, and that with each element a ∈ A is associated
a unique element f(a) ∈ B. Then we say that f is a mapping, or function, from
A into B. We wish to be a little more precise, but that is the idea of a mapping.

Let A and B be sets. We can form the set of all ordered pairs (a, b), where
a ∈ A and b ∈ B. It is just the set of all pairs whose first member is an element
of A and whose second member is an element of B. This is a fundamental
construction.

Definition 1.3.1 Let A and B be sets. Then

A×B = {(a, b) : a ∈ A, b ∈ B}

is the Cartesian product, or simply the product, of A and B.
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For example, if A = {1, 2, 3} and B = {1, 4}, then

A×B = {(1, 1), (1, 4), (2, 1), (2, 4), (3, 1), (3, 4)}.

Subsets of A × B are called relations in A × B, and subsets of A × A
are called relations on A. We will be particularly interested in two kinds of
relations, one of which is a mapping, and the other of which is an equivalence
relation.

Definition 1.3.2 A mapping is a set A, a set B, and a subset f of A × B
such that

a. if a ∈ A, then there is an element b ∈ B such that (a, b) ∈ f , and

b. if (a, b) ∈ f and (a, c) ∈ f , then b = c.

This definition is just a careful way of saying that with each element of A is
associated exactly one element of B. We say that ”f is a mapping from A into
B,” that is, we refer to the mapping as just f , although A and B are integral
parts of the mapping.
Suppose f is a mapping from A into B. The set A is the domain of f ,

and B is the co-domain, or the range of f . The set f is the graph of the
function. Thus two mappings are equal if they have the same domain, the
same co-domain, and the same graph.
If (a, b) ∈ f , then we think of f as having associated the element b ∈ B with

the element a ∈ A, or as having taken the element a onto the element b. In fact,
if (a, b) ∈ f , we say that “f takes a onto b.” Instead of writing (a, b) ∈ f , we
will write f(a) = b. If f(a) = b, then the element b is the image of the element
a under the mapping f . The set {f(a) : a ∈ A} is the image of the mapping
f , and is denoted Im f . If S is any subset of A, then f(S) = {f(a) : a ∈ S}.
Thus f(A) = Im f . If Im f = B, then f is onto, or surjective. If f(x) = f(y)
implies x = y, then f is one-to-one, or injective. If f is both one-to-one and
onto, then it is bijective, or a one-to-one correspondence between A and
B, or an equivalence between A and B.

To define a function we must specify two sets A and B, and a subset f of
A × B which satisfies conditions (a) and (b) of 1.3.2. Thus, having A and B,
we must tell what f(a) is for each a ∈ A and make sure that this association of
f(a) with a satisfies (a) and (b) of 1.3.2. This means that with each a ∈ A we
must have exactly one f(a).
A common situation is for f to be defined by a formula. To illustrate this,

suppose that A and B both are the set of real numbers R, and that we are
only considering functions from R to R. “The function f(x) = x2”means that
f is the function from R into R consisting of the set {(x, x2) : x ∈ R}. That
is, f associates with each real number x the real number x2. This is clearly a
function. In this vein, g(x) = x − 1, h(x) = 69, and k(x) = −x/2 determine
functions g, h, and k from R into R, but we will freely use phrases like “the
function g(x) = x− 1.”
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The fact that f is a mapping from A into B will be denoted f : A→ B. A
common notation for depicting a function is

f : A→ B : a→ f(a).

For example, the functions g, h, and k above could be denoted by

g : R→ R : x→ x− 1,

h : R→ R : x→ 69,

and
k : R→ R : x→ −x/2,

respectively. Thus, f : A→ B : a→ f(a) means that f is the function from A
to B that takes a onto the element f(a). Let’s consider some examples.

Example 1.3.3

a. Let A be any non-empty set. Then 1A is the function 1A : A→ A : a→ a.
That is, 1A is the function from A into A that takes each a ∈ A onto
itself. 1A is the identity function on A. It is one-to-one and onto, or
bijective.

b. Let A and B be any sets, and suppose that b ∈ B. Then f : A→ B : a→ b
is the function from A into B that takes each a ∈ A onto the (fixed)
element b ∈ B. Such a function is said to be constant.

c. Let Z be the set of all integers. Then Z→ Z : n→ n2 is a function. It is
neither one-to-one nor onto.

d. + : Z × Z → Z : (m,n) → m + n is a function, called addition of
integers. The function +(m,n) is usually written as m+ n.

e. Let R be the set of real numbers. Then R → R : x → ex is the well-
known exponential function. It is one-to-one, and its image is the set R+

of positive real numbers.

f. Let R and R+ be as in (e). Then R+ → R : x→ loge(x) is the well-known
natural logarithm function. It is one-to-one and onto.

g. Let a and b be real numbers with a < b, and let I be the set of functions
from the interval [a, b] to R which are integrable on [a, b]. Then∫

: I → R : f →
∫ b

a

f(x)dx

is a function. It is onto, but not one-to-one.
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h. Let D be the set of functions from [a, b] to R which are differentiable at all
points x in [a, b], and let Map([a, b], R) be the set of all functions from
[a, b] to R. Then

d : D → Map ([a, b], R) : f → f ′

is a function. It is neither one-to-one nor onto.

i. Let C be the set of complex numbers. The complex conjugate

C→ C : z = a+ bi→ z̄ = a− bi

is a function which is both one-to-one and onto.

j. Another well-known function is

C→ R : z = a+ bi→ |z| = (a2 + b2)1/2,

the absolute value function.

Suppose f : A → B, and S ⊂ A. Then g : S → B : s → f(s) is obviously a
mapping from S into B. The domain of f has just been cut down to S. The
mapping g is denoted f |S, and read “f restricted to S.”

If Im f ⊂ C, then g : A → C : a → f(a) is a mapping from A into C. The
mappings f : A→ B and g : A→ C have the same domain and the same graph,
but are not equal unless B = C.

Composition of functions is an important notion. Suppose f : A → B and
g : B → C. From these two functions we can obtain a function from A into C
in the following way. If a ∈ A, then f(a) ∈ B, and g(f(a)) ∈ C. Thus with
a ∈ A, we can associate an element of C. This clearly defines a function.

Definition 1.3.4 If f : A → B and g : B → C, then the function g ◦ f : A →
C : a→ g(f(a)) is the composition of f and g.

Several useful properties of composition of functions are in the following
theorem.

Theorem 1.3.5 Suppose that f : A → B, g : B → C, and h : C → D. Then
the following hold.

a. (h ◦ g) ◦ f = h ◦ (g ◦ f).

b. If f and g are onto, then g ◦ f is onto.

c. If f and g are one-to-one, then g ◦ f is one-to-one.

d. If f and g are equivalences, then g ◦ f is an equivalence.

e. f ◦ 1A = 1B ◦ f = f .
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Proof. Consider (a). The two functions clearly have the same domain and
range, so it remains to show that for each a ∈ A, ((h◦g)◦f)(a) = (h◦(g◦f))(a).
We have

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a)) = h(g(f(a))),

and
(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a))).

Thus (a) is proved. To prove (b), we need that if c ∈ C, then there is some
a ∈ A such that (g ◦ f)(a) = c. Suppose c ∈ C. Then since g is onto, there is
some b ∈ B such that g(b) = c. Since F is onto, there is some a ∈ A such that
f(a) = b. Thus g(f(a)) = (g ◦ f)(a) = c, and g ◦ f is onto.
To prove (c), we must show that if (g ◦ f)(x) = (g ◦ f)(y) then x = y,

where we know that both g and f are one-to-one. If (g ◦f)(x) = (g ◦f)(y), then
g(f(x)) = g(f(y)), and since g is one-to-one, f(x) = f(y). Since f is one-to-one,
x = y.
Part (d) follows from (b) and (c). Part (e) is easy.
Additional properties of composition of functions are in Problems 8-14.
Suppose that f : A → B is an equivalence. That is, f is one-to-one and

onto. Since f is onto, for b ∈ B there is an a ∈ A such that f(a) = b. Since
f is one-to-one, there is at most one such a. Hence, associating a with b gives
a mapping g : B → A. Notice that (g ◦ f)(a) = g(f(a)) = a, so g ◦ f = 1A.
Also, (f ◦ g)(b) = b, so f ◦ g = 1B . The function g is denoted f−1, and called
the inverse of f . Hence with every equivalence f : A→ B, we have associated
another function f−1 : B → A, and they are related by f ◦ f−1 = 1B and
f−1 ◦ f = 1A.
Conversely, suppose that f : A → B and g : B → A, with g ◦ f = 1A and

f ◦ g = 1B . Then for b ∈ B,

f(g(b)) = (f ◦ g)(b) = 1B(b) = b,

so f is onto. If f(x) = f(y), then

x = 1A(x) = (g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y) = 1A(y) = y.

Hence, f is one-to-one. Therefore we have the function f−1 : B → A. Suppose
that b ∈ B. Then f(f−1(b)) = b = f(g(b)), and since f is one-to-one, f−1(b) =
g(b). Therefore, f−1 = g. To sum up, we have proved the following.

Theorem 1.3.6 The function f : A → B is one-to-one and onto (and hence
has an inverse) if and only if there is a function g : B → A such that g ◦f = 1A
and f ◦ g = 1B. In this case, g is one-to-one and onto, g = f−1, and g−1 = f .

Of special interest are one-to-one functions of a set A onto itself. Such
functions are called permutations of A, and will be studied in some detail in
section 2.5 for finite A.
An example of a one-to-one function from R to R is the function defined by

f(x) = bx + a, with b 6= 0. The inverse f−1 is given by f−1(x) = (x − a)/b.
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These particular one-to-one mappings of R onto R will appear in Chapter 2 (2.4,
Problems 1-4, and 2.6).
We conclude this section with a short discussion of the “number”of elements

in a set. A one-to-one mapping from a set A to a set B is called an equiv-
alence. In case there is such an equivalence, we say that A and B have the
same cardinality, and write |A| = |B|. Intuitively, A and B have the same
number of elements. If there is a one-to-one mapping from A into B, we write
|A| ≤ |B|, and, in addition, if there is no one-to-one mapping from B into A,
we write |A| < |B|. If |A| < |B|, we say that A has smaller cardinality than
B. Intuitively, B is a larger set than A. It is true that for any sets A and B,
exactly one of |A| = |B|, |A| < |B|, and |B| < |A| holds, although we will not
prove it.
Let Z+(n) = {1, 2, ..., n}. If |A| = |Z+(n)|, then we say that the cardinality

of A is n, or that A has n elements, and write |A| = n. If A is empty or has n
elements for some positive integer n, then A is finite, and A is infinite other-
wise. A set A is denumerable, or countably infinite, if |A| = |Z+|, where Z+

is the set of positive integers. It turns out that Z and Q are denumerable, but R
is not. A set is countable if it is finite or denumerable. Given any set, there is
always a larger set (Problem 23). The reader is referred to Halmos, to Hunger-
ford, page 15, and to Lang, page 688, for additional material on cardinality of
sets.

PROBLEMS

1. Let A = {1.2} and B = {3, 4, 5}. Write down all the mappings from A to
B. (Just write down the graphs.)

2. How many functions are there from a set with m elements into a set with
n elements? Remember that sets can be empty.

3. Let N be the set {0, 1, 2, 3, . . .} of natural numbers. Let f : N → N :
n→ n+ 1. Show that f is one-to-one but is not onto.

4. Let f be the function defined by f : Z → Z : n → n + 1. Show that f is
one-to-one and onto, and write down a formula for its inverse.

5. Let f be the function from N to Z defined by f(n) = n/2 if n is even
and f(n) = −(n+ 1)/2 if n is odd. Show that f is a bijection, and find a
formula for its inverse.

6. Let A be the open interval (0, 1) = {x ∈ R : 0 < x < 1}, and let R+

be the set of all positive real numbers. Prove that the function given by
f : A→ R+ : x→ (1− x)/x is an equivalence, and write down a formula
for its inverse.

7. Let f be defined by f : R → R : x → x3. Determine whether or not f is
an equivalence, and if it is, find its inverse.
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8. Let f be the function in Problem 7 , and let g be defined by g : R → R :
x→ x+ 1.

(a) Find a formula for f ◦ g.
(b) Find a formula for g ◦ f .
(c) Prove that f ◦ g 6= g ◦ f .

9. Let f : A→ B and g : B → C. Show that

(a) if g ◦ f is injective, then f is injective;
(b) if g ◦ f is surjective, then g is surjective.

10. Let f : A→ B and g : B → C. Show that

(a) g ◦ f may be surjective without f being surjective;
(b) g ◦ f may be injective without g being injective.

11. Let f : A→ B and g : B → C. Show that

(a) g ◦ f may not be surjective even if g is surjective;
(b) g ◦ f may not be injective even if f is injective.

12. Let f be a function from A to B, and let g and h be functions from B to
C. Show that if g ◦ f = h ◦ f and f is surjective, then g = h.

13. Let g and h be functions from A to B, and let f be a function from B to
C. Show that if f ◦ g = f ◦ h and f is injective, then g = h.

14. Suppose that f : A → B and g : B → C are one-to-one and onto. Prove
that (g ◦ f)−1 = f−1 ◦ g−1.

15. Let A be a finite set, and let Perm (A) be the set of all permutations of
A. For f in Perm (A) and n a positive integer, let fn be f composed with
itself n times.

(a) Prove that for f in Perm (A), there exist distinct positive integers m
and n such that fm = fn.

(b) Prove that there exists a positive integer n such that fn = 1A.

(c) Prove that there exists a positive integer n such that fn = 1A for
all f in Perm (A).

16. Give an example to prove that A×B = C×D does not imply that A = C
and B = D. What is the situation?

17. Prove that there is a one-to-one correspondence between A×B and B×A.
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18. Prove that there is a one-to-one correspondence between A× (B×C) and
(A × B) × C. Prove that there is a one-to-one correspondence between
A× (B × C) and

A×B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

19. Prove that |Z| = |Z+|, and that |Z| = |Z× Z|

20. Let A = {q ∈ Q : a < q < b}, where a and b are rational numbers
with a < b. Let Q+ be the set of positive rational numbers. Prove that
|A| = |Q+|.

21. Let B = {q ∈ Q : q ≤ b}, and let C = {q ∈ Q : c ≤ q}, where b and c are
rational numbers. Prove that |B| = |C|. Prove that |Q| = |Q+|.

22. Let A be a set, and let P (A) denote the set of all subsets of A. For any
sets A and B, let Map(A,B) denote the set of all mappings from A into
B. Prove that there is a one-to-one correspondence between P (A) and
Map(A, {1, 2}).

23. Prove that there is no mapping from A onto P (A). Hint: If f were such
a mapping, consider the set {a ∈ A : a /∈ f(a)}. Prove that |A| < |P (A)|.

24. Let A and B be sets. Let C = { {{a}, {a, b}} : a ∈ A, b ∈ B}. That is,
C is the set whose elements are the sets {{a}, {a, b}} where a ∈ A and
b ∈ B. Prove that there is a one-to-one correspondence between A × B
and C. (C is a “rigorous”way to define A×B.)

25. Prove that there is a one-to-one correspondence between A×B and {f ∈
Map({1, 2}, A ∪B) : f(1) ∈ A, f(2) ∈ B}.

26. Let f : B → C. Show that the mapping

f∗ : Map(A,B)→ Map(A,C) : g → f ◦ g

is (a) one-to-one if f is one-to-one, and (b) onto if f is onto.

27. Let f : B → C. Show that the mapping

f∗ : Map(C,A)→ Map(B,A) : g → g ◦ f

is (a) one-to-one if f is onto, and (b) onto if f is one-to-one.

28. Let f : A → B, and let P (A) and P (B) denote the set of all subsets of
A and the set of all subsets of B, respectively. Prove that f induces a
mapping F : P (A)→ P (B) by F (S) = {f(a) : a ∈ S}. Prove that

(a) f is one-to-one if and only if F is one-to-one,

(b) f is onto if and only if F is onto, and

(c) f = 1A if and only if F = 1P (A).
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1.4 Families

This section is devoted to some notation that will be useful throughout. Let A
and B be sets. A family of elements of B indexed by A is a mapping f : A→ B.
There is no new concept here. A family is a mapping. A notation for such a
family is {ba}a∈A, where f(a) = ba. Note that bx can be by with x 6= y. Indeed,
if f is not one-to-one, this is the case. We write such sentences as “Let {ba}a∈A
be a family of elements of B indexed by A.” . The set A is called the indexing
set. The ba’s are called the members of the family. If the mapping is onto,
then B is indexed by A. A familiar example of a family is a sequence of real
numbers. It is just a family of real numbers indexed by the set Z+ of positive
integers, that is, just a map Z+ → R. We do not think of sequences as mappings,
but rather as real numbers with positive integers attached. Even though the
concept of family is the same as that of mapping, families are thought of a little
bit differently.
What does the sentence “Let {Si}i∈I be a family of sets.” mean? It means

that for each i ∈ I there is associated a set Si. That is, {Si}i∈I is a mapping
f from I into a set of sets and f(i) = Si. Remember that Si may be Sj with
i 6= j. A family of sets is not a set of sets.
With every family {ba}a∈A there is associated a set, namely the image of

the mapping. This set is {ba : a ∈ A}. With every set B there is associated a
family, namely the family {bb}b∈B which is the identity mapping 1B . For most
purposes, there is no difference between the family {bb}b∈B and the set B. From
either we can recapture the other. Thus, in a sense, the concept of family is
more general than that of set. (Family was defined in terms of set, however.)
The following situation arises fairly often. With each element a ∈ A, there

is associated a subset Sa of a set B. That is, we have a map from A into the
set P (B) of subsets of B, or a family of subsets of B indexed by A. We define
the intersection of such a family {Sa}a∈A to be⋂

a∈A
Sa = {x : x ∈ Sa for all a ∈ A},

and the union of the family to be⋃
a∈A

Sa = {x : x ∈ Sa for some a ∈ A}.

The members of the family are mutually disjoint if Sx ∩ Sy = ∅ whenever
x 6= y.
Let S be a set of sets. We can take the union and intersection of the sets in

S. They are defined to be the sets⋃
A∈S

A = {x : x ∈ A for some A ∈ S} ,

and ⋂
A∈S

A = {x : x ∈ A for all A ∈ S},
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respectively. It should be clear that the union and intersection of a family
{Sa}a∈A of sets is the same as the union and intersection, respectively, of the
set of sets associated with that family. Furthermore, the union and intersection
of a set of sets is the same as the union and intersection, respectively, of the
family of sets associated with that set of sets.
If S is a set of sets, the sets in S are mutually disjoint if A ∩ B = ∅

whenever A and B are in S and A 6= B. Note that the members of a family
of sets may not be mutually disjoint even though the sets in the set of sets
associated with the family are mutually disjoint.

PROBLEMS

1. Let {Bi}i∈I be a family of sets. Prove that

A
⋂(⋃

i∈I
Bi

)
=
⋃
i∈I

(
A
⋂
Bi

)
.

2. Let {Bi}i∈I be a family of sets. Prove that

A
⋃(⋂

i∈I
Bi

)
=
⋂
i∈I

(
A
⋃
Bi

)
.

3. Let {Bi}i∈I be a family of sets. Define

∑
i∈I

Bi =

(⋃
i∈I

Bi

)
\
(⋂
i∈I

Bi

)
.

Prove that

A
⋂(∑

i∈I
Bi

)
=
∑
i∈I

(
A
⋂
Bi

)
.

4. For each n ∈ Z, let

Zn = {m ∈ Z : m− n = 3k for some k ∈ Z}.

Show that the members of the family {Zn}n∈Z are not mutually disjoint,
and that the sets in the set {Zn : n ∈ Z} are mutually disjoint. Determine
how many elements there are in the set {Zn : n ∈ Z}

5. For each x ∈ Q, the set of rational numbers, let Bx = {y ∈ Q : x−y ∈ Z}.
Show that the members of the family {Bx}x∈Q are not mutually disjoint,
and that the sets in the set {Bx : x ∈ Q} are mutually disjoint. Prove
that

{x ∈ Q : 0 ≤ x < 1} → {Bx : x ∈ Q} : x→ Bx

is an equivalence.
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1.5 Equivalence Relations

The important concepts are those that arise often, and in many different places.
Such a concept is that of equivalence relation. It is a simple concept, and is the
same as that of partition, as we shall see.

Definition 1.5.1 Let A be a set. An equivalence relation on A is a subset
≈ of A x A satisfying

1. (a) (a, a) ∈≈ for all a ∈ A,
(b) if (a, b) ∈≈, then (b, a) ∈≈, and
(c) if (a, b), (b, c) ∈≈, then (a, c) ∈≈.

Condition (a) is expressed by saying that ≈ is reflexive, (b) by saying that
≈ is symmetric, and (c) by saying that ≈ is transitive. Common practice is
to write a ≈ b instead of (a, b) ∈≈. We will follow that practice.
In the examples below, the unverified statements are easy to verify.

Example 1.5.2

a. Let A be any set and define a ≈ b if a = b. Then ≈ is an equivalence
relation on A. That is, equality is an equivalence relation.

b. Let A be any set and define a ≈ b for all a, b ∈ A. Then ≈ is an equivalence
relation on A.

c. For m, n ∈ Z, define m ≈ n if m − n is even. Then ≈ is an equivalence
relation on Z.

d. Let k ∈ Z. For m, n ∈ Z, define m ≈ n if m−n is an integral multiple of
k. Then ≈ is an equivalence relation on Z.

e. Let T be the set of all triangles in the plane. For s, t ∈ T , define s ≈ t if
s is congruent to t. Then ≈ is an equivalence relation on T . Similarly, ≈
is an equivalence relation on T if we define s ≈ t if s is similar to t.

f. Let S be a set of sets, and for A, B ∈ S define A ≈ B if there is an
equivalence f : A → B. Then ≈ is an equivalence relation. In fact,
1A is an equivalence, so A ≈ A; if f : A → B is an equivalence, then
f−1 : B → A is an equivalence, so ≈ is symmetric; and if f : A→ B and
g : B → C are equivalences, then g ◦ f : A→ C is an equivalence, so ≈ is
transitive.

g. Let Q be the set of rational numbers. For x, y ∈ Q, define x ≈ y if
x− y ∈ Z. Then ≈ is an equivalence relation on Q.
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h. Let A be a set and suppose that S is a set of mutually disjoint non-empty
subsets of A such that ∪B∈SB = A. For a, b ∈ A, define a ≈ b if a and b
are in the same member B of S. Then ≈ is an equivalence relation on A.
It will be seen that every equivalence relation can be obtained this way.

Definition 1.5.3 A partition of a set A is a set P of mutually disjoint non-
empty subsets of A such that ∪S∈PS = A.

A partition of a set is just what the name suggests– a dividing up of that
set into non-overlapping pieces. We proceed now to show that the concepts of
partition and equivalence relation are the same.

Definition 1.5.4 Let ≈ be an equivalence relation on a set A. For a ∈ A,
let Cl(a) = {x ∈ A : a ≈ x}. The set Cl(a) is the equivalence class of ≈
determined by a. A subset S of A is an equivalence class of ≈ if S = Cl(a)
for some a ∈ A.

The equivalence class Cl(a) is the set of all elements of A equivalent to a. In
1.5.2 (a), the equivalence classes are the one-element subsets {a} of A. In 1.5.2
(b), there is only one equivalence class, namely A itself. In 1.5.2 (c), there are
two equivalence classes, the set of even integers and the set of odd integers. In
1.5.2 (h), the equivalence classes are the sets B ∈ S.

We have seen in example 1.5.2 (h) that a partition P of a set A induces an
equivalence relation on that set. Namely, two elements of A are defined to be
equivalent if they are in the same member of P . That this is an equivalence
relation is completely obvious. Now, given an equivalence relation on a set A,
we can get from it a partition of A. These two processes are inverses of one
another.

Theorem 1.5.5 Let ≈ be an equivalence relation on a set A. Then the set E
of equivalence classes of ≈ is a partition of A.

Proof. We must show that E is a set of mutually disjoint subsets of A whose
union is A. Suppose S, T ∈ E. Then S = Cl(a), T = Cl(b) for some a, b ∈ A.
Since a ∈ Cl(a), no member of E is empty, and the union of the members of E
is A. Suppose that x ∈ Cl(a) ∩ Cl(b). Then a ≈ x and x ≈ b. Thus, a ≈ b. If
y ∈ Cl(b), then b ≈ y, and hence a ≈ y. Thus, y ∈ Cl(a), so that Cl(b) ⊂ Cl(a).
By the symmetry of the situation, Cl(a) ⊂ Cl(b), so Cl(a) = Cl(b). Therefore
the sets in E are mutually disjoint, and E is a partition of A.

Corollary 1.5.6 Two equivalence classes of an equivalence relation are either
equal or disjoint.

Theorem 1.5.7 Let A be a set. Let E(≈) be the set of equivalence classes of the
equivalence relation ≈ on A. Then ≈→ E(≈) is a one-to-one correspondence
between the set of equivalence relations on A and the set of partitions of A.
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Proof. By 1.5.5, E(≈) is indeed a partition of A if ≈ is an equivalence
relation on A. Thus ≈ 7→ E(≈) gives a mapping from the set of equivalence
relations on A into the set of partitions of A. We have seen that a partition
gives an equivalence relation, so we have a mapping from the set of partitions of
A into the set of equivalence relations on A. These two mappings are inverses
of one another. By 1.3.5, the theorem follows.

The reader should devote enough thought to the content of 1.5.7 to under-
stand it.

PROBLEMS

1. Determine which of the properties of “reflexive,”“symmetric,”and “tran-
sitive”the following relations on Z satisfy.

(a) m ≈ n if m ≤ n.
(b) m ≈ n if m− n is odd or is 0.

(c) m ≈ n if m divides n.

(d) m ≈ n if |m− n| ≤ 10.

2. Prove that ≈ defined on Z by m ≈ n if m = n or m = −n + 5 is an
equivalence relation. Determine its equivalence classes.

3. Prove that ≈ defined on Z by m ≈ n if m2 +m = n2 +n is an equivalence
relation. Determine its equivalence classes.

4. Let two complex numbers be equivalent if their real parts are equal. Prove
that this is an equivalence relation, and that the equivalence classes are
in one-to-one correspondence with the real numbers.

5. Let two real numbers be equivalent if their difference is rational. Prove
that this is an equivalence relation.

6. Let two real numbers be equivalent if their difference is an integral multiple
of 360. Prove that this is an equivalence relation.

7. Let ≈ be a relation which is reflexive and for which a ≈ b and b ≈ c imply
that c ≈ a. Prove that ≈ is an equivalence relation.

8. Let Z+ be the set of positive integers, and define ≈ on Z+ × Z+ by
(a, b) ≈ (c, d) if a+ d = b+ c. Prove that ≈ is an equivalence relation and
that there is a natural one-to-one correspondence between the equivalence
classes of ≈ and the set Z of integers.

9. Do Problem 8 with the integers replaced by

(a) the rational numbers,

(b) the real numbers.
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10. Let Z∗ be the set of non-zero integers. Define ≈ on Z × Z∗ by (a, b) ≈
(c, d) if ad = bc. Prove that ≈ is an equivalence relation and that the
equivalence classes of ≈ are in one-to-one correspondence with the set Q
of rational numbers.

11. Let R∗ be the set of non-zero real numbers, and let R+ be the set of
positive real numbers. Define ≈ on R∗ by a ≈ b if a/b ∈ R+. Prove that
≈ is an equivalence relation and determine the equivalence classes of ≈.

12. Do Problem 11 with the real numbers R replaced by the rational numbers
Q.

13. Determine all partitions and all equivalence relations on the empty set.

14. Let A be a set and S ⊂ A. For subsets B and C of A, define B ≈ C if
(B ∪ C)\(B ∩ C) ⊂ S. Prove that ≈ is an equivalence relation on the set
P (A) of all subsets of A. Prove that P (S) is an equivalence class of ≈.

15. Prove that the set of equivalence classes of ≈ in Problem 14 is in one-to-one
correspondence with P (A\S) .

16. Let S be a non-empty set, and let Perm(S) be the set of all one-to-one
mappings of S onto S. Let G be a non-empty subset of Perm(S) such that
if f , g are in G then g◦f and f−1 are in G. Define ≈ on S by a ≈ b if there
is an element g ∈ G such that g(a) = b. Prove that ≈ is an equivalence
relation on S. If G = Perm(S), what are the equivalence classes of ≈? If
G = {1S}, what are the equivalence classes of ≈?

17. Let G and Perm(S) be as in Problem 16. Define ≈ on Perm(S) by f ≈ g
if g−1 ◦f ∈ G. Prove that ≈ is an equivalence relation on Perm(S). Prove
that G is an equivalence class of ≈. Determine the equivalence classes of
≈ in the cases G = Perm(S) and G = {1S}.

18. Let f : A→ B. Define ≈ on A by x ≈ y if f(x) = f(y). Prove that ≈ is
an equivalence relation on A.

19. Let f : A→ B, and let ∼= be an equivalence relation on B. Define ≈ on A
by x ≈ y if f(x) ∼= f(y). Prove that ≈ is an equivalence relation on A.

20. Let f : A→ B, and define ≈ on A by x ≈ y if f(x) = f(y), as in Problem
18. Let A/ ≈ denote the set of equivalence classes of ≈. Prove that

F : A/ ≈→ Im f : Cl(a)→ f(a)

is an equivalence.

21. Let ∼= be an equivalence relation on a set A. Let A/ ∼= be the set of
equivalence classes of ∼=. Let f : A → A/ ∼=: a → Cl(a). What are ≈
and F in Problem 20?
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22. Suppose ≈ and ∼= are equivalence relations on a set A. Call ∼= weaker
than ≈ if a ≈ b implies a ∼= b. Suppose S and T are two partitions of A.
Call T finer than S if each C ∈ T is a subset of some D ∈ S. Prove that
∼= is weaker than ≈ if and only if the partition ≈ determines is finer than
the partition ∼= determines.

23. Let ≈ be an equivalence relation on A and let S ⊂ A. Let P be the
partition of A induced by ≈. Let ∼= be the equivalence relation on S
induced by ≈. That is, ∼= is the “restriction”of ≈ to S. Prove that the
partition of S induced by ∼= is the set {T ∩ S : T ∈ P, T ∩ S 6= ∅}.

24. Let S be a partition of a set A, and let T = {A\B : B ∈ S}. Prove that

(a) ∩C∈T C = ∅,
(b) if C, D ∈ T and C 6= D, then C ∪D = A, and

(c) if C ∈ T then C 6= A.

25. Prove that the reflexive, symmetric, and transitive properties of an equiva-
lence relation are independent; that is, prove that no two of the properties
imply the third.

1.6 The Integers

Throughout this book, we will have occasions to use various properties of inte-
gers. This short section is devoted to putting down the more fundamental of
these properties in order that the reader may refresh his memory of them. This
discussion is not meant to be complete or “rigorous,”but rather just a casual
discussion of some of the properties of the system Z of integers.
A basic tool, used in proofs and in definitions, ismathematical induction.

Suppose for each positive integer n, Pn is a statement. Now suppose that the
statement P1 is true, and suppose further that for each positive integer m, Pm
implies Pm+1. Then the principle of mathematical induction asserts that
all the statements Pn are true. Intuitively, the principle is obvious, because P1

is given to be true; P1 implies P2, so P2 is true, P2 implies P3, so P3 is true; P3

implies P4, so P4 is true; and so on.
The principle of mathematical induction has nothing to do with what the

statements Pn are about, but rather involves a basic property of the positive
integers. The positive integers have the property that any non-empty subset of
them has a smallest element. This is expressed by saying that the set of positive
integers is well ordered. The principle of mathematical induction follows from
this property. Suppose, in fact, that not all of the Pn’s above were true. Then
the set {n : Pn is false} is non-empty, and so has a smallest element t. Now
t > 1 since P1 is true. Thus t = s+ 1 with s a positive integer. Since s < t, Ps
implies Ps+1, and so Pt is true. This is a contradiction. Hence the assumption
that not all the Pn’s is true is false. Therefore, all the Pn’s are true.
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We now give an example of a proof by induction. Consider the statement
Σni=1i = n(n+1)/2. Thus we have a statement P (n) for each positive integer n.
The principle of mathematical induction says that P (n) is true for all positive
integers n if P (1) is true, and if for each positive integer m, P (m) implies
P (m+1). The statement P (1) is true because it just asserts that 1 = 1(1+1)/2,
which is indeed the case. Assume that P (m) is true. That is, assume that
Σmi=1i = m(m + 1)/2. We need to show that this implies that Σm+1

i=1 i = (m +
1)(m+ 2)/2. Now,

m+1∑
i=1

i =

m∑
i=1

i+ (m+ 1) = m(m+ 1)/2 + (m+ 1)

= (m(m+ 1) + 2(m+ 1))/2 = (m+ 1)(m+ 2)/2.

Thus P (m) implies P (m + 1), and so P (n) is true for all positive integers n.
Similar proofs are asked for in the Problems at the end of this section.
The principle of mathematical induction can be stated a little bit differently.

Suppose we are given that Pn is true whenever Pm is true for all m < n. Then
again, Pn is true for all n. In fact, suppose some Pn is false. Then {n : Pn is
false} is non-empty, and so has a smallest element t. But Ps is true for all s < t,
and hence Pt is true. Again, we must conclude that Pn is true for all n. You
may wonder why P1 is true. It is true simply because for all positive integers
m < 1, Pm is true.
Induction is useful in making definitions. We illustrate this with a couple

of examples. Suppose we want to define xn for each real number x and each
positive integer n. Intuitively, we want xn to be x times itself n times. This
can be accomplished “inductively”by setting x1 = x, and xn+1 = xn · x. Thus,
x1 is defined to be x, and assuming xn is defined, we define xn+1 to be xn · x.
It should be intuitively clear that this defines xn for all n. To put this on a
more rigorous basis is a bit troublesome. Problems 11 and 12 at the end of this
section may be enlightening.
As a second example, we define the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,

21, · · · , where after the first two terms, each number is the sum of the two
preceding it. It is defined inductively by

a1 = 1,

a2 = 1,

and
an = an−1 + an−2 for n > 2.

Suppose m, n ∈ Z with m 6= 0. Then there are unique integers q and r with
0 ≤ r < |m|, the absolute value ofm, such that n = mq+r. This is the division
algorithm for integers. We will simply assume it. If m, n ∈ Z and not both
are zero, then the greatest common divisor (m,n) of m and n is the largest
integer that divides them both. There clearly is such, because 1 divides them
both, and those integers that divide both are no larger than the maximum of
|m| and |n|.
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An important fact about greatest common divisors is this: (m,n) is the
smallest positive integer of the form am+ bn, where a, b ∈ Z. In particular, the
greatest common divisor of two integers m and n, not both zero, can be written
in the form am + bn, with a, b ∈ Z. To see this, let m, n ∈ Z with not both
zero. The set of all positive integers of the form am + bn with a and b in Z is
not empty since it contains m2 +n2 which is positive. Now let d be the smallest
positive integer of the form d = am + bn with a, b ∈ Z. Any positive integer
that divides both m and n clearly divides d, so d ≥ (m,n). Write m = dq + r
with 0 ≤ r < d. Then

0 ≤ r = m− dq = m− qam− qbn = (1− qa)m− qbn < d,

whence r = 0. Therefore d divides m. Similarly, d divides n. Hence d = (m,n).
Since any integer that divides both m and n divides d, it follows that the

greatest common divisor d of m and n is characterized by the facts that it is
positive, divides m and n, and is divisible by every integer that divides m and
n.
If (m,n) = 1, then m and n are said to be relatively prime. In this case,

1 = am+ bn for suitable a, b ∈ Z, a most handy fact.
There is an algorithm for computing the greatest common divisor of two

integersm and n, and that algorithm actually gives the greatest common divisor
as a linear combination of m and n. It is based on the division algorithm, and is
called the Euclidean Algorithm. Here is how it works. Suppose that we want
the greatest common divisor of n1 and n2. We may as well assume that n2 is
positive. Write n1 = n2q1 + n3, with 0 ≤ n3 < n2. If n3 is not zero, then write
n2 = n3q2 +n4 with 0 ≤ n4 < n3. Proceeding in this manner, we eventually get
nk+1 = 0 since for i > 1, the ni are non-negative and strictly decreasing. Thus
we have the following equations.

n1 = n2q1 + n3, with 0 < n3 < n2;

n2 = n3q2 + n4, with 0 < n4 < n3;

n3 = n4q3 + n5, with 0 < n5 < n4;
...

nk−3 = nk−2qk−3 + nk−1, with 0 < nk−1 < nk−2;

nk−2 = nk−1qk−2 + nk, with 0 < nk < nk−1;

nk−1 = nkqk−1.

Now nk is the greatest common divisor of n1 and n2. From the last equation
above, we see that nk divides nk−1, from the next to last, that nk divides nk−2,
and so on, yielding the fact that nk divides both n1 and n2. Starting with the
first equation, if an integer n divides both n1 and n2, the second equation shows
that n divides n3. Continuing, we see that n divides nk. Thus nk is the greatest
common divisor of n1 and n2. Starting with the equation ni = ni+1qi + ni+2,
we see that nk is the greatest common divisor of ni and ni+1 for any i < k.
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To get nk as a linear combination of n1 and n2, we show the more general
fact that any of the ni can be expressed as a linear combination of n1 and n2.
Induct on i. Now n1 and n2 are certainly linear combinations of n1 and n2. If
nj is a linear combination of n1 and n2 for all j < i, with i > 2, then using the
equation ni−2 = ni−1q2 + ni, it follows readily that ni is a linear combination
of n1 and n2. For example,

n3 = n1 − q1n2;

n4 = n2 − n3q2

= n2 − (n1 − q1n2) q2

= −q2n1 + (1 + q1q2)n2;

n5 = n3 − n4q3

= (n1 − q1n2)− (−q2n1 + (1 + q1q2)n2) q3

= (1 + q2q3)n1 + (−q1 − q3 − q1q2q3)n2.

We illustrate with n1 = 391 and n22 = 102. We get

391 = 102 · 3 + 85,

102 = 85 · 1 + 17,

85 = 17 · 5.

Thus the greatest common divisor of 391 and 102 is 17. Further,

17 = 102− 85

= 102− (391− 102 · 3)

= 4 · 102− 1 · 391

Later we will need the notion of greatest common divisor for any finite set
of integers, not all zero. Let m1, m2, . . , mk ∈ Z, not all zero. The greatest
common divisor of this set of integers is the largest positive integer d dividing
them all. Such an integer d exists since 1 divides all the mi, and the positive
integers that divide them all are no larger than the maximum of the absolute
values of the mi. Furthermore, there exist integers ai such that d = Σ aimi.
To see this, first note that the set of integers of the form Σ aimi with the ai in
Z is not empty since it contains Σ m2

i , which is positive. Let d be the smallest
positive integer of the form Σ aimi with the ai in Z. Then any positive integer
that divides all the mi divides d, so that d is at least as big as the greatest
common divisor of the mi. For any j, write mj = dqj + rj , with 0 ≤ rj < d.
Then rj = mj−dqj , which is of the form Σ aimi sincemj and d are of that form.
Thus rj = 0, and so d divides each mi. Therefore, d is the greatest common
divisor of the mi.
If the greatest common divisor of the integersmi is 1, then themi are said to

be relatively prime. In this case, there exist integers ai such that 1 = Σ aimi.
A positive integer p 6= 1 is a prime if p is divisible only by the integers

±1 and ±p. Equivalently, p > 1 is prime if whenever p divides a product mn of
integers, it divides m or it divides n.
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Every positive integer n 6= 1 is a product of primes. In fact, let S be the
set of all positive integers 6= 1 which divide n. Since n ∈ S, S is not empty, so
S has a smallest element p. But p must be a prime because otherwise p would
be divisible by a positive integer 6= 1 and less than p, contradicting the fact
that p is the smallest element of S. Thus, n = pm with p prime. Since m < n,
proceeding by induction, we get that m = 1 or m is a product of primes. Hence
n is a product of primes, say n = p1p2 · · · pj .
Suppose that n = p1p2 · · · pj = q1q2...qk with q1, q2, . . . , qk also primes.

Then p1 divides q1(q2q3 · · · qk), so p1 divides q1 or q2q3 · · · qk. If p1 divides q1,
then p1 = q1. If not, p1 divides either q2 or q3q3 · · · qk, so that in any case,
p1 divides, and hence equals, some qi. We may as well suppose i = 1. Thus
p1 = q1, so p2p3 · · · pj = q2q3 · · · qk, and by induction on j we can conclude that
j = k, and after rearrangement,

p1 = q1, p2 = q2, . . . , pj = qj

That is, “up to rearrangement,” n can be written uniquely as a product of
primes. We conclude that if n ∈ Z and n 6= 0 or 1, then

n = (±1)pn11 pn22 · · · p
nk
k

with the pi’s distinct primes, and that any such representation of n is unique up
to the order of the pi’s. In particular, the representation is unique if we insist
that p1 < p2 < . . . < pk.
In Chapter 4 we will prove such “unique factorization theorems”for systems

more general than that of the integers Z.
Let p1, p2, . . . , pn be primes. Then p1p2 · · · pn + 1 is divisible by a

prime, but is not divisible by any of the pi. Thus there are an infinite number
of primes.

PROBLEMS

1. Prove that for all positive integers n,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.

2. Prove that for all positive integers n, Σni=11/2i < 1.

3. Prove that an < (7/4)n for all terms an of the Fibonacci sequence.

4. Suppose x is a real number. Prove that xm+n = xm · xn for all positive
integers m and n.

5. Use the Euclidean Algorithm to find the greatest common divisors of the
following pairs of integers. Express the greatest common divisors as linear
combinations of the two integers.

(a) 102 and 855.
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(b) 101 and 57.

(c) 101 and −57.

6. Prove that for any integer n, (a, b) = (a, b+ na).

7. Prove that if m and n are both non-zero, then there are infinitely many
pairs a and b for which (m,n) = am+ bn.

8. Prove that the following two definitions of prime are equivalent.

(a) An integer p > 1 is prime if p is divisible only by the integers ±1
and ±p.

(b) An integer p > 1 is prime if whenever p divides a product mn, then
p divides m or p divides n.

9. Let a, b, and c be non-zero integers. Prove that (a, b, c) = ((a, b), c).
How can you use the Euclidean Algorithm to write (a, b, c) as a linear
combination of a, b, and c?

10. Let m and n be non-zero integers. The least common multiple of m
and n is the smallest positive integer that both m and n divide. It is
denoted [m,n]. Let m = a(m,n), and let n = b(m,n). Prove that

(a) [m,n] = ab(m,n), and

(b) mn = [m,n](m,n).

11. Let Z+ be the set of all positive integers, and let Zn = {m ∈ Z+ : m ≤ n},
and let R be the set of all real numbers. Let P be the set of all positive
integers n such that there exists a unique function fn : R× Zn → R such
that

(a) fn(x, 1) = x, and

(b) fn(x,m+ 1) = fn(x,m)fn(x, 1) for all 1 ≤ m < n.

Prove that P = Z+.

12. Let Z+ be the set of all positive integers, and let R be the set of all real
numbers. Prove that there is a unique function f : R×Z+ → R such that

(a) f(x, 1) = x, and

(b) f(x, n+ 1) = f(x, n)f(x, 1).



Chapter 2

Groups

2.1 Definitions and Examples

We choose to begin our study of algebra with that of groups because a group
is one of the most basic algebraic systems. The various concepts that appear
in algebra generally appear in their simplest form in the study of groups. The
theory of groups is one of the oldest branches of algebra, and has applications
in many areas of science, particularly in physics and in other parts of mathe-
matics. It arose in the theory of equations, specifically in trying to find roots
of polynomials in terms of their coeffi cients, and we will see in a later chapter
some of the uses of group theory in such endeavors. Suffi ce it to say that the
richness, breadth, and usefulness of the subject has made group theory a central
topic in mathematics.
A fundamental algebraic concept is that of binary operation on a set. It

is just a way of putting two elements of a set together to get a third element of
that set. That is, a binary operation on a set S is a mapping S × S → S. A
group is a set with a particular kind of binary operation on it. Before we make
the formal definition of a group, let’s consider a couple of examples. Addition of
integers is a binary operation on the set Z of integers. That is, + : Z× Z→ Z.
Let Perm(S) be the set of all permutations of S, that is, the set of all one-
to-one mappings of a set S onto itself. Now if f and g are in Perm(S), then
by 1.3.5, so is g ◦ f . Thus, ◦ : Perm(S) × Perm(S) → Perm(S), and so ◦ is a
binary operation on Perm(S). These two situations, that is, Z with its binary
operation +, and Perm(S) with its binary operation ◦, may appear to have little
in common. However, they are remarkably similar. Both binary operations are
associative, for example. If a, b, c ∈ Z, then (a + b) + c = a + (b + c). If f , g,
h ∈ Perm(S), then (f ◦ g) ◦ h = f ◦ (g ◦ h). Both have an identity. For any
a ∈ Z, a+ 0 = 0 +a = a, and for any f ∈ Perm(S), 1S ◦f = f ◦1S = f . In both
cases, every element in the set has an inverse. For a ∈ Z, there is an element
b ∈ Z such that a + b = b + a = 0, namely b = −a. For f ∈ Perm(S), there is
an element g ∈ Perm(S) such that f ◦ g = g ◦ f = 1S , namely g = f−1. Sets

25
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with binary operations on them which enjoy these three properties arise often
and in many different places in mathematics (and elsewhere). They are called
groups. They have been, and are still being, studied extensively.

Definition 2.1.1 A group is a set G and a binary operation · : G × G → G
on G such that

1. (a) (g · h) · k = g · (h · k) for all g, h, k ∈ G;
(b) there is an element e ∈ G such that e · g = g · e = g for all g ∈ G;

and

(c) for g ∈ G, there is an h ∈ G such that g · h = h · g = e.

As is the custom, the image of the pair (g, h) under the mapping · is denoted
g ·h instead of ·(g, h). Condition (a) is expressed by saying that · is associative,
condition (b) by saying that · has an identity element, and condition (c) by
saying that each element has an inverse.
There is only one identity element e ∈ G. Indeed, if e′ were another such

element, then e = e · e′ = e′ · e = e′. This unique element is called the identity
element of G. It will typically be denoted by e, or eG if we need to call attention
to G. Note also that each g ∈ G has only one inverse h. If h′ were another, then

h = e · h = (h′ · g) · h = h′ · (g · h) = h′ · e = h′.

This unique element associated with g is denoted g−1 and is called the inverse
of g.
It is important to realize that g ·h need not be h·g. However, if g ·h = h·g, for

all g, h ∈ G, then the group is called commutative, or Abelian. A group that
is not commutative is called non-commutative, or non-Abelian. Suppose
that S is a subset of G. Consider the mapping · restricted to S × S. If · maps
S×S into S, then it is a binary operation on S, and S together with this binary
operation might be a group. If it is, we say that S is a subgroup of G. Note
that for any group G, G itself is a subgroup of G, and {e} is a subgroup of G.
A subgroup of G that is not {e} or G is called a proper subgroup of G.
In order to give an example of a group, we must specify two things, a set G

and a binary operation · on that set. Then we must make sure that · satisfies
(a), (b), and (c) of 2.1.1.

Example 2.1.2 (Groups) a. We have seen two examples already – the set
Z of integers with ordinary addition as the operation, and the set Perm(S)
of all permutations of a set S with composition of mappings as the opera-
tion. If S = {1, 2, 3, . . . , n}, then Perm(S) is denoted Sn and is called
the symmetric group of degree n.

b. The set Q∗ of non-zero rational numbers with ordinary multiplication of
numbers is an Abelian group. The identity is 1 and the inverse of an
element x ∈ Q∗ is 1/x.
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c. The set Q+ of positive rational numbers with multiplication of numbers is
an Abelian group. Q+ is a subgroup of Q∗.

d. The sets R∗ and R+ of non-zero and positive real numbers, respectively,
with ordinary multiplication of numbers, are groups. Note that Q∗ and R+

are subgroups of R∗, and that Q+ is a subgroup of R+. However, Z+ is
not a subgroup of Q+.

e. For n > 0, let Z(n) = {0, 1, 2, ... , n− 1}. Define the binary operations +n

and ·n on Z(n) as follows. For x and y in Z(n), write x+ y = nq+ r with
0 ≤ r < n, and let x +n y = r. Write xy = nq1 + s with 0 ≤ s < n, and
let x ·n y = s. Then +n and ·n are associative operations. (See Problem 5
- Problem 9 below.)

Z(n) with the operation +n is an Abelian group, called the group of in-
tegers modulo n. We will view this group a bit differently later. (See
2.3.13.)

For n > 1, let U(n) be the elements of Z(n) that are relatively prime to n.
Then U(n) with the operation ·n is a group, called the group of units of
Z(n).

f. Let G be the set of all 2× 2 matrices(
a11 a12

a21 a22

)
with aij ∈ R, and whose determinant a11a22 − a12a21 6= 0. Define · as
the usual matrix multiplication(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
Then G with · is a group. The matrix(

1 0
0 1

)
is the identity, and since a11a22 − a12a21 6= 0, each element of G has an
inverse. This group is called the general linear group of 2×2 real matri-
ces, and is denoted GL2(R). Those elements of GL2(R) with determinant
1 form a subgroup, called the special linear group, denoted SL2(R).

g. Let G = {e, a}, and let · be given by the “multiplication” table

e a
e e a
a a e

Then G with the binary operation · is a group. This may be verified by
brute force. For example, to see if · is associative, try all possibilities.
Clearly e is the identity element of G. Also, e = e−1, and a = a−1



28 CHAPTER 2. GROUPS

h. The set {1, −1, i, −i} of complex numbers with ordinary multiplication
of complex numbers is a group. More generally, the set {ekπi/n : k =
0, 1, ..., n− 1} of all nth roots of 1 with ordinary multiplication of complex
numbers is a group with n elements.

eiπ
k
n = cos

k

n
π + i sin

k

n
π.

The multiplication table for the group of 4th roots of 1 is

1 −1 i −i
1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1
−i −i i 1 −1

Multiplication tables for groups are also called Cayley tables.

i. Let S be any set and let P (S) be the set of all subsets of S. For A,
B ∈ P (S), let A ·B = (A∪B)\(A∩B). The associativity of · is Problem
17, section 1.2. Clearly ∅ is the identity element, and each element is its
own inverse. (See Problem 19, section 1.2.)

j. Let S be any set, and let G be the set of all mappings from S into R. For
g, h ∈ G, define (g ·h)(s) = g(s) +h(s). Then G with · is a group. Again,
· is usually denoted +. If S = R, then H = {g ∈ G : g is continuous} is a
subgroup of G.

k. Let p and q be in R×R. That is, p and q are each pairs of real numbers. Let
d(p, q) denote the distance between p and q. Let G be the set of all functions
f on R×R that preserve d, that is, all f such that d(p, q) = d(f(p), f(q))
for all p and q in R×R. Let · be composition of functions. Then G with ·
is a non-Abelian group. That G is a group is clear once one proves that if
f ∈ G, then f−1 ∈ G. (See Problem 10 below.) It is non-Abelian since the
functions f and g given by f(x, y) = (y, x) and g(x, y) = (x+ 1, y) do not
commute and are in G. This group is called the group of isometries,
or the Euclidean group of the plane.

l. Let G be the set whose elements are the following “motions”of the square
S.

i. The reflection H of S about h;

ii. the reflection V of S about v;

iii. the reflection D1 of S about d1;

iv. the reflection D2 of S about d2;

v. the rotation R1 of S counterclockwise through 90◦;

vi. the rotation R2 of S counterclockwise through 180◦;
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vii the rotation R3 of S counterclockwise through 270◦;

viii. the rotation Eof Scounterclockwise through 0◦.
Let · be composition of motions. For example, D1 ·R2 is the motion
of S resulting from the motion R2 followed by D1. It is easily seen
that D1 · R2 = D2. With patience, it can be shown that G with · is
a group. It is called the group of symmetries of a square. It is
non-Abelian.
Every regular polygon has an analogous group of symmetries. If a
regular polygon has n sides, its group of symmetries has 2n elements,
and it is called a dihedral group, and denoted Dn. Thus the group
of symmetries of the square is the dihedral group D4, and indeed does
have 8 elements. (See Problem 13 of this section.)

The examples above should convince you that groups occur in many math-
ematical contexts. Since they do occur so frequently, it is worthwhile to study
them “in the abstract." The knowledge gained in such a study can then be
applied in many places, namely wherever a group occurs.
In spite of the fact that a group is a set G together with a binary operation

on G satisfying certain conditions, most often just G itself is referred to as the
group. Thus when we say “G is a group,”we mean that G is a set on which
there is a binary operation satisfying the requirements (a), (b), and (c) of 2.1.1.
There are many binary operations on a set which make that set into a group.

For example, if Gis a group with a binary operation ·, and f is a one-to-one
mapping of G onto G, then x ∗ y = f−1(f(x) · f(y)) defines a new binary
operation ∗ on G, and G together with ∗ is a group. (See Problem 17 below.)
For a, b in a group G, it is the usual custom to write ab instead of a · b, and

ab is read “a times b.”We will follow this custom.
Suppose G is a group and a, b, c, d ∈ G. Then we can form the prod-

ucts a(b(cd)), ((ab)c)d), (a(bc))d, and a((bc)d). Now using the associative law
((a) in 2.1.1), we can conclude that all these possibilities are equal. For exam-
ple, a(b(cd)) = a((bc)d) = (a(bc))d = ((ab)c)d by repeated application of the
associative law. Thus we may as well write abcd for these products.

The “generalized”associative law holds. That is, suppose a1, a2, . . . , an ∈ G.
We may form the products

a1(a2(a3(· · · an)) · · · ),
(· · · ((a1a2) · · · )an−1)an,

and
(a1a2)(a3(a4(· · · an)) · · · ),

for example, and if n is very large then there are many, many such possibilities.
We can get from any one of these products to another by repeated applications
of 2.1.1 (a). A formal proof may be effected by induction on n, and can be
found in [N. Jacobson, page 39], for example. Any product such as those above
can be written simply a1a2 · · · an since there is no possible ambiguity.
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Suppose a ∈ G. Then we have the products aa, aaa, aaaa, and so on.
It is reasonable to denote these by a2, a3, a4, and so on. Also a to negative
powers may be defined, and certain useful laws of exponents hold. The following
definition is an example of a simple definition by induction. Remember that a−1

is the inverse of the element a.

Definition 2.1.3 Let G be a group, and let a ∈ G. Then a0 = e, and for n ≥ 1,
an = an−1a. For negative integers n, an = (a−n)−1.

In 2.1.3, a0 is defined, and for n ≥ 1, anis defined whenever an−1is defined.
Therefore an is defined for all non-negative integers n. We have already attached
a meaning to a−1. It is the inverse of a. Therefore we can define an = (a−n)−1

for negative integers n, and so we have defined an for all integers n. (Note
that for n = −1, the definition an = (a−n)−1 is compatible with our previous
definition of a−1.) The “laws of exponents” that can be expected to hold do
hold.

Theorem 2.1.4 Let G be a group and let a, b ∈ G. Then

a. aman = am+n for all m, n ∈ Z,

b. (am)n = amn for all m, n ∈ Z, and

c. (ab)n = (b−1a−1)−n for all n ∈ Z.

Proof. To prove (a), we first prove that aam = am+1 for all m ≥ 0. To do
this, we induct on m. For m = 0, it is true. If m ≥ 0 and aam = am+1, then

aam+1 = (aam)a = am+1a = am+1+1 = am+2.

Thus aam = am+1 for all m ≥ 0. Next, we show that

(a−1)m = (am)−1 = a−m

for all m ∈ Z. First, we show by induction that this is so for m ≥ 0. For m = 0,
it is clearly true. If m ≥ 0, and

(a−1)m = (am)−1 = a−m,

then

(a−1)m+1 = (a−1)ma−1 = a−ma−1 = (am)−1a−1

= (aam)−1 = (am+1)−1 = a−(m+1).

Thus (a−1)m = (am)−1 = a−m for all m ≥ 0. If m < 0, then (a−1)m =
((a−1)−m)−1 = ((a−m)−1)−1 = a−m = (am)−1. Thus (a−1)m = (am)−1 = a−m

for all m ∈ Z. Now we show that

aam = am+1
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for all m < 0. To show this we need to use the fact that

a−1ak = ak−1

for all k > 0. Since k − 1 ≥ 0, this follows from what we have already proved:
ak−1 = (a−1a)ak−1 = a−1(aak−1) = a−1ak. Now if m < 0, then aam =
(a−1)−1(a−1)−m = (a−1)−m−1 = am+1.

Finally, we show that
aman = am+n.

First we show that for all n, it is true for all m ≥ 0. If m = 0, it is true. If
aman = am+n for all n, then

am+1an = am(aan) = aman+1 = am+n+1 = a(m+1)+n,

and so aman = am+n for all m ≥ 0 and for all n. Now suppose that m < 0.
Then aman = (a−1)−m(a−1)−n = (a−1)−m−n = am+n, and (a) is proved.
To prove (b), we show first that

(am)n = amn

for all n ≥ 0. For n = 0, it is true. If n ≥ 0 and (am)n = amn, then (am)n+1 =
(am)nam = amnam = amn+m = am(n+1), whence (am)n = amn for all m ∈ Z
and for all n ≥ 0. If n < 0, then (am)n = ((am)−n)−1 = (a−mn)−1 = amn.
To prove (c), note that (ab)−1 = b−1a−1. Then for any n ∈ Z, we have

(ab)n = ((ab)−1)−n = (b−1a−1)−n.

PROBLEMS

1. Prove that Z is not a group under subtraction.

2. Define the operation * on Z by a ∗ b = a + b + 1. Show that Z together
with this operation is an Abelian group.

3. Let G = Q\{−1}. Define * on G by x ∗ y = x + y + xy. Prove that G
together with * is an Abelian group.

4. Let G be the rational numbers whose denominators are a power of the
prime p, when reduced to lowest terms. Prove that G is a group under +.

5. Prove in detail that Z(n) is an Abelian group under the operation +n.

6. Prove that Z(n) with the operation ·n is not a group unless n = 1.

7. Let Z(n)∗ = Z(n)\{0}. Prove that Z(n)∗ under ·n is a group if and only
if n is a prime.

8. Prove in detail that U(n) is an Abelian group under the operation ·n.

9. Write down a multiplication table for Z(6) and for U(12).
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10. Prove that in 2.1.2 (k), G is a group.

11. Let G be a group with operation ∗, and let g ∈ G. Let S = {gn : n ∈ Z}.
Prove that S is a group under ∗.

12. Prove that R∗ × R is a group under the operation given by the rule
(a, b)(c, d) = (ac, bc+ d).

13. A symmetry of a regular polygon can be viewed as a permutation of the
vertices of that polygon that carries adjacent vertices to adjacent vertices.
Prove that the set of symmetries of a regular polygon is a group under
composition of permutations.

14. For elements a, b in a group G, prove that the equation ax = b has exactly
one solution for x in G. Prove a similar fact for the equation xa = b.

15. Prove that the cancellation laws hold for groups. That is, if G is a
group, and a, b, c ∈ G, prove that ab = ac implies that b = c, and that
ab = cb implies that a = c.

16. Let G be a group. Prove that left multiplication is a permutation of G.
That is, for a ∈ G, prove that G → G : b → ab is a one-to-one mapping
from G onto G. Prove a similar fact for right multiplication.

17. Suppose G is a group and f is a one-to-one mapping from G onto the set
S. Prove that defining a multiplication * on S by x∗y = f(f−1(x)f−1(y))
makes S into a group.

18. Let G be a group, g ∈ G, and define a new multiplication ∗ on G as
follows. For a, b ∈ G, let a ∗ b = agb. Prove that G with ∗ is a group.

19. Suppose G is a set and · is an associative binary operation on G such that
there is an element e ∈ G with e · a = a for all a ∈ G, and such that
for each a ∈ G there is an element b ∈ G with b · a = e. Prove that G
with such a binary operation is a group. That is, it is enough to assume
associativity, a left identity, and left inverses, in order to have a group.
Similarly, it is enough to assume associativity, a right identity, and right
inverses.

20. Let G be the non-zero real numbers, and for x and y in G, define x ∗ y =
|x|y. Prove that this is an associative binary operation on G, there is a
left identity, elements have right inverses, but that G is not a group under
∗.

21. Let G and H be groups. Prove that G × H with multiplication given
by (a1, b1)(a2, b2) = (a1a2, b1b2) is a group. (G × H is called the direct
product of G and H. Direct products are studied in 2.6.)

22. Give an example of a group with 4 elements. Give an example of a group
with 5 elements. Give an example of a group with 51000 elements.
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23. Prove that if a2 = e for all a in the group G, then G is Abelian.

24. Prove that if for all a, b in a group G, (ab)2 = a2b2, then G is Abelian.

25. Prove that the group Perm(S) is commutative if and only if S has fewer
than three elements.

26. For each positive integer n ≥ 3, prove that there is a non-Abelian group
with n! elements.

27. Let a and b be elements of a group G, and suppose that ab = ba. Prove
that for n ∈ Z, (ab)n = anbn. Let a1, a2, . . . , ak be elements of G with
aiaj = ajai for all i and j. Prove that for n ∈ Z, (Πiai)

n = Πia
n
i .

28. Let G be a group, and let n ∈ Z. Prove that the mapping G→ G : a→ an

is one-to-one and onto if n = ±1, and may or may not be otherwise.

29. Let a and b be elements of a group G. Derive from 2.1.4 that (ab)−1 =
b−1a−1. Verify this for the elements H and V , and for the elements R2

and D2 of the dihedral group D4 given in 2.1.2 (l).

2.2 Subgroups and Cosets

Let G be a group. A subgroup of G has been defined to be a subset S of G
such that when multiplication is restricted to elements of S, S is a group. Now
suppose that S is a subgroup of G. If s, t ∈ S, then st ∈ S since multiplication
must be a binary operation on S. The fact that st ∈ S whenever s, t ∈ S
is expressed by saying that S is closed under multiplication. Since S is a
subgroup of G, S is a group, and so has an identity eS . But then eSeS = eSeG,
and cancelling eS yields eS = eG. Furthermore, for s ∈ S, s has an inverse t as
an element of the group S, and an inverse u as an element of the group G. But
st = eS = su, and cancelling s gets t = u. Thus, for s ∈ S, s−1 is unambiguous.
The following theorem is quite useful.

Theorem 2.2.1 Let G be a group, and let S be a non-empty subset of G. Then
S is a subgroup of G if and only if for s, t ∈ S, st ∈ S and s−1 ∈ S.

Proof. We have already observed that if S is a subgroup of G, then st and
s−1 are in S whenever s, t ∈ S. Conversely, suppose that st and s−1 are in S
whenever s, t ∈ S. Since st ∈ S if s, t ∈ S, multiplication is a binary operation
on S. It is associative on S since it is associative on G. Since S 6= ∅, there is an
element s ∈ S. Then s−1 ∈ S, and hence ss−1 = e ∈ S. Thus S has an identity
element e (the identity for G), and every element s ∈ S has an inverse in S (its
inverse as an element of G). Thus S is a subgroup of G.
It is also true that a non-empty subset S of a group G is a subgroup if and

only if for s, t ∈ S, st−1 ∈ S. Furthermore, a non-empty finite subset S of G
is a subgroup if and only if S is closed under multiplication. These are left as
exercises.
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If S and T are subgroups of G, then S ∩ T is a subgroup of G. It is non-
empty since e ∈ S ∩ T . If x, y ∈ S ∩ T , then xy, x−1 ∈ S and xy, x−1 ∈ T
since x, y ∈ S and x, y ∈ T , and S and T are subgroups. Therefore we have
xy, x−1 ∈ S ∩ T , whence S ∩ T is a subgroup. Something much better holds.

Theorem 2.2.2 Let {Si}i∈I be a family of subgroups of the group G, with I 6=
∅. Then ∩i∈ISi is a subgroup of G.

Proof. Suppose x, y ∈ ∩i∈ISi = S. Then x, y ∈ Si for all i ∈ I. Thus xy,
x−1 ∈ Si for all i ∈ I, and so xy, x−1 ∈ S. Since e ∈ Si for all i ∈ I, S 6= ∅.
Thus S is a subgroup of G.
Of course 2.2.2 implies that the intersection of any non-empty set of sub-

groups of G is a subgroup of G.
As trivial as it is to prove, 2.2.2 has some worthwhile consequences. For

example, let G be a group, and let S be a subset of G. Then there is a unique
smallest subgroup T of G such that S ⊂ T . This means that there is a subgroup
T ofG such that S ⊂ T , and if V is any subgroup ofG containing S, then T ⊂ V .
We simply let T be the intersection of the set of all subgroups of G which contain
S.

Definition 2.2.3 Let G be a group, and let S be a subset of G. Then the
smallest subgroup of G containing S is called the subgroup generated by S,
and is denoted 〈S〉. The group G is cyclic if there is an element g ∈ G such
that G = 〈{g}〉 , and G is finitely generated if there is a finite subset S of G
such that G = 〈S〉.

If g1, g2, . . . , gn ∈ G, then the group

〈{g1, g2, , gn}〉

is written simply as 〈g1, g2, . . . , gn〉. In particular, 〈{g}〉 = 〈g〉.
For example, the group Z of integers under + is cyclic since Z = 〈1〉. In that

group, 〈6, 8〉 = 〈2〉, which is the set of all even integers. By Problem 28 below,
the additive group of rational numbers is not finitely generated.
It is useful to know the elements of 〈S〉 in terms of the elements of S.

Theorem 2.2.4 If S is a non-empty subset of a group G, then 〈S〉 is the set
of all possible products of powers of elements of S.

Proof. Since 〈S〉 is a group, then for s ∈ S and n ∈ Z+, sn ∈ 〈S〉, because
〈S〉 is closed under multiplication. But (sn)−1 = s−n ∈ 〈S〉, whence sm ∈ 〈S〉
for all m ∈ Z. Again, since 〈S〉 is closed under multiplication, 〈S〉 must contain
all products of such sm. It should be clear that the set of such products is a
subgroup of G. For example, the product of two products of powers of elements
of S is a product of powers of elements of S. The theorem follows.

Corollary 2.2.5 If g ∈ G, then < g >= {gn : n ∈ Z}.
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Thus the subgroup of G generated by g is just the set of all powers of g. In
additive notation, which is often used if the group is Abelian, the subgroup of
G generated by g is just the set of all multiples ng of g.

Theorem 2.2.6 A subgroup of a cyclic group is a cyclic group.

Proof. Let S be a subgroup of the cyclic group G = 〈g〉. If S = {e}, then S
is cyclic. If S 6= {e}, then gn ∈ S for some n 6= 0, whence g−n ∈ S. Thus gn ∈ S
for some n > 0. Let m be the smallest positive integer such that gm ∈ S. Let
s ∈ S. Then s = gn for some n ∈ Z, and by the division algorithm, n = mq + r
with 0 ≤ r < m. Since gn, gmq ∈ S, then gn(gmq)−1 = gn−mq = gr ∈ S. Since
0 ≤ r < m and m is the smallest positive integer such that gm ∈ S, it follows
that r = 0 and that gn = (gm)q. We have shown that every element in S is a
power of gm. Since 〈gm〉 ⊂ S is clear, S = 〈gm〉, and so S is cyclic.

Note that 2.2.6 implies that every subgroup of the additive group Z is cyclic.
(See Problem 5 below.)
There is a “number”associated with each element g in a group G, namely

the “number”of elements in 〈g〉.

Definition 2.2.7 Let G be a group and g ∈ G. If 〈g〉 is finite, then the order
of g is the number of elements in 〈g〉. If 〈g〉 is infinite, then the order of g
is infinite. The order of g is denoted o(g), and if o(g) is infinite, we write
o(g) = ∞ . The number of elements in a finite group G is called the order of
G, and denoted o(G). If G is infinite, we write o(G) =∞ .

Theorem 2.2.8 Let G be a group and g ∈ G. Then o(g) is finite if and only
if there is a positive integer n such that gn = e. In the case that o(g) is finite,
o(g) is the smallest such n.

Proof. If 〈g〉 = {gm : m ∈ Z} is finite, then there are two distinct integers
m, n such that gm = gn. Thus gm−n = e = gn−m, so there is a positive integer k
such that gk = e. Conversely, suppose that there is a positive integer k such that
gk = e. Let n be the smallest such positive integer. For m ∈ Z, m = nq+r with
0 ≤ r < n, and gm = (gn)qgr = egr = gr. Therefore 〈g〉 = {gr : 0 ≤ r < n}, and
so o(g) is finite. If gr = gs, with 0 ≤ r < n, 0 ≤ s < n, then gr−s = e = gs−r,
and 0 ≤ |r − s| < n, whence r = s. Therefore o(g) = n.

We pause here is look at an example illustrating some of the concepts just
introduced. We will see this example again from time to time.

Example 2.2.9 Let D be the set of all 2 × 2 matrices with entries from the
complex numbers C, and of the form(

a b

−b a

)
where x̄ denotes the complex conjugate of x. It is easily checked that the product
of two such matrices has the same form. The determinant aa+bb is not 0 unless
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both a and b are 0. Thus a non-zero matrix of this form has an inverse, and
that inverse turns out to be of the same form. It follows that the set D∗ of all
such non-zero matrices is a group under matrix multiplication. Note also that
if a matrix

M =

(
a b
c d

)
is in D∗, then so is

−M =

(
−a −b
−c −d

)
The matrices

I =
0 1
−1 0

and J =
0 i
i 0

are in D∗. What is the subgroup 〈I, J〉 of D∗ generated by I and J? By 2.2.4,
it is the set of all possible products of powers of I and J . Denoting

1 0
0 1

and
i 0
0 i

simply by 1 and K, respectively, we have that IJ = K, JK = I, KI = J ,
JI = −K, KJ = −I, IK = −J , and I2 = J2 = K2 = −1. Thus any product
of powers of I and J is one of the eight elements ±1, ±I,±J , and ±K. For
example, I5J6I2 = IJ2(−1) = −KJ = I. The eight elements are distinct, and
this group of order eight is the quaternion group, which we will denote Q8.

The elements ±I, ±J , and ±K are all of order four, while 1 is of order one
and −1 is of order two. In the dihedral group D4(2.1.2(l)),, which is also of
order eight, there are only two elements of order four, so that these two groups,
Q8 and D4, both non-Abelian of order eight, are not alike.
Suppose that 〈g〉 is finite. If S is a subgroup of 〈g〉, then S = 〈gm〉, where m

is the smallest positive integer such that gm ∈ S. (See 2.2.6.) If o(g) = n, then
n = mk + r, with 0 ≤ r < m, and gn−mk = gr ∈ S. Thus r = 0, and hence m
divides n. We have then the fact that if 〈g〉 is finite, then the number of elements
in any subgroup of 〈g〉 divides the number of elements in 〈g〉. However, this is
a very special case of the more general fact that the number of elements in a
subgroup of a finite group divides the number of elements in that finite group.
We begin now the development of this fact.

Definition 2.2.10 Let S be a subgroup of G, and let g ∈ G. Then gS = {gs :
s ∈ S} is the left coset of S determined by g, and Sg = {sg : s ∈ S} is the
right coset of S determined by g.

Of course, if G is Abelian, then the left coset gS is the same as the right coset
Sg. Distinct elements of G may determine the same left coset of a subgroup S.
For example, if g ∈ S and g 6= e, then gS = S = eS.
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For the group Z of integers under +, the subgroup of all multiples of 3 has
just the three cosets

{...,−9,−6,−3, 0, 3, 6, 9, ...},
{...,−8,−5,−2, 1, 4, 7, 10, ...},
{...,−7,−4,−1, 2, 5, 8, 11, ...}.

These cosets are disjoint from each other, and their union is all of Z. This is a
fundamental property of left (or right) cosets of any subgroup of any group.

Theorem 2.2.11 Let S be a subgroup of G. Then the set of left (or right)
cosets of S is a partition of G.

Proof. Since g ∈ gS, ∪g∈GgS = G. We need only show that for g, h ∈ G,
gS∩hS 6= ∅ implies that gS = hS. If gs = ht for s, t ∈ S, then g = hts−1 ∈ hS,
and for any x ∈ S, gx = hts−1x ∈ hS. Thus gS ⊃ hS. Similarly, hS ⊂ gS, and
so gS = hS.

Note that the equivalence relation induced by this partition is given by g˜h
if g and h are in the same left coset of S. Since g ∈ gS and h ∈ hS, this means
that g˜h if and only if gS = hS, and this is the case if and only if g−1h ∈ S.
(Keep in mind that two cosets are either equal or disjoint.) Thus the equivalence
relation is

g˜h if and only if g−1h ∈ S.

The mapping S → gS : s → gs is one-to-one and onto. That it is onto is
clear, and it is one-to-one since gs = gt implies that s = t. Thus there is a
one-to-one correspondence between any two left cosets. If G is a finite group,
and S a subgroup of G, the left cosets of S partition G into subsets all of the
same size as S. Therefore o(G) equals o(S) times the number of left cosets of
S. Thus we see that the following theorem is true.

Theorem 2.2.12 (Lagrange’s Theorem) If S is a subgroup of the finite group
G, then o(S) divides o(G).

Corollary 2.2.13 If G is a finite group and g ∈ G, then go(G) = e.

Proof. By 2.2.7 and 2.2.12, o(g) divides o(G).

Corollary 2.2.14 If o(G) is prime, then G is cyclic, and the only subgroups of
G are {e} and G.

For any subset S of a group G, let S−1 = {s−1 : s ∈ S}.

Theorem 2.2.15 Let L be the set of all left cosets of a subgroup S of a group G,
and R the set of all right cosets of S. Then L→ R : C → C−1 is a one-to-one
correspondence.



38 CHAPTER 2. GROUPS

Proof. The left coset C is gS for some g ∈ G. But C−1 = {(gs)−1 : s ∈
S} = {s−1g−1 : s ∈ S} = {sg−1 : s ∈ S} = Sg−1. Thus L → R : C → C−1 is
indeed a map from L into R, and it is clearly one-to-one and onto.

In particular, if S has a finite number of left cosets, it has the same number
of right cosets. This number is denoted G : S, and called the index of S in G.
Thus for finite groups G, we have

o(G) = o(S)(G : S).

Suppose S is a subgroup of G. An element in a coset of S is called a
representative of that coset. A set of representatives of the left cosets of S
in G is a set consisting of one representative of each left coset of S in G. Note
that if g is a representative of a left coset C of S, then C = gS since g ∈ gS.
Now suppose that H is of finite index in G and K is of finite index in H.

We have the three indices G : K, G : H, and H : K. They are related by a
simply formula.

Theorem 2.2.16 If H is a subgroup of finite index in G, and K is a subgroup
of finite index in H, then

G : K = (G : H)(H : K).

This follows from the more explicit result below.

Theorem 2.2.17 Let H be a subgroup of G, and let {gi}i∈I be a set of represen-
tatives of the left cosets of H in G. Let K be a subgroup of H, and let {hj}j∈J be
a set of representatives of the left cosets of K in H. Then {gihj : (i, j) ∈ I×J}
is a set of representatives of the left cosets of K in G.

Proof. We need to show that if C is a left coset of K in G, then C = gihjK
for some (i, j) ∈ I × J , and that if (i, j) 6= (m,n), then gihjK 6= gmhnK. For
any coset gK of K in G, gH = giH for some i ∈ I. Thus g = gih for some
h ∈ H. But hK = hjK for some j ∈ J . We have gK = gihK = gihjK.
Now suppose that gihjK = gmhnK. Then giH = gmH since gihj = gmhnk

for some k ∈ K, and so gihj ∈ (giH) ∩ (gmH). Thus gi = gm, and hence
hjK = hnK. Therefore hj = hn and the theorem is proved.
For the dihedral group D4, the left cosets of its subgroup {E,H} are

{E,H}, {V,R2}, {D1,R3}, and {D2, R1},

and the right cosets of {E,H} are

{E,H}, {V,R2}, {D1,R1}, and {D2, R3}.

The left cosets of the subgroup T = {E,R1, R2, R3} are just T and its comple-
ment {V,H,D1, D2}, and its right cosets are also just T and its complement.

The subgroup SL2(R) of the general linear group GL2(R) has infinitely many
left cosets. In fact, each non-zero diagonal matrix
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diag(a) =

(
a 0
0 a

)
with positive a gives distinct left cosets of SL2(R). Simply note that every
element in diag(a)SL2(R) has determinant a2.

PROBLEMS

1. Write down all subgroups of the group {1,−1, i,−i} of fourth roots of 1.

2. Write down all subgroups of the group of sixth roots of 1.

3. Write down all subgroups of the dihedral group D4.

4. Write down all subgroups of the quaternion group Q8.

5. Let Zn = {nz : z ∈ Z}.

(a) Prove that Zn is a subgroup of the additive group of integers Z.
(b) Prove that every subgroup of Z is of this form.
(c) Prove that there is a natural one-to-one correspondence between the

subgroups of Z and the natural numbers N.
(d) Prove that Zn has exactly n cosets. Write them down.

6. In the dihedral group D4, write down the left cosets and the right cosets
of the subgroup {E,D1}.

7. In the quaternion group Q8, write down the left cosets and the right cosets
of the subgroup {1,−1}.

8. Compute the order of each element in the group U(15).

9. Find the order of each element in the multiplicative group Q∗ of rational
numbers.

10. Find a set of representatives of the cosets of Q+ in Q∗.

11. Find a set of representatives of the left cosets of SL2(R) in GL2(R). Find
such a set for the right cosets.

12. Prove that a non-empty subset S of a group G is a subgroup of G if and
only if st−1 ∈ S whenever s, t ∈ S.

13. Prove that in Z, 〈n1, n2, ..., nk〉 = 〈(n1, n2, ..., nk)〉.

14. Prove that a finite non-empty subset S of a group G is a subgroup of G if
and only if st ∈ S whenever s, t ∈ S.

15. What subgroup of a group does ∅ generate?
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16. Let S and T be subsets of a group G. Prove that

(a) if S ⊂ T then 〈S〉 ⊂ 〈T 〉,
(b) 〈S ∪ T 〉 = 〈〈S〉 ∪ 〈T 〉〉,
(c) 〈S ∩ T 〉 ⊂ 〈S〉 ∩ 〈T 〉, and
(d) 〈〈S〉〉 = 〈S〉.

17. If S and T are subgroups of a group G, then S ∪ T is a subgroup if and
only if S ⊂ T or T ⊂ S.

18. Let {Si}i∈I be a family of subgroups of a group G. Suppose that for every
i, j ∈ I, there is a k ∈ I such that Si, Sj ⊂ Sk. Prove that if I 6= ∅, then
∪i∈ISi is a subgroup of G.

19. Let {Ci}i∈I be a family of subgroups of Z such that for i, j ∈ I, either
Ci ⊂ Cj or Cj ⊂ Ci. Prove that if I 6= ∅, then there is a k ∈ I such that
Ci ⊂ Ck for all i ∈ I. That is, there is a maximum member of {Ci}i∈I .

20. Let {Ci}i∈I be a family of subgroups of Z. Prove that if I 6= ∅, then there
is a k ∈ I such that for all i ∈ I, Ck ⊂ Ci implies Ck = Ci. That is, there
is a maximal member of {Ci}i∈I .

21. Prove that there is a one-to-one correspondence between any left coset of
a subgroup and any right coset of that subgroup.

22. Prove that if o(g) = n is finite, then o(gm) =
n

(m,n)
.

23. Let n be a positive integer. Prove that o(g) = n if and only if

(a) gn = e, and

(b) gm = e implies that n divides m.

24. Suppose that g1, g2, . . . , gk are elements of finite order in a group
and that any two of these elements commute. Prove that o(Πigi) divides
Πio(gi), and that o(Πigi) = Πio(gi) if the orders of the gi are pairwise
relatively prime.

25. Prove that a group G is finite if and only if it has only finitely many
subgroups.

26. Prove that if a group G 6= {e} has only the subgroups {e} and G, then G
is cyclic, and o(G) is a prime.

27. Prove that the intersection of two subgroups of finite index is a subgroup
of finite index. Prove that the intersection of finitely many subgroups of
finite index is a subgroup of finite index.

28. Prove that a finitely generated subgroup of the additive groupQ of rational
numbers is cyclic. Prove that Q is not finitely generated.
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29. Give an example of an infinite group G such that every subgroup 6= G is
of infinite index.

30. Give an example of an infinite group such that every subgroup 6= {e} is of
finite index.

31. Give an example of a group G which has subgroups 6= {e} of infinite index
and subgroups 6= G of finite index.

32. Let H1 ⊂ H2 ⊂ . . . ⊂ Hn be groups with each Hi+1 : Hi finite. Prove
that

Hn : H1 = (Hn : Hn−1)(Hn−1 : Hn−2) ... (H2 : H1).

33. Let S be a finite set, and let G be the group of all permutations of S. Let
s ∈ S, and let H = {f ∈ G : f(s) = s}. What is G : H? If S is infinite, is
G : H infinite?

34. Let G be the group of all permutations of a finite set S, and let T ⊂ S.
Let H = {ϕ ∈ G : ϕ(t) = t for all t ∈ T}, and let K = {ϕ ∈ G : ϕ(t) ∈ T
for all t ∈ T}. What is G : H? What is G : K? What is K : H?

2.3 Homomorphisms

A central idea in algebra is that of homomorphism. Here is a simple example.
Consider the group G = {1,−1}, where the operation is ordinary multiplication,
and the group S2, of all permutations of the set A = {1, 2}. The group S2 has
two elements, 1A and the mapping f that interchanges 1 and 2. Intuitively,
these two groups are just alike, even though they have no elements in common.
The element 1A in S2 behaves just like the element 1 does in G, and the element
f behaves in S2 just like the element -1 does in G. Here there is actually a one-
to-one correspondence between the two groups, but homomorphisms allow more
general circumstances. Consider the group Z of integers under addition, and the
mapping f : Z→ G given by

f(n) = 1 if n is even, and

f(n) = −1 if n is odd.

Now f is certainly not one-to-one, but it does “preserve” the operations.
That is, if m, n ∈ Z, then the same result is obtained if m and n are combined
in Z and then f is applied, or if f is applied tom and n and the results combined
in G. In other words,

f(m+ n) = f(m) · f(n).

This is the kind of mapping between groups in which we will be interested,
mappings from one group to another that pay attention to the operations of the
groups.
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Definition 2.3.1 Let G and H be groups. A homomorphism from G into H
is a mapping f : G→ H such that f(xy) = f(x)f(y) for all x, y in G.

A homomorphism f : G→ H is an epimorphism if it is onto, amonomor-
phism if it is one-to-one, and an isomorphism if it is both one-to-one and onto.
If f : G → H is an isomorphism, we write G ≈ H, and say that G is isomor-
phic to H. A homomorphism f : G → G is called an endomorphism, and
an isomorphism f : G → G is an automorphism. Before looking at some
examples, let’s notice some of the elementary facts about homomorphisms.

Theorem 2.3.2 Let f : G→ H be a homomorphism. The following hold.

a. f(eG) = eH .

b. f(x−1) = (f(x))−1, for all x ∈ G.

c. If A is a subgroup of G, then f(A) is a subgroup of H. In particular,
f(G) = Im f is a subgroup of H.

d. If B is a subgroup of H, then f−1(B) is a subgroup of G.

e. f(x1x2...xn) = f(x1)f(x2)...f(xn) for xi ∈ G.

f. f(xn) = f(x)n for all n ∈ Z and all x ∈ G.

g. If g : H → K is a homomorphism, then g◦f : G→ K is a homomorphism.

h. If f : G→ H is an isomorphism, then f−1 : H → G is an isomorphism.

Proof.

a. f(eG) = f(eGeG) = f(eG)f(eG), and multiplying through by f(eG)−1

yields eH = f(eG).

b. eH = f(eG) = f(xx−1) = f(x)f(x−1), so f(x−1) = (f(x))−1.

c. For f(x), f(y) ∈ Im f , f(x)f(y) = f(xy) ∈ Im f , so Im f is closed under
multiplication. Since f(x)−1 = f(x−1), Im f is a subgroup of H.

d. Let x, y ∈ f−1(B). Then f(xy) = f(x)f(y) ∈ A, and f(x−1) = f(x)−1 ∈
A since f(x) and f(y) are in A. Thus f−1(A) is a subgroup of G.

e. This follows readily by induction on n.

f. This holds for n > 0 by (e). For n < 0, f(xn) = ((f(xn)−1))−1 =
f((xn)−1)−1 = (f(x−n))−1 = ((f(x))−n)−1 = f(x)n.

g. Let x, y ∈ G. Then (g·f)(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) =
(g · f)(x)(g · f)(y).

h. Let a, b ∈ H. We need only that f−1(ab) = f−1(a)f−1(b). For suitable
x, y ∈ G, a = f(x) and b = f(y). Thus f−1(a) = f−1(f(x)f(y)) =
f−1(f(xy)) = xy = f−1(a)f−1(b).
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Let S be a set of groups. Then ≈ is an equivalence relation on S. This follows
from 2.3.2 (g) and 2.3.2 (h), and the fact that 1G : G→ G is an isomorphism.

Example 2.3.3 (Homomorphisms)

a. There are two trivial examples. For any group G, 1G is a homomorphism,
in fact, is an automorphism of G. For any groups G and H, the mapping
f : G→ H defined by f(x) = eH for all x ∈ G is a homomorphism.

b. Let G be any group and let g ∈ G. The map given by Z → G : n → gn

is a homomorphism. This is a useful homomorphism to know about. It
says that given any element g of any group, there is a homomorphism
taking Z onto the cyclic subgroup generated by g. Note that the map is a
homomorphism because by 2.1.4 (a), gm+n = gmgn.

c. Let G be a group, and let g ∈ G. The mapping

g∗ : G→ G : x→ gxg−1

is an automorphism of G. Indeed, since

g∗(xy) = g(xy)g−1 = gxg−1gyg−1 = g∗(x)g∗(y),

g∗ is an endomorphism. It is one-to-one since g∗(x) = g∗(y) implies
that gxg−1 = gyg−1, which implies in turn that x = y. It is onto since
for any y, y = g∗(g−1yg). Such an automorphism is called an inner
automorphism.

d. Let G be an Abelian group and let n ∈ Z. Then G → G : x → xn is an
endomorphism of G. It is necessary that G be Abelian for multiplication
to be preserved.

e. Let R2 be the set of all 2× 2 matrices

(aij) =

(
a11 a12

a21 a22

)
with real entries. Add two such matrices entry-wise, that is, let

(aij) + (bij) = (aij + bij).

This makes R2 into an Abelian group, and the mapping given by R2 → R :
(aij) → a11 + a12 is a homomorphism from this group into the additive
group of real numbers.

f. For an element (aij) in the general linear group GL2(R), let det(aij) =
a11a22 − a21a12. The mapping

GL2(R)→ R∗ : (aij)→ det(aij)

is a homomorphism from GL2(R) into the multiplicative group of non-zero
real numbers. It is in fact an epimorphism. That it is a homomorphism
is just the familiar fact that det((aij)(bij)) = det(aij) det(bij).
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g. R+ → R : x → lnx is an isomorphism between the group of positive reals
under multiplication and the group of reals under addition. The relevant
operations are preserved since ln(xy) = ln(x) + ln(y).

h. R → R+ : x → ex is an isomorphism between the group of reals under
addition and the group of positive reals under multiplication. This is the
inverse of the isomorphism in (g).

Let f : G → H be a homomorphism. Defining x˜y if f(x) = f(y) gives
an equivalence relation on G. Furthermore, by 1.5.6, f induces a one-to-one
correspondence f∗ between the set G/˜ of equivalence classes of ˜ and Im f ,
namely

f∗ : G/˜→ Im f : Cl(x)→ f(x).

Since Im f is a group, this one-to-one correspondence induces a group structure
on G/˜. That is, multiply by

Cl(x)C1(y) = (f∗)−1(f∗(Cl(x))f∗(Cl(y))).

(See Problem 17 at the end of 2.1.) But

(f∗)−1(f∗(Cl(x))f∗(Cl(y))) = (f∗)−1(f(x)f(y)) = (f∗)−1(f(xy))

= (f∗)−1(f∗(Cl(xy))) = Cl(xy).

Thus the multiplication in G/˜ is Cl(x)Cl(y) = Cl(xy). In particular, this
is well defined. It is conceivable that Cl(x) = Cl(x′), Cl(y) = Cl(y′) and
Cl(xy) 6= Cl(x′y′), but this is not the case as we have seen.
We need to find out just what ˜ is. Its equivalence classes are the sets f−1(y)

with y ∈ Im f . The particular equivalence class N = f−1(eH) is a subgroup
by 2.3.2 (d). We claim that the equivalence classes of ˜ are the left cosets of
N . In fact, if y ∈ Im f , then f−1(y) = xN , where f(x) = y. To see this, let
a ∈ f−1(y). Then f(a) = y. Since f(x) = y, we have that f(a−1x) = eH , and so
a−1x ∈ N . That is, aN = xN and a ∈ xN . Thus f−1(y) ⊂ xN , and similarly
the other inclusion holds.
It is worth noticing at this point that for all x ∈ G, xN = Nx. If a ∈ N ,

then xa = xax−1x, and f(xax−1) = f(x)f(a)f(x−1) = f(x)eHf(x−1) = eH ,
and so xa ∈ Nx. Similarly, Nx ⊂ xN . Therefore the equivalence classes
of ˜ are also the right cosets of N . The multiplication in G/˜ was given by
Cl(x)Cl(y) = Cl(xy). But now we know that

Cl(x) = xN .

Thus the multiplication is (xN)(yN) = (xy)N .
All this can be summed up as follows. If f : G → H is a homomorphism

and N = f−1(eH), then
(xN)(yN) = (xy)N

makes the set of left cosets of the subgroup N = f−1(eH) of G into a group,
and f∗ defined by f∗(xN) = f(x) is an isomorphism from this group onto the
subgroup Im f of H .
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We do not need the homomorphism f in order to make the definition above,
just the subgroup N . Having it, we can define the group whose elements are the
left cosets of N and whose multiplication is given by (xN)(yN) = (xy)N . This
procedure will not work for just any subgroup N of G. Recall that N = f−1(eH)
had the property that xN = Nx for all x ∈ G. This is a special property that
some subgroups enjoy.

Definition 2.3.4 The subgroup N of the group G is normal if xN = Nx for
all x ∈ G.

Several conditions which are equivalent to being normal are given in Problem
21.

Definition 2.3.5 Let f : G → H be a homomorphism. Then f−1(eH) is de-
noted Ker f and called the kernel of f .

Letting B = {eH} in 2.3.2 (d), we get

Theorem 2.3.6 The kernel of a homomorphism is a normal subgroup.

Notice that for any group G, {e} and G itself are normal subgroups of G.
If G is Abelian, then any subgroup of G is normal. Keep in mind that one
way to prove that a subgroup is normal is to get it to be the kernel of some
homomorphism. For example, the kernel of the homomorphism in 2.3.3 (f) is the
special linear group SL2(R). In particular then, SL2(R) is a normal subgroup
of GL2(R).
A useful fact is that any subgroup of index two is normal. If G : H = 2,

then the only left or right coset of H besides H itself is the complement of H in
G. In the group Q8 of quaternions, the subgroups 〈i〉, 〈j〉, and 〈k〉 are distinct
subgroups of index 2, having order four in a group with 8 elements. Thus these
subgroups are all normal. It happens that all of the subgroups of Q8 are normal
(Problem 13).
In the dihedral group D4, the subgroup N = {E,R1, R2,R3} is of index

two, hence normal, and so is the subgroup M = {E, V,H,R2}. The subgroup
{E,R2} of N is normal in N , and indeed normal in D4, while the subgroup
{E,H} is normal in M , but it is not normal in D4 since D1{E,H} = {D1, R3},
while {E,H}D1 = {D1, R1}.

Let N be a normal subgroup of a group G, and let G/N denote the set of
all left cosets of N in G. Since xN = Nx, G/N is also the set of all right
cosets of N . We will omit “left”or “right”when talking about cosets of normal
subgroups. We wish to make G/N into a group. In the case where N = Ker f
for some homomorphism f , we know that we can do it by defining

xNyN = xyN .

This will work for any normal subgroup N . Suppose xN = x′N , yN = y′N .
Then x = x′a, y = y′b for some a, b ∈ N . Then xyN = x′ay′bN = x′ay′N
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= x′aNy′ = x′Ny′ = x′y′N , using the facts that bN = N for b ∈ N , and
y′N = Ny′. Thus, (xN)(yN) = (xy)N is unambiguous, that is, does define a
binary operation on G/N , and G/N is a group under this operation. In fact,

(xN) (yNzN) = xN (yzN) = x (yz)N

= (xy)zN = (xyN) (zN) = (xNyN) (zN) ,

(xN) (eN) = xeN = xN = exN = (eN) (xN) ,

and
(xN)

(
x−1N

)
= xx−1N = eN = x−1xN =

(
x−1N

)
(xN) ,

so that G/N is a group. Now notice that G→ G/N : x→ xN is an epimorphism
with kernel N .

Definition 2.3.7 If N is a normal subgroup of the group G, the group G/N is
the quotient group of G modulo N , and is called “G modulo N”, or “G over
N .” The homomorphism

G→ G/N : x→ xN

is called the natural homomorphism from G to G/N .

Let f : G → H be a homomorphism. Then letting N = Ker f in 2.3.7, we
have the natural homomorphism G→ G/Ker f . It is, of course an epimorphism.
Analogous to this epimorphism, we have the monomorphism Im f → H given by
the inclusion Im f ⊂ H. The following theorem says that the groups G/Ker f
and Im f are essentially the same.

Theorem 2.3.8 (First Isomorphism Theorem) Let f : G→ H be a homo-
morphism. Then

f∗ : G/(Ker f)→ Im f : x(Ker f)→ f(x)

is an isomorphism.

Proof. If x(Ker f) = y(Ker f), then xa = y with a ∈ Ker f , and f(xa) =
f(x)f(a) = f(x) = f(y), so that f∗is indeed a mapping. It is clearly onto. If
f∗(x(Ker f)) = f∗(y(Ker f)), then f(x) = f(y), so that f(x−1y) = eH . That
is, x−1y ∈ Ker f , and so x(Ker f) = y(Ker f). Thus f∗is one-to-one. Since

f∗((x(Ker f))(y(Ker f))) = f∗(xy(Ker f)) = f(xy) = f(x)f(y)

= f∗(x(Ker f))f∗(y(Ker f)),

f∗is an isomorphism.
Thus given any homomorphism f : G → H, it can be decomposed into a

composition
G→ G/Ker f → Im f → H
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of three homomorphisms, the first the natural homomorphism, the second the
isomorphism in 2.3.8, and the third an inclusion.
Let N be a normal subgroup of G. We need to know what the subgroups of

G/N are.

Theorem 2.3.9 Let N be a normal subgroup of the group G. Then H → H/N
is a one-to-one correspondence between the set of subgroups of G containing
N and the set of subgroups of G/N . Normal subgroups correspond to normal
subgroups under this correspondence.

Proof. Let H be a subgroup of G containing N . Then N is clearly a normal
subgroup of H, so that H/N makes sense. Now the set of cosets of N in H does
indeed form a subgroup of G/N since aN , bN ∈ H/N imply abN ∈ H/N ,
and a−1N ∈ H/N . If K is a subgroup of G containing N and K 6= H, then
H/N 6= K/N so that the association is one-to-one. Now let X be a subgroup
of G/N . Then X is a set of cosets of N . Let H = {x ∈ G : xN ∈ X}. For x,
y ∈ H, xNyN = xyN ∈ X, and x−1N ∈ X, so that H is a subgroup of G. Now
H clearly contains N .

Suppose that H is normal in G, and that N ⊂ H. Then the map G/N →
G/H : xN → xH is a homomorphism, as can easily be checked. But its kernel
is H/N . Thus H/N is normal in G/N . Now suppose that H/N is normal in
G/N . The homomorphism given by the composition of the homomorphisms
G → G/N and G/N → (G/N)/(H/N) has kernel H. Thus H is normal in G.

In the process, we have proved the following theorem.

Theorem 2.3.10 (Second Isomorphism Theorem) Let G be a group, and
N and H normal subgroups of G with N ⊂ H. Then

G/H ≈ (G/N)/(H/N).

A simple example illustrating 2.3.10 is the isomorphism

(Z/Zmn)/(Zm/Zmn) ≈ Z/Zm.

Since o(Z/Zmn) = mn and o(Z/Zm) = m, we have that o(Zm/Zmn) = n.
Suppose now that N is normal in G and that H is any subgroup of G. We

have the natural homomorphism G → G/N , and we can restrict it to H. The
image of this restriction is {hN : h ∈ H}. Let HN = {hn : h ∈ H,n ∈ N}.
Let a, b ∈ H and let c, d ∈ N . Then (ac)(bd) = ab(b−1cb)d ∈ HN , and
(ac)−1 = c−1a−1 = a−1(ac−1a−1) ∈ HN , so that HN is a subgroup of G.
Therefore the image of H → G/N is (HN)/N . The kernel is H ∩N . Thus from
2.3.8 we have the following theorem.

Theorem 2.3.11 (Third Isomorphism Theorem) Let H be a subgroup of
the group G, and let N be a normal subgroup of G. Then HN is a subgroup of
G, and

H/(H ∩N) ≈ (HN)/N .
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We now examine quotient groups of the additive group Z of integers. That
group is cyclic. In fact, Z = 〈1〉. Let S be a subgroup of Z. Then we know
from 2.2.6 that S is cyclic. The proof of 2.2.6 shows that if S 6= {0}, then
the smallest positive integer in S generates S. If that integer were n, then this
means that S = {mn : m ∈ Z}, which we write Zn. Therefore the subgroups
of Z are precisely the subgroups Zn with n ≥ 0. Distinct such n give distinct
subgroups Zn. (See Problem 5, section 2.2.)

Definition 2.3.12 Let n ≥ 0. The group Z/Zn is called the group of integers
modulo n, and will also be denoted Z(n).

We have already called another group the integers modulo n, denoted the
same, namely the group 2.1.2 (d). The two groups are isomorphic (Problem 2 ).
Let G = 〈g〉. That is, G is a cyclic group. The mapping f : Z→ G : n→ gn

is a homomorphism, in fact an epimorphism. Just note that f(m+n) = gm+n =
gmgn = f(m)f(n). If o(g) = m, then gm = e and Zm = Ker f . If o(g) = ∞ ,
then Ker f = 0 and f is an isomorphism. In any case, Z/Ker f ≈ G and Ker
f = Zm for some m ≥ 0. We thus have the following.

Theorem 2.3.13 If G is cyclic and o(G) = n, then G ≈ Z/Zn. If o(G) =∞ ,
then G ≈ Z.

Corollary 2.3.14 Two cyclic groups are isomorphic if and only if they have
the same order.

One way to express 2.3.13 is to say that the cyclic groups, up to isomorphism,
are just the groups Z/Zn, n ≥ 0. Notice that for n > 0, Z/Zn has exactly n
elements.
Let’s see what 2.3.11 says in a familiar case. Consider two subgroups Zm

and Zn of Z with m and n positive. We know that Zm ∩ Zn and Zm + Zn
are subgroups of Z. The subgroup Zm ∩ Zn is the set of common multiples
of m and n, and hence is generated by the least common multiple [m,n] of
m and n. (See 1.6, Problem 10.) Thus Zm ∩ Zn = Z[m,n]. The subgroup
Zm+ Zn = {am+ bn : a, b ∈ Z} is generated by the smallest positive integer
in it. But the smallest positive integer of the form am + bn is the greatest
common divisor (m,n) of m and n. Thus Zm+Zn = Z(m,n). Applying 2.3.11,
we get

Zn/Z[m,n] ≈ Z(m,n)/Zm.

Now suppose that a, b ∈ Z+, and a divides b. That is, suppose that 0 6=
Zb ⊂ Za. Then o(Za/Zb) = b/a. Applying this to Zn/Z[m,n] and Z(m,n)/Zm
gets [m,n]/n = m/(m,n), or mn = [m,n](m,n).
Let Aut(G) be the set of all automorphisms of a group G. Then Aut(G) is

itself a group under composition of mappings. In fact, Aut(G) is a subset of
Perm(G), the set of all permutations of G, (2.1.2 (a)), and so 2.3.2 (g) and 2.3.2
(h) imply that Aut(G) is a subgroup of Perm(G).
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Let g ∈ G. The mapping ϕ(g) : G → G : x → gxg−1 is an automorphism
of G as shown in 2.3.3 (c). Such automorphisms are called inner automor-
phisms, and ϕ(g) is the inner automorphism induced by g. The set of inner
automorphisms is denoted Inn(G). If ϕ(g) is the identity automorphism of G,
then gxg−1 = x for all x in G, or equivalently, gx = xg for all x in G. That is,
g commutes with all the elements of G. The set of such g is called the center
of G, and is denoted Z(G). If G is Abelian, then of course, Z(G) = G.

Theorem 2.3.15 Let G be a group, and let ϕ(g) be the inner automorphism of
G induced by the element g. Then

G→ Aut(G) : g → ϕ(g)

is a homomorphism with image Inn(G) and kernel Z(G). In particular, G/Z(G) ≈
Inn(G).

Proof. Since ϕ(gh)(x) = ghx(gh)−1 = g(hxh−1)g−1 = ϕ(g)(ϕ(h)(x)),
ϕ(gh) = ϕ(g)ϕ(h), and the mapping is a homomorphism. That the image is
Inn(G) and the kernel is Z(G) should be clear.

It is usually diffi cult to compute the automorphism group of a group. How-
ever, there is one very special but important case where Aut(G) can be deter-
mined explicitly.

Theorem 2.3.16 Aut(Z(n)) ≈ U(Z(n)).

Proof. The mapping ϕm : Z(n) → Z(n) : x → xm is an endomorphism of
the cyclic, and hence Abelian, group Z(n) (2.3.4 (d)). Let g be a generator of
Z(n). An automorphism ϕ of Z(n) is determined by the image of g, and the
image of g is a power gm of g, where 0 ≤ m < n. If ϕ(g) = gm, then ϕ = ϕm, so
that every automorphism is a ϕm. The image of an automorphism is generated
by the image of g, so to be onto, which is equivalent to being one-to-one since
Z(n) is finite, it must be that (m,n) = 1. Since ϕk = ϕm if and only if k−m is
divisible by n, the automorphisms of Z(n) are in one-to-one correspondence with
the elements of U(n). Composition of the ϕm corresponds to multiplication in
U(n), and the theorem follows.

This theorem will be useful in the construction of examples of groups with
certain properties. (See 2.6, page 62.) Since U(n) is Abelian, the automorphism
group of a finite cyclic group is Abelian, although it may not be cyclic. For
example, U(8) is not cyclic. However U(p) is cyclic for p a prime, although this
is not at all obvious. It follows from 6.2.12.

PROBLEMS

1. Let G be the group R×R∗ under the operation (a, b)(c, d) = (a+ bc, bd).
Prove that f : G → G : (a, b) → (0, b) is an endomorphism with f2 = f .
Is G→ G : (a, b)→ (a, 1) an endomorphism?

2. Prove that Z(n) as defined in 2.1.2 (d) and in 2.3.12 are isomorphic.
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3. How many homomorphisms are there from Z onto Z(8)?

4. How many homomorphisms are there from Z(12) onto Z(5)?

5. How many homomorphisms are there from Z onto Z ; from Z into Z?

6. Let |z| be the absolute value of a complex number z. Prove that | | : C∗ →
R+ : z → |z| is an epimorphism.

7. Prove that multiplication by a non-zero rational number is an automor-
phism of the additive group of rational numbers.

8. Prove that if f is a homomorphism, and the order of x is finite, then o(x)
is a multiple of o(f(x)).

9. Prove that the dihedral group D4 is isomorphic to a subgroup of the
symmetric group S4.

10. Let G be the additive group of all complex numbers of the form m + ni,
where m and n are integers. Let H be the multiplicative group of all
rational numbers of the form 2m3n, again where m and n are integers.
Prove that G ≈ H.

11. Let G be a non-Abelian group of order six. Prove that G ≈ S3.

12. Prove that there are exactly two groups of order four, up to isomorphism.
Which one is Q8/{1,−1}?

13. Prove that every subgroup of the quaternion group Q8 is normal. Find all
the normal subgroups of D4.

14. Prove that the set of elements of GL2(R) of the form(
a 0
c d

)
is a subgroup, but is not normal.

15. Prove that SL2(R) is a normal subgroup ofGL2(R), and thatGL2(R)/SL2(R)
is isomorphic to the multiplicative group R∗ of non-zero real numbers.

16. Let C be the group of all complex numbers of the form e2πiq, where q is
rational. Prove that Q/Z ≈ C.

17. Let H = {f : f ∈ S4, f(2) = 2}. Prove that H is a subgroup of S4. Is H
normal in S4?

18. For groups A and B, define multiplication on the Cartesian product A×B
by (a, b)(c, d) = (ac, bd). Prove that

(a) A→ A×B : a→ (a, e) is a monomorphism, and
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(b) A×B → A : (a, b)→ a is an epimorphism whose kernel is isomorphic
to B.

19. Let N and H be subgroups of G, and suppose that N is normal.

(a) Prove that NH = {nh : n ∈ N , h ∈ H} is a subgroup of G, and that
NH = HN .

(b) Prove that if H is also normal, then so is NH.

(c) Prove that if H is also normal, and if N ∩ H = {e}, then nh = hn
for all n ∈ N and h ∈ H.

20. Let G be a group of order p2, where p is a prime.

(a) Prove that G has an element of order p.

(b) Prove that any subgroup of G of order p is normal.

(c) Prove that G is Abelian.

21. Let N be a subgroup of G, and for subsets S and T of G, let ST = {st :
s ∈ S, t ∈ T}. For g in G, let gS = {gs : s ∈ S} and Sg = {sg : s ∈ S}.
Prove that the following are equivalent.

(a) N is normal in G.

(b) gNg−1 = N for all g ∈ G.
(c) gNg−1 ⊂ N for all g ∈ G.
(d) gNg−1 ⊃ N for all g ∈ G.
(e) (xy)N = (xN)(yN).

(f) Ng ⊂ gN for all g ∈ G.
(g) gN ⊂ Ng for all g ∈ G.

22. Prove that if G has exactly one subgroup of order 50, then that subgroup
is normal. Generalize.

23. Let g be an element of G, and let N be a normal subgroup of G. Prove
that if o(g) is finite, then it is a multiple of o(gN).

24. Prove that if G/N and N are finitely generated, then so is G.

25. Prove that a homomorphic image of a cyclic group is cyclic.

26. Let G be an Abelian group. Let T be the set of elements of G which have
finite order. Prove that T is a subgroup of G, and that in G/T , only the
identity element has finite order.

27. Prove that the intersection of any family of normal subgroups of a group
G is a normal subgroup of G.
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28. Let f : G → H be an epimorphism, and let K be a normal subgroup of
G. Prove that f induces an epimorphism G/K → H/f(K). Prove that
this induced epimorphism is an isomorphism if and only if Ker f ⊂ K.

29. Prove that if G/Z(G) is cyclic, then Z(G) = G.

30. A subgroup H of G is called characteristic if for every automorphism f
of G, f(H) = H. Prove that every subgroup of a cyclic group is charac-
teristic.

31. Prove that a characteristic subgroup of a normal subgroup of G is a normal
subgroup of G.

32. Let N be a cyclic normal subgroup of G. Prove that every subgroup of N
is a normal subgroup of G.

33. A subgroup H of G is called fully invariant if for every endomorphism
f of G, f(H) ⊂ H. Prove that the center Z(G) of G is a characteristic
but not necessarily a fully invariant subgroup of G.

34. Prove that if f is an automorphism of G and N is normal in G, then f(N)
is normal in G. Similarly for N characteristic, N fully invariant.

35. Find all endomorphisms of the additive group Z. Which are automor-
phisms?

36. Let G′ be the intersection of all the normal subgroups N of G such that
G/N is Abelian. Prove that G′ is the subgroup generated by all the
elements of G of the form x−1y−1xy with x, y ∈ G. Prove that every
subgroup ofG containingG′ is normal inG. Prove thatG′ is fully invariant
in G. (The subgroup G′ is called the commutator subgroup of G.)

37. Prove that G/N and N Abelian does not imply that G is Abelian.

38. Find the center of the group of all 2× 2 non-singular real matrices.

39. Find the commutator subgroup of the group of all 2× 2 non-singular real
matrices. Hint: Show that the commutator subgroup is generated by
matrices of the form(

1 a
0 1

)
and

(
1 0
a 1

)
Then show that each of these matrices is a commutator.

2.4 Permutation Groups

Let S be any non-empty set. We have noted that the set Perm(S) of all one-to-
one mappings from S onto S is a group under composition of mappings. The
elements of Perm(S) are called permutations, and a permutation group is a



2.4. PERMUTATION GROUPS 53

subgroup of Perm(S) for some S. Our first object is to show that every group
is a permutation group – more precisely, that every group is isomorphic to a
permutation group. This fact is known as Cayley’s Theorem. It has the virtue
of representing an abstract group as something concrete. Every group can be
represented as a group of one-to-one mappings of some set onto itself. In fact,
groups arose in this way. Permutations groups were studied before the notion
of an abstract group was formulated.
How is Cayley’s Theorem proved? If G is a group, we must get a monomor-

phism from G into Perm(S) for some S. Where do we get a suitable set S? We
use G. Then with each g ∈ G we must associate a permutation of G. How can
we do that? Multiplying each element of G on the left by g is a permutation of
G.

Theorem 2.4.1 (Cayley’s Theorem) Any group G is isomorphic to a sub-
group of Perm(G).

Proof. For each g ∈ G, let ϕ(g) be the map from G into G defined by
ϕ(g)(x) = gx. That is, ϕ(g) is multiplication on the left by g. If ϕ(g)(x) =
ϕ(g)(y), then gx = gy, so that x = y. Hence ϕ(g) is one-to-one. If y ∈ G,
then ϕ(g)(g−1y) = g(g−1y) = y, so that ϕ(g) is onto. Thus ϕ(g) ∈ Perm(G).
Therefore we have a mapping ϕ : G → Perm(G). We will show that ϕ is a
monomorphism. If ϕ(g) = ϕ(h), then ϕ(g)(x) = ϕ(h)(x) for all x ∈ G. In
particular, ϕ(g)(e) = ge = g = ϕ(h)(e) = he = h. Thus ϕ is one-to-one. For g,
h ∈ G,

ϕ(gh)(x) = ghx = g(ϕ(h)(x)) = ϕ(g)(ϕ(h)(x)) = (ϕ(g)ϕ(h))(x),

so that ϕ(gh) = ϕ(g)ϕ(h). This proves Cayley’s Theorem.
Cayley’s Theorem can be generalized as follows. Each element g ∈ G induces

a permutation of the elements of G. The elements of G may be construed as left
cosets of the subgroup {e}. That is, x = y if and only if x{e} = y{e}. Thus, each
element of G induces a permutation of the left cosets of the subgroup {e}. Now
suppose we replace {e} by any subgroup H of G. For any left coset xH of H and
any g ∈ G, we can associate the left coset gxH. This association is a mapping
from the set of left cosets of H into itself. In fact, if xH = yH, then x = yh
for some h ∈ H, and gx = gyh is in both gxH and gyH. Hence gxH = gyH.
Since g(g−1xH) = xH, the mapping is onto. If gxH = gyH, then gx = gyh for
some h ∈ H, and so x = yh. Thus xH = yH, and the mapping is therefore a
permutation of the set of left cosets of H. Call this permutation ϕ(g). Then
ϕ(gg′)(xH) = gg′xH = (ϕ(g)ϕ(g′))(xH), so that ϕ(gg′) = ϕ(g)ϕ(g′), and ϕ is
a homomorphism from G into the group of permutations of the set of left cosets
of H.
What isKer ϕ? It is clear that ϕ is not a monomorphism in the case {e} 6= H.

If g ∈ Ker ϕ, then ϕ(g)eH = gH = eH, so that g ∈ H. Thus Ker ϕ ⊂ H.
Also, Ker ϕ is normal in G. Thus Ker ϕ is some normal subgroup of G that is
contained in H. Which one? The largest one, naturally. In fact, let N be any
normal subgroup of G contained in H. For h ∈ N , hxH = xx−1hxH = xH
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since x−1hx ∈ N ⊂ H. Thus h ∈ Ker ϕ. Therefore Ker ϕ contains all the
normal subgroups of G contained in H, and since Ker ϕ is a normal subgroup
of G contained in H, it is the largest one. In particular, every subgroup H of a
group G has a subgroup N which is normal in G and contains any other such
subgroup. In fact, N is just the subgroup generated by all the subgroups of H
which are normal in G. We have proved the following generalization of Cayley’s
Theorem.

Theorem 2.4.2 Let H be a subgroup of G, and let L(H) be the set of left cosets
of H. Then ϕ defined by ϕ(g)(xH) = gxH is a homomorphism from G into
Perm(L(H)), and Ker ϕ is the largest normal subgroup of G contained in H.

Note that 2.4.1 follows from 2.4.2 by taking H = {e}. In 2.4.2 (and 2.4.1 of
course), each element g ∈ G induced a permutation of a set, and associating g
with that permutation was a homomorphism.
The subgroup S = {E,H} of D4(2.1.2(l)) is not normal, so that the largest

normal subgroup of D4 in S is {E}. The homomorphism D4 → Perm(L(S))
given by 2.4.2 then has kernel {E}, so is a monomorphism. Thus we get a
representation of D4 as a group of permutations of the set L(S) with four
elements.
In Chapter 8 we will see how 2.4.2 is useful in proving that certain groups

have non-trivial normal subgroups. Several of the following exercises also make
use of 2.4.2.

PROBLEMS

1. Let a, b ∈ R with b 6= 0. Define Γa,b by

Γa,b : R→ R : x→ bx+ a.

Prove that the set of all such Γa,b is a group of permutations of R. Prove
that this group is isomorphic to the group G = R×R∗ with multiplication
given by (a, b)(c, d) = (a+ bc, bd).

2. Let G be the group in Problem 1. Let H be the subgroup of elements of G
of the form (0, b). Use 2.4.2 to show that H has no non-trivial subgroups
which are normal in G.

3. Let G be the group in Problem 1. Let N be the subgroup of elements of
the form (a, 1). Prove that N is normal in G.

4. Let G be the group in Problem 1. Prove that G is isomorphic to the
multiplicative group of matrices of the form(

b a
0 1

)
with a and b in R, and b 6= 0. Which subgroups correspond to the subgroup
H in Problem 2 and to the subgroup N in Problem 3 ?
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5. Let G be a group. Prove that ϕ : G→ Perm(G) given by ϕ(g)(x) = xg−1

is a monomorphism. What happens if ϕ is defined by ϕ(g)(x) = xg?

6. Let G be a group and let H be a subgroup of G. Let R(H) be the set of
all right cosets of H. Prove that

ϕ : G→ Perm(R(H)) : ϕ(g)(Hx)→ Hxg−1

is a homomorphism. What is its kernel?

7. Let H be a subgroup of G. Let N(H) = {g ∈ G : gHg−1 = H}, the
normalizer of H in G. Prove that N(H) is the largest subgroup of G in
which H is normal.

8. Let H be a subgroup of G. For g ∈ G, prove that gHg−1 is a subgroup of
G. Prove that gHg−1 is isomorphic to H.

9. Let f be a one-to-one mapping of a set A onto a set B. Prove that the
mapping f̄ : Perm(A) → Perm(B) : α → f ◦ α ◦ f−1 induced by f is an
isomorphism.

10. Let H be a subgroup of G, and let g ∈ G. The subgroup gHg−1 is a
conjugate of H. Let Cl(H) denote the set of all conjugates of H, and
L(N(H)) the set of all left cosets of N(H). Prove that

L(N(H))→ Cl(H) : gN(H)→ gHg−1

is an equivalence.

11. Let H be a subgroup of G. Prove that α : G → Perm(Cl(H)) given by
α(g)(xHx−1) = (gx)H(gx)−1 is a homomorphism. Prove that Ker α is
the largest normal subgroup of G that is contained in N(H).

12. LetH be a subgroup ofG, and let ϕ be the mapping ϕ : G→ Perm(L(N(H)))
given by ϕ(g)(xN(H)) = (gx)N(H), as in 2.4.2. Let f be the mapping in
Problem 8, f̄ the isomorphism Perm(L(N(H)))→ Perm(Cl(H)) induced
by f , and α the mapping in Problem 9. Prove that f̄ ◦ ϕ = α. Here is a
picture.

G
ϕ

↙
α

↘
Perm (L (N(H)))

f̄−→ Perm(Cl(H))

13. Prove that if H is a proper subgroup of the finite group G such that
o(G) does not divide (G : H)!, then G has a nontrivial normal subgroup
contained in H.

14. Prove that if p is the smallest prime dividing o(G), then any subgroup of
G of index p is normal.
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2.5 The Groups Sn
Cayley’s Theorem asserts that every group G is isomorphic to a subgroup of
Perm(G), the group of all permutations of the set G. If G is finite and o(G) = n,
then Perm(G) is isomorphic to Perm({1, 2, . . . , n}) = Sn, which is called the
symmetric group of degree n. Thus every group of order n is isomorphic to
a subgroup of Sn. It is therefore of some interest to examine more closely the
groups Sn.
An element α of Sn is a one-to-one mapping of {1, 2, . . . , n} onto itself.

One way to represent such a mapping is(
1 2 · · · n

α (1) α (2) · · · α (n)

)
That is, under each integer k, 1 ≤ k ≤ n, put its image. Thus the elements of
S3 are the six permutations(

1 2 3
1 2 3

)
,
(

1 2 3
1 3 2

)
,
(

1 2 3
2 1 3

)
,(

1 2 3
2 3 1

)
,
(

1 2 3
3 1 2

)
,
(

1 2 3
3 2 1

)
For example, (

1 2 3
3 1 2

)
is the mapping α such that α(1) = 3, α(2) = 1, and α(3) = 2.

Multiplication in Sn is composition of mappings. We have defined composi-
tion α ◦ β of two mappings α and β by (α ◦ β)(x) = α(β(x)). That is, apply β
and then apply α. For the rest of this section we will adopt the convention that
α ◦ β means apply α and then apply β. We will write α ◦ β simply as αβ. Thus(

1 2 3
2 1 3

)(
1 2 3
3 1 2

)
=

(
1 2 3
1 3 2

)
This convention is fairly standard for Sn.

There is another way to represent elements of Sn. We illustrate it with
n = 5. The symbol (1, 4, 3, 5, 2) means the permutation of {1, 2, 3, 4, 5} that
takes 1 to 4, 4 to 3, 3 to 5, 5 to 2, and 2 to 1. Thus in (1, 4, 3, 5, 2), the image
of an element is on its right, except that the image of the last element listed, in
this case 2, is the first element listed. Thus

(1, 4, 3, 5, 2) =

(
1 2 3 4 5
4 1 5 3 2

)
Notice that (1, 4, 3, 5, 2) = (3, 5, 2, 1, 4).

What does (4, 3, 2) mean? We are talking about elements of S5, remember,
and (4, 3, 2) does not involve 1 or 5. This means that 1 and 5 are not moved by
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(4, 3, 2). That is,

(4, 3, 2) =

(
1 2 3 4 5
1 4 2 3 5

)
.

Elements of Sn of the form (i1, i2, ... , ik) are called cycles. Some cycles of S7

are (1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 4), (7, 1, 4), (1, 2), and (3, 4, 1, 6). The cycle (i1, i2,
. . . , ik) is of length k, and is a k-cycle. For example, (1, 7, 4, 2) is a 4-cycle.
The cycle (i1, i2, ... , ik) of Sn may not involve every element of 1, 2, . . . , n.
This means that those elements not involved are fixed. For example, (7, 1, 4) is
the element (

1 2 3 4 5 6 7
4 2 3 7 5 6 1

)
of S7.
Cycles are permutations, so two cycles of Sn may be multiplied. For example,

if n = 5,

(3, 2, 4)(1, 3, 5) =

(
1 2 3 4 5
3 4 2 5 1

)
Two cycles are disjoint if they have no element in common. Thus (1, 2, 3)

and (4, 5, 6) are disjoint cycles, while (7, 6, 1) and (1, 2, 3) are not disjoint. Every
element of Sn is a product of disjoint cycles. For example,(

1 2 3 4 5 6 7
5 3 2 7 1 4 6

)
is the product (1, 5)(2, 3)(4, 7, 6). The way to write a permutation as a product
of disjoint cycles is as follows. Let α ∈ Sn, and k ∈ {1, 2, . . . , n}. There is a
smallest m ≥ 1 such that αm(k) = k. This yields the cycle

(k, α(k), α2(k), ..., αm−1(k)).

Two such cycles are either equal or disjoint. (Keep in mind that (1, 2, 3) =
(2, 3, 1) = (3, 1, 2).) The cycles so obtained are the cycles of α. It should be
clear that α is the product of its cycles. Thus we have the following theorem.

Theorem 2.5.1 Every element of Sn is a product of disjoint cycles.

Disjoint cycles commute. That is, if α and β are disjoint cycles, then
αβ = βα. Thus if α is a product α1α2...αk of disjoint cycles, then α =
ατ(1)ατ(2)...ατ(k), where τ is any permutation of {1, 2, . . . , k}. If also α =
β1β2...βj , with the β

′
is disjoint cycles, then j = k, and (after rearrangement)

α1 = β1, α2 = β2, . . . , αk = βk. This becomes clear by noting that each βi is a
cycle of α. Thus up to the order of the factors, each element α of Sn is uniquely
a product of disjoint cycles, these disjoint cycles being simply the cycles of α.
Note that

(1, 2, 3, . . . , n) = (1, 2) (1, 3) (1, 4) · · · (1, n)

or more generally,

(a1, a2, ..., an) = (a1, a2)(a1, a3) · · · (a1, an).
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That is, any cycle is a product of 2-cycles. The 2-cycles are called transposi-
tions. Therefore, by 2.5.1 we have the following fact.

Theorem 2.5.2 Every element of Sn is a product of transpositions.

There are many ways to write an element of Sn as a product of trans-
positions. For example, the identity of S5 may be written as (1, 2)(1, 2), or
(1, 2)(1, 2)(1, 3)(1, 3). Furthermore, two transpositions do not necessarily com-
mute. For example, (1, 3)(1, 2) 6= (1, 2)(1, 3). However, there is one very im-
portant thing that is unique about any representation of a permutation as a
product of transpositions. That unique thing is the parity of the number of
transpositions used. The parity of an integer is even or odd if the integer is
even or odd, respectively. Thus we assert that if α1α2...αj = β1β2...βk with
the αi’s and βi’s transpositions, then j and k are either both even or both odd,
that is, i and j have the same parity. This fact is not obvious.

Theorem 2.5.3 If α1α2...αj = β1β2...βk with the α
′
is and β

′
is transpositions,

then j and k have the same parity.

Proof. If α1α2 · · ·αj = β1β2 · · ·βk with the αi’s and βi’s transpositions,
then α1α2 · · ·αjβkβk−1 · · ·β1 = e. Now j and k have the same parity if and
only if j + k is even. Thus it suffi ces to show that if α1α2...αm = e with the
αi transpositions, then m is even. Let α1 = (a, b1). Note that (bi, bj)(a, bj) =
(a, bj)(a, bi) if a, bi, and bj are distinct. Thus e = α1α2...αm may be written
in the form (a, b1)(a, b2)(a, b3)...(a, br)σr+1...σm with a in no σi for i > r. For
example,

(a, b1)(b2, b3)(b4, b5)(a, b5) = (a, b1)(b4, b5)(a, b5)(b2, b3)

= (a, b1)(a, b5)(a, b4)(b2, b3) .

For some i < r, bi = br, else the identity carries br to a. The equation

(a, bj)(a, br) = (a, br)(br, bj)

allows us to move (a, br) over to the left next to (a, bi), and since i = r, the
product of these two is the identity. For example,

(a, b1)(a, b2)(a, b3)(a, b2)σr+1...σm
= (a, b1)(a, b2)(a, b2)(b2, b3)σr+1...σm
= (a, b1)(b2, b3)σr+1...σm .

Thus we have the identity e written as the product of m−2 transpositions, and
by induction on n, we see that m− 2, and hence m, is even. This concludes the
proof.

Definition 2.5.4 A permutation α ∈ Sn is even or odd according as to whether
α is a product of an even or an odd number of transpositions.
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For example,

α =

(
1 2 3 4 5 6 7
5 3 2 7 1 4 6

)
is even since α = (1, 5)(2, 3)(4, 7, 6) = (1, 5)(2, 3)(4, 7)(4, 6), while α = (1, 2) is
odd.
The subset of even permutations of Sn is a subgroup. (See 2.5.6 below.)

Definition 2.5.5 The subgroup of Sn consisting of all the even permutations
of Sn is denoted An and called the alternating group of degree n.

Theorem 2.5.6 An is a normal subgroup of Sn, and Sn : An = 2.

Proof. The mapping from Sn into the multiplicative group {1,−1} that
takes α ∈ Sn onto 1 or −1 depending on whether α is even or odd is an epimor-
phism with kernel An.
The groups Sn and An have many interesting properties. One such property

that we will need in a later chapter in our study of fields is that for n ≥ 5, An
is simple. A group is simple if it has no nontrivial normal subgroups.

Theorem 2.5.7 If n ≥ 5, then An is simple.

Proof. Let N be a normal subgroup of An, N 6= {e}. We will show that
N = An. Note that (1, 2, 3) = (1, 2)(1, 3), so that a 3-cycle is even. That is,
An contains all 3-cycles. The proof will proceed by showing in turn that N
contains a 3-cycle, that N contains all 3-cycles, and then that An is generated
by 3-cycles. The proof uses the following observation, or technique, repeatedly:
Suppose α ∈ N and β ∈ An. Then βαβ

−1 ∈ N , since N is normal in An,
and consequently βαβ−1α−1 ∈ N . Throughout the proof, the element β ∈ An
will be carefully selected in such a way that the element βαβ−1α−1 ∈ N has a
special form.
For example, suppose the 5-cycle α = (i1, i2, i3, i4, i5) is an element of N .

Let β = (i1, i2, i3). Then β ∈ An so that the 3-cycle

βαβ−1α−1 = (i1, i2, i3)(i1, i2, i3, i4, i5)(i1, i2, i3)−1(i1, i2, i3, i4, i5)−1

= (i1, i2, i3)(i1, i2, i3, i4, i5)(i3, i2, i1)(i5, i4, i3, i2, i1)

= (i2, i3, i5)

is also in N .
Let α ∈ N with α 6= e, and write α = α1α2...αk, with the α′is disjoint cycles.

Let α1 = (i1, i2, . . . , ir). First suppose that r > 3, and let β = (i1, i2, ir). Then
β ∈ An, and

βαβ−1α−1 = (i1, i2, ir)(i1, i2, . . . , ir)α2 · · ·αk(ir, i2, i1)α−1

= (i1, i3, i4, i5, . . . , ir−1, i2, ir)α2 · · ·αkα−1
k · · ·α

−1
2 (ir, . . . , i2, i1)

= (i1, i2, ir−1)

is in N .
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Now suppose that r = 3. If k = 1, then N contains the 3-cycle (i1, i2, i3). If
k > 1, let α2 = (j1, j2, . . . , js), and let β = (i1, i2, j1). Then

βαβ−1α−1 = (i1, i2, j1)(i1, i2, i3)(j1, j2, ..., js)α3 · · ·αk(j1, i2, i1)α−1

= (i1, i3, j1)(i2, j2, ..., js)α3 · · ·αkα−1
k α−1

k−1 · · ·α
−1
2 α−1

1

= (i1, i3, j1)(i2, j2, ..., js)(js, js−1, ..., j2, j1)(i3, i2, i1)

= (i1, i2, j1, i3, js)

is in N . Thus by the argument above, there is a 3-cycle in N .
Finally, suppose that r = 2. Then k > 1 since α is even. Let β = (i1, i2, j1).

Then

βαβ−1α−1 = (i1, i2, j1)(i1, i2)(j1, j2, ..., js)α3α4 · · ·αk(j1, i2, i1)α−1

= (i1, j1)(i2, j2, j3, ..., js)α3α4 · · ·αkα−1

= (i1, j1)(i2, j2, j3, ..., js)α
−1
2 α−1

1

= (i1, j1)(i2, j2, j3, ..., js)(js, js−1, ..., j2, j1)(i2, i1)

= (i1, js)(i2, j1)

is an element of N . Let 1 ≤ a ≤ n be different from i1, i2, j1, and j2. (This is
where we use the hypothesis that n ≥ 5.) Then

(i1, i2, a)(i1, js)(i2, j1)(i1, i2, a)−1((i1, js)(i2, j1))−1

= (i1, i2, a)(i1, js)(i2, j1)(a, i2, i1)(i1, js)(i2, j1)
= (i1, i2, j1, js, a)

is an element of N . Again, by the argument above, there is a 3-cycle in N .
We have finally proved that N contains a 3-cycle. Now we will show that N

contains every 3-cycle.
Let (i1, i2, i3) ∈ N , 1 ≤ a ≤ n, and a 6= i1, i2, i3. Then

(i1, a, i2)(i1, i2, i3)(i1, a, i2)−1 = (a, i3, i2)

is in N , whence
(a, i3, i2)2 = (a, i2, i3)

is in N .
We have then that if (i1, i2, i3) ∈ N , then for any a 6= i1, i2, i3, the element

(a, i2, i3) ∈ N . Suppose now that (a, b, c) is any 3-cycle, and that (i1, i2, i3) ∈ N .
If a is not one of i1, i2, or i3, then (a, i2, i3) ∈ N , and

(a, i2, i3) = (i2, i3, a)

is in N . If a is one of i1, i2, or i3, we may as well suppose that a = i1.
Thus in any case (a, i2, i3) = (i2, i3, a) ∈ N . If b 6= i3, then (b, i3, a) ∈ N . If
b = i3, then (i2, b, a) ∈ N . So either (i3, a, b) or (i2, b, a) ∈ N . Thus either
(c, a, b) or (c, b, a) ∈ N . But (c, a, b) = (a, b, c), and (c, b, a)2 = (a, b, c), whence
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(a, b, c) ∈ N . We have then that any normal subgroup N 6= {e} of An contains
all 3-cycles. Noting that

(i1, i2)(i1, i3) = (i1, i2, i3),

and that
(i1, i2)(i3, i4) = (i1, i3, i4)(i1, i3, i2),

and remembering that every element of An is a product of an even number
of 2-cycles, we have that every element of An is a product of 3-cycles. Thus
An = N , and our theorem is proved.

Corollary 2.5.8 If n ≥ 5 and N is normal in Sn, then N is either {e}, or An,
or Sn.

Proof. Suppose N 6= {e}. Since N ∩ An is normal in An, N ∩ An = {e}
or An. If N ∩ An = {e}, then N has just 2 elements since An is of index 2 in
Sn. Let α1α2...αm be the element 6= e in N with the αi’s disjoint cycles. This
element is of order 2, so each αi is a 2-cycle. Let α1 = (i1, i2), and α2 = (i3, i4)
if m > 1. Then if m > 1,

(i1, i2, i3, i4)α1α2 · · ·αm(i1, i2, i3, i4)−1 = (i1, i4)(i2, i3)α3 · · ·αm

is in N , and is neither e nor α1α2 · · ·αm. If m = 1, then let i1 6= i2 6= i3 6= i1.
Then

(i1, i2, i3)(i1, i2)(i3, i2, i1) = (i1, i3) ∈ N , (i1, i3) 6= e,

and (i1, i3) 6= (i1, i2). Thus N ∩An 6= {e}, and hence N ⊃ An. Since Sn : An =
2, N is either An or Sn. Therefore, N = {e}, or An, or Sn.

PROBLEMS

1. Write the following permutations as a product of disjoint cycles and as a
product of transpositions.

(a)
(

1 2 3 4 5
5 4 3 2 1

)
(b)

(
1 2 3 4 5 6 7
7 5 6 3 2 4 1

)
(c)

(
1 2 3 4 5 6 7
1 2 5 4 3 7 6

)
(d) (1, 2, 5, 3)(1, 2, 4, 5)(6, 3, 4)

(e) (1, 2, 3)(1, 2, 3, 4)(1, 2, 3, 4, 5)

(f) (1, 2, 3, 4, 5, 6, 7, 8)100.

2. Prove that the order of a product of disjoint cycles is the least common
multiple of the lengths of those cycles.
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3. Prove that in Sn,

σ−1(i1, i2, ..., ir)σ = (σ(i1), σ(i2), ..., σ(ir)).

4. Prove that the elements α and β of Sn are conjugates if and only they
have the same cycle structure, that is, if and only if α and β have the
same number of disjoint cycles of the same length.

5. View Sn−1 as a subgroup of Sn, that is as the subgroup of Sn fixing n.
Write down a set of representatives of the left cosets of Sn−1. Write down
a set of representatives of the right cosets of Sn−1.

6. What are the conjugates of Sn−1 in Sn? (See Problem 7.)

7. What is Sn−1 ∩An?

8. A4 has non-trivial normal subgroups. Find them all.

9. Prove that if f is any endomorphism of Sn, then f(An) ⊂ An.

10. Prove that the commutator subgroup of Sn is An.

11. Show that every automorphism of S3 is inner.

12. Find the automorphism group of S3.

13. Find all subgroups of Sn of index two.

14. Prove that Sn is generated by the n − 1 transpositions (1, 2), (1, 3), ... ,
(1, n).

15. Prove that Sn is generated by the n − 1 transpositions (1, 2), (2, 3), ... ,
(n− 1, n).

16. Prove that S5 is generated by {(1, 2), (1, 2, 3, 4, 5)}.

17. Prove that Sn is generated by two elements.

2.6 Direct Products and Semi-direct Products

In this section, we describe two constructions of new groups from old. These
constructions will furnish additional examples of groups, and are useful in giving
complete descriptions of groups of certain types. For example, in 2.7, we will
use our results in giving a description of all finite Abelian groups in terms of
cyclic groups.
Let G and H be groups. In the set G×H define multiplication by

(a, b)(c, d) = (ac, bd).

This makes G × H into a group (2.1, Problem 21). The identity element is
(eG, eH), and (g, h)−1 = (g−1, h−1). (From now on, we will write simply e for
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the identity of any group under consideration. Thus (eG, eH) may be written
(e, e) or even more simply just e.) The associative law holds since it holds in
both G and H. This group is denoted G×H, and called the external direct
product of G and H. In G×H, let

G∗ = {(g, e) : g ∈ G}, and
H∗ = {(e, h) : h ∈ H}.

The mappings
G×H → H : (g, h)→ h and

G×H → G : (g, h)→ g

are epimorphisms with kernels G∗ and H∗, respectively. Therefore G∗ and H∗

are normal subgroups of G × H. For (g, h) ∈ G × H, (g, h) = (g, e)(e, h), so
that every element in G×H can be written as the product of an element from
G∗ with one from H∗. Further, this can be done in exactly one way since
(g, h) = (g′, e)(e, h′) implies that (e, e) = (g−1g′, h−1h′), so that g = g′, and
h = h′. Thus G×H has normal subgroups G∗ and H∗ such that every element
of G×H can be written uniquely in the form gh with g ∈ G∗ and h ∈ H∗, and
so G×H = G∗H∗ = {gh : g ∈ G∗, h ∈ H∗}. We say that G×H is the direct
product of the normal subgroups G∗ and H∗.

It is worth observing here that G∗ ∩ H∗ = (e, e), and that gh = hg for
g ∈ G∗ and h ∈ H∗. In fact, if M and N are normal subgroups of a group
which intersect in just the identity element, then the elements of M commute
with those of N . (See Problem 19 in section 2.3.)
This discussion carries over to any finite number of groups. That is, let G1,

G2, . . . , Gn be groups, and let G1 ×G2 × · · · ×Gn be the group obtained from
the set

G1 ×G2 × · · · ×Gn = {(g1, g2, . . . , gn) : gi ∈ Gi for all i}

by defining

(g1, g2, ..., gn) (h1 h2, ..., hn) = (g1h1, g2h2, ..., gnhn) .

The group G = G1 ×G2 × · · · ×Gn is called the external direct product of
the groups G1, G2, . . . , Gn. Let

G∗i = {(e, e, ..., e, gi, e, ..., e) : gi ∈ Gi}.

The G∗i are normal subgroups of G, and every element of G can be written
uniquely as a product g1g2 · · · gn with gi in G∗i .

Definition 2.6.1 Let G1, G2, . . ., Gn be normal subgroups of a group G. Then
G is the direct product of the subgroups G1, G2, . . ., Gn if every element g ∈ G
can be written uniquely in the form g = g1g2 · · · gn with gi ∈ Gi.



64 CHAPTER 2. GROUPS

If G is the direct product of normal subgroups N1, N2, . . ., Nn, then we also
write G = N1 × N2 × · · · × Nn. In the discussion above, the external direct
product G = G1 ×G2 × · · · ×Gn is the direct product of the normal subgroups
G∗1, G

∗
2, . . . , G

∗
n, so that

G1 ×G2 × · · · ×Gn = G∗1 ×G∗2 × · · · ×G∗n,

although strictly speaking, the ×’s on the left have a different meaning than the
×’s on the right. The appropriate interpretation of × can always be determined
from the context. In general, when we write G = G1×G2×· · ·×Gn, we mean it
in the sense of 2.6.1. The group G1×G2×· · ·×Gn is also written G = Πn

i=1Gi.
If G = G1 × G2 × · · · × Gn, then Gi ∩ Gj = {e} for distinct i and j. Since

Gi and Gj are normal, we have that for gi ∈ Gi and gj ∈ Gj , gigj = gjgi.
Therefore, if gi, hi ∈ Gi, then

(g1g2 · · · gn)(h1h2 · · ·hn) = (g1h1)(g2h2) · · · (gnhn).

Direct products of groups serve two purposes. Given groups G1, G2, . . ., Gn,
we can make the new group G1×G2×· · ·×Gn. Thus it is a way to construct new
groups from old, and increases our repertoire of examples. On the other hand,
a group is understood better if it is a direct product of subgroups which are less
complicated than the group itself. For example, section 2.7 is devoted to showing
that every finite Abelian group is a direct product of cyclic groups. Since cyclic
groups are relatively simple entities, finite Abelian groups themselves become
better understood. Theorem 7.4.9 is another example of the same sort.
If G = G1 × G2 × · · · × Gn, then the Gi’s are called direct factors of G.

In fact, if H is any subgroup of G such that G = H ×K for some subgroup K,
then H is called a direct factor of G. If G = H ×K implies that H = {e} or
K = {e}, then G is called indecomposable.
Note that if G = G1 ×G2 ×G3, then

G = (G1 ×G2)×G3 = G1 × (G2 ×G3).

Similarly, one can parenthesize G1×G2× · · · ×Gn at will. Since every element
g ∈ G = H × K can be written uniquely in the form g = hk with h ∈ H
and k ∈ K, and since for hi ∈ H and ki ∈ K, (h1k1)(h2k2) = (h1h2)(k1k2),
G→ K : hk → k is an epimorphism with kernel H, yielding

(H ×K)/H ≈ K.

Consider again the map G → K : hk → k. Denote it by f , and think of it
as an endomorphism of G. Then f is idempotent, that is, f ◦ f = f . Thus
direct factors of G give rise to idempotent endomorphisms of G.

Theorem 2.6.2 A normal subgroup of a group G is a direct factor of G if
and only if it is the image of an idempotent endomorphism of G. If f is any
idempotent endomorphism of G such that Im f is normal, then G = Ker f ×
Im f .



2.6. DIRECT PRODUCTS AND SEMI-DIRECT PRODUCTS 65

Proof. Only the last statement remains to be proved. Let f be an idempo-
tent endomorphism of G with Im f normal. We need to show that every element
in G can be written uniquely in the form xy with x ∈ Ker f and y ∈ Im f . Let
g ∈ G. Then g = (gf(g)−1)f(g)). Clearly f(g) ∈ Im f . Since f(gf(g)−1) =
f(g)f ◦ f(g−1) and f ◦ f = f , then gf(g)−1 ∈ Ker f . Suppose g = xy with
f(x) = e and f(a) = y. Then f(g) = f(x)f(y) = f ◦ f(a) = f(a) = y, and
therefore also x = gf(g)−1.

We now turn to semi-direct products, a more general product of two groups
than their direct product. If N is a normal subgroup of a group G, and H is
any subgroup of G, then NH = {nh : n ∈ N , h ∈ H} is a subgroup of G. (See
2.3.12.).

Definition 2.6.3 Let N be a normal subgroup of a group G, and let H be a
subgroup of G. If G = NH and N ∩H = {e}, then G is a semi-direct product
of N and H, and G splits over N , or is a split extension of N by H.

If H were also normal, then G would be the direct product of the two normal
subgroups N and H. Thus semi-direct product is a generalization of direct
product.
The group G = R× R∗ with multiplication given by

(a, b)(c, d) = (a+ bc, bd)

is a split extension of the normal subgroup N = {(a, 1) : a ∈ R} by the subgroup
H = {(0, b) : b ∈ R∗}. (See 2.3, Problem 1, and 2.4, Problems 1-4.)

The proof of the following theorem is very similar to that of 2.6.2 and is left
to the reader.

Theorem 2.6.4 Let N and H be subgroups of G. Then G is a split extension
of N by H if and only if H is the image of an idempotent endomorphism of G
with kernel N .

Here is an example illustrating 2.6.4. Let GL2(R) and SL2(R) be the general
linear group and the special linear group of 2 × 2 matrices, respectively. (See
2.1.2 (f) and 2.3.4 (f).). The mapping

f : GL2(R)→ GL2(R) : x→
(

det (x) 0
0 1

)
is an idempotent endomorphism of GL2(R) with kernel SL2(R), and so GL2(R)
is a split extension of SL2(R) by Imf , and Im(f) is isomorphic to the multi-
plicative group R∗.

We now show how to construct split extensions. If G is a semi-direct product
NH, then for n, m ∈ N and h, k ∈ H, (nh)(mk) = (nhmh−1)(hk). The element
hmh−1 is in N since N is normal in G. The mapping ϕ : H → Aut(N) defined
by ϕ(h)(g) = hgh−1 is a homomorphism (2.3.16), and the multiplication above
is (nh)(mk) = (nϕ(h)(m))(hk). Now, if N and H are any groups, and ϕ is any
homomorphism from H to Aut(H), then we may construct a group that is a
split extension of an isomorphic copy of N by an isomorphic copy of H.
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Theorem 2.6.5 Let N and H be groups, and let ϕ be a homomorphism from
H into the automorphism group Aut(N) of N . Then

a. The Cartesian product G = N x H is a group under the operation (n1, h1)(n2, h2) =
(n1ϕ(h1)(n2), h1h2);

b. N∗ = {(n, e) : n ∈ N} is a normal subgroup, and H∗ = {(e, h) : h ∈ H}
is a subgroup of G; and

c. G is a split extension of its normal subgroup N∗ by its subgroup H∗.

Proof. The identity is (e, e), and the inverse of (n, h) is (n−1ϕ(h−1)(n),
h−1). The equations

(n1, h1)((n2, h2)(n3, h3)) = (n1, h1)(n2ϕ(h2)(n3), h2h3)

= (n1ϕ(h1)(n2ϕ(h2)(n3)), h1h2h3)

= (n1(ϕ(h1)(n2))ϕ(h1)(ϕ(h2)(n3)), h1h2h3)

= (n1ϕ(h1)(n2))(ϕ(h1)(ϕ(h2))(n3)), h1h2h3)

= (n1(ϕ(h1)(n2))ϕ(h1h2)(n3)), h1h2h3)

= (n1ϕ(h1)(n2), h1h2)(n3, h3)

= ((n1, h1)(n2, h2))(n3, h3)

establish the associative law. Thus G is a group.
The map N x H → H : (n, h) → h is an epimorphism with kernel N∗, and

the map H → N x H : h → (e, h) is a monomorphism with image H∗ (2.3,
Problem 18). Thus N∗ is a normal subgroup of G, and H∗ is a subgroup of G.
It is clear that N ×H = N∗H∗, and that N∗ ∩H∗ = {e}. This completes

the proof.
The group in (a) is called the semi-direct product of N and H depend-

ing on ϕ.
Here are some special cases of interest. If ϕ is the trivial homomorphismH →

Aut(N) : h→ e, then N x H is simply the external direct product of N and H
(Problem 14). If H = Aut(N) and ϕ is the identity map, then (n1, h1)(n2, h2) =
(n1h1(n2), h1h2). Noticing that (h1(n2), e) = (e, h1)(n2, e)(e, h1)−1, we see that
every automorphism of N∗ is induced by an inner automorphism of the semi-
direct product N ×H. Further, for xi ∈ N∗ and yi ∈ H∗,

(x1y1)(x2y2) = x1(y1x2y
−1
1 )y1y2.

In this case, that is, when H = Aut(N), the semi-direct product is call the
holomorph of N , and denoted Hol(N). Elements of a group N produce per-
mutations of the set N by multiplication on the left, say. Automorphisms of N
are special kinds of permutations of N . The subgroup of the group of all per-
mutations of N generated by the left multiplications and the automorphisms of
N is isomorphic to the holomorph of N . In this connection, see Problem 23.
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Let N be any group, let H be any subgroup of Aut(N), and let ϕ be the
homomorphism H → Aut(N) : h → h. The semi-direct product of N and H
over ϕ is then the Cartesian product G = N ×H with multiplication given by

(n1, h1)(n2, h2) = (n1h1(n2), h1h2).

We say that G is the extension of N by the group H of automorphisms of
N , and that we have adjoined the group H of automorphisms to N . If N
has a non-trivial automorphism, then G is not just the direct product of N and
H, and G is not Abelian. For example, if h is not the identity automorphism of
N , then there is an n in N such that h(n) 6= n, and (n, e)(e, h) = (n, h), while
(e, h)(n, e) = (h(n), h).
For any Abelian group N , the mapping α : N → N : h → h−1 is an

automorphism. Since only elements of order two are their own inverses, α is
the identity automorphism if and only if every element of N has order two. So
suppose that N is Abelian and not every one of its elements has order two. For
example, N can be any cyclic group of order greater than two. Then the element
α of Aut(N) has order two, and {e, α} is a subgroup of Aut(N) of order two.
Let H = {e, α}. The extension G of the Abelian group N by the two element
group of automorphisms H is a non-Abelian group, and is called a generalized
dihedral group. If N is cyclic, then the extension G is a dihedral group, as
defined in 2.1.2. If N is finite, then o(G) = 2o(N). In particular, letting N be
the cyclic group Z(n) of order n, we see that for n > 2, there is a non-Abelian
splitting extension of Z(n) by a group of order two. Thus for every such n > 2,
there is a non-Abelian group of order 2n. The simplest example is for n = 3, in
which case the resulting group is isomorphic to S3.

We conclude this section with the following example. Let N be a cyclic
group of order p2, where p is an odd prime. Raising each element of N to the
p− 1 power is an automorphism α of N , and α has order p in Aut(N). Let H
be the subgroup of Aut(N) generated by α. Then the semi-direct product of
N with H determined by α is a non-Abelian group of order p3. Every group of
order p2 is Abelian (2.3, Problem 20). Also, there are groups of order p3 not
isomorphic to the one just constructed (Problem 20).

PROBLEMS

1. Let Q∗ be the multiplicative group of non-zero rational numbers, and let
Q+ be the subgroup of positive rational numbers. Prove directly from the
definition that Q∗ = {1,−1} ×Q+. Prove also using 2.6.2.

2. Prove that a cyclic group of order 6 is a direct product of a group of order
3 and one of order 2.

3. Let p and q be distinct primes. Prove that a cyclic group of order pq is a
direct product of a subgroup of order p and one of order q.

4. Prove that a cyclic group of order a power of a prime is indecomposable.
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5. Prove that S3 is indecomposable

6. Prove that Sn is indecomposable.

7. Prove that the infinite cyclic group is indecomposable.

8. Prove that G is the direct product of the two normal subgroups H and K
if and only if every g ∈ G can be written g = hk with h ∈ H and k ∈ K,
and H ∩K = {e}.

9. Let G1, G2, . . . , Gn be normal subgroups of G, and let G∗j be the subgroup
of G generated by all the Gi except Gj . Prove that G is the direct product
of the normal subgroups G1, G2, . . . , Gn if and only if every g ∈ G can
be written g = g1g2 · · · gn with gi ∈ Gi for all i, and Gi ∩G∗i = {e} for all
i.

10. Let G = Πn
i=1Gi, and g = g1g · · · gn with gi ∈ Gi. Prove that o(g) =

lcm{o(g1), o(g2), . . . , o(gn)} if o(g) is finite. Prove that if G is a p-group,
then o(g) is the maximum of the o(gi).

11. Let α : G → H be an isomorphism. Prove that if A is a direct factor
of G, then α(A) is a direct factor of H. Prove that it is not enough to
assume that α is a monomorphism, nor enough to assume that α is an
epimorphism.

12. Prove that if Gi ≈ Hi for i = 1, 2, . . . , n, then

n∏
i=1

Gi ≈
n∏
i=1

Hi.

13. Prove that G ≈ G1×G2 if and only if there are homomorphisms αi : G→
Gi such that if H is any group and βi : H → Gi are any homomorphisms,
then there is a unique homomorphism α : H → G such that αi ◦ α = βi.

14. Let ϕ be a homomorphism N → Aut(N). Prove that the semi-direct
product of N and H depending on ϕ is the external direct product of N
and H if and only if ϕ is the trivial homomorphism N → Aut(N) : h→ e.

15. Prove that the group of quaternions Q8 is not a non-trivial split extension.

16. Prove that if G has order 8 and is non-Abelian, then G is either Q8 or D8.

17. Prove that S3 is a non-trivial split extension.

18. Prove that Sn splits over An.

19. Prove that the holomorph of Z(3) is S3.

20. Construct two non-Abelian groups of order p3, where p is an odd prime.
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21. Construct all possible groups of order 30 which are split extensions of a
cyclic group of order 10 by a group of order 3.

22. Construct a non-Abelian group which is a split extension of a cyclic group
of order 3 by a cyclic group of order 10.

23. Let N be any group, and let P be the group of all permutations of the
set N . Identify N with the set of left multiplications in P . Let G be the
subgroup of P generated by N and the automorphisms of N . Prove that
G is a split extension of N by Aut(N). Prove that G is isomorphic to
Hol(N).

24. Prove that a normal subgroup of a direct factor of a group G is a normal
subgroup of G.

25. Let G be a split extension of N by H. Let f be a homomorphism from H
into N , and let K = {f(h)h : h ∈ H}. Prove that G is a split extension
of N by K.

26. Let {Gi}i∈I be a family of groups. Let G = Πi∈IGi be the set of all
mappings f of I into ∪i∈IGi such that f(i) ∈ Gi for all i ∈ I. For f ,
g ∈ G, let (fg)(i) = f(i)g(i). Prove that G with this multiplication is a
group. let ei be the identity of Gi. Prove that Σi∈IGi = {f ∈ G : f(i) = ei
for all but finitely many i} is a subgroup of G. (G is the direct product
of the family {Gi}i∈I , and the subgroup described is the direct sum,
or the coproduct of the family.)

2.7 Finite Abelian Groups

Let G and H be finite Abelian groups. Is there some easy way to determine
whether or not G and H are isomorphic? To lend meaning to the question, sup-
pose that G and H are cyclic. Then the answer is yes: G and H are isomorphic
if and only if they have the same number of elements. Thus, with each finite
cyclic group G there is naturally associated something much simpler than G,
namely the positive integer o(G), that completely determines G up to isomor-
phism. That is, if G and H are finite cyclic groups, then G ≈ H if and only if
o(G) = o(H). (See 2.3.15.) As trivial as it is, this is a good theorem. In fact,
a large portion of Abelian group theory is devoted to generalizing it. The goal
of this section is a suitable generalization to finite Abelian groups. What we
want to do is to associate, in a natural way, with each finite Abelian group G
something simple, which we temporarily denote by Inv(G), such that G ≈ H
if and only if Inv(G) = Inv(H). That is, we know G up to isomorphism if
we know the relatively simple entity Inv(G). Note that Inv(G) cannot be just
o(G), since there are two non-isomorphic Abelian groups of order 4, the cyclic
group of order 4, and the direct product of two cyclic groups of order 2. (Inv
is an abbreviation for “invariant.”)
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To realize our objective, we will show that every finite Abelian group is a
direct product of cyclic groups, and in essentially only one way. Once this is
accomplished, a completely satisfying Inv(G) will be at hand.

When dealing with Abelian groups, it is customary to use additive notation.
That is, the group operation will be called “addition,” and we will “add” two
elements rather than “multiply” them. We write g + h instead of g · h or
gh, and ng replaces gn. The identity element is denoted 0 instead of 1 or
e. Direct products are called direct sums, and direct factors are called direct
summands. If A1, A2, . . ., An are Abelian groups, then their direct sum is
written A1 ⊕ A2 ⊕ · · · ⊕ An, or ⊕ni=1Ai. These are merely notational changes.
For example, 2.6.1 and 2.6.2 become, in additive notation, the following.

Definition 2.7.1 Let G1, G2, , Gn be subgroups of the Abelian group G.
Then G is the direct sum of the subgroups G1, G2, . . ., Gn if every element
g ∈ G can be written uniquely in the form g = g1 + g2 + · · ·+ gn with gi ∈ Gi.

Theorem 2.7.2 A subgroup of an Abelian group G is a summand of G if and
only if it is the image of an idempotent endomorphism of G. If f is any idem-
potent endomorphism of G, then G = Ker f ⊕ Im f .

If G1, G2, . . ., Gn are finite cyclic groups, then ⊕ni=1Gi is of course a finite
Abelian group. It may no longer be cyclic. (For example, if Z(2) denotes the
cyclic group of order 2, then Z(2)⊕Z(2) is not cyclic since it has 4 elements and
each element is of order at most 2.) In fact, every finite Abelian group can be
realized in this way. That is, every finite Abelian group is a direct sum of cyclic
groups. This is a marvelous theorem because it says that every finite Abelian
group can be constructed in an easy way from much less complicated groups.
The proof of this will be broken up into several steps.

Definition 2.7.3 Let G be a group, and let p be a prime. Then G is a p-group
if every element in G has order a power of p.

For example, Z(2) ⊕ Z(2) and Z(4) are 2-groups, and Z(27) is a 3-group.
However, Z(6) is not a p-group for any prime p.

Theorem 2.7.4 Every finite Abelian group is a direct sum of p-groups.

Proof. Let G be a finite Abelian group. If o(G) = 1, there is nothing to do.
Otherwise, let P be the set of primes dividing o(G). Let Gp = {g ∈ G : o(g) is
a power of p}. We will show that G = ⊕p∈PGp. The Gp are indeed subgroups
of G since G is Abelian. We need to write every element g ∈ G in the form
g = Σp∈P gp with gp ∈ Gp, and to show that this can be done in only one way.
Let o(g) = Πp∈Pnp, where each np is a power of p. This is fair since o(g) divides
o(G). Let mp = o(g)/np. Then the mp are relatively prime, so there exist
integers ap such that 1 = Σ apmp. (See 1.6, page 19.) Therefore g = Σ apmpg,
and since np(apmpg) = apo(g)g = 0, then apmpg ∈ Gp. Letting gp = apmpg,
we have that g = Σ gp with gp ∈ Gp.
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Now suppose that g = Σ hp with hp ∈ Gp. Then 0 = Σp(gp−hp). The order
of gp − hp is a power of p, and so the order of Σp(gp − hp) is the least common
multiple of the orders of the (gp − hp). (See 2.2 Problem 24.) This must be 1
since o(0) = 1. It follows that o(gp−hp) = 1, and that gp = hp for all p ∈ P .

The subgroup Gp of G is called the p-component of G, or the p-primary
part of G. Thus 2.6.4 says that a finite Abelian group is the direct sum of its p-
primary parts for the various primes p dividing o(G). If G = H1⊕H2⊕· · ·⊕Hm

with each Hi a pi-group for distinct primes pi, then clearly Hi is the pi-primary
part of G. Therefore there is only one way to write G as a direct sum of p-groups
for distinct primes p, and that is as the direct sum of its p-primary parts.
To show that every finite Abelian group is a direct sum of cyclic groups, it

now suffi ces to show that this is the case for finite Abelian p-groups. There are
many ways to prove this. (See Problems 14 and 15, for example.) It suffi ces to
write G = A⊕B with A 6= {0} 6= B if G is not already cyclic. Induction on o(G)
does the rest. But how does one get hold of appropriate A and B? One way is
to take A to be a cyclic subgroup of G of largest order. Then G = A ⊕ B for
an appropriate B. This is a key fact, which we now prove, appealing to 2.7.2.

Lemma 2.7.5 Let G be a finite p-group, and let g be an element of G of max-
imum order. Then 〈g〉 is a summand of G.

Proof. Let g be an element of largest order in G. If Zg 6= G, then there is
a non-zero subgroup S of G such that S ∩ Zg = {0}. To see this, suppose that
a /∈ Zg. Then pna ∈ Zg for some positive integer n, so there is an element b ∈ G
such that b /∈ Zg and pb ∈ Zg. Since o(g) > o(pb), we get that pb = pmg. Thus
p(b−mg) = 0, and s = b−mg /∈ Zg. But Zs has order p, so Zs ∩ Zg = {0}.
So let S be any non-zero subgroup such that S∩Zg = {0}. InG/S, o(g+S) =

o(g). Now, g + S is an element of maximum order in G/S. By induction on
o(G), 〈g + S〉 is a summand of G/S. The composition

G→ G/S → 〈g + S〉 → 〈g〉 → G,

where the first map is the natural homomorphism, the second is the projection
of G/S onto its summand 〈g + S〉, the third takes m(g+S) to mg, and the last
is the inclusion map, is an idempotent endomorphism of G with image 〈g〉. By
2.7.2, 〈g〉 is a summand of G.

Theorem 2.7.6 Every finite Abelian p-group is a direct sum of cyclic groups.

Proof. As indicated above, this follows readily from 2.7.5. Let g be an
element of G of maximum order. Then G = Zg⊕B for some subgroup B. Since
o(B) < o(G), B is a direct sum of cyclic groups by induction on o(G). The
theorem follows.

From 2.7.4 and 2.7.6 we have

Theorem 2.7.7 (Fundamental Theorem of Finite Abelian Groups) Every
finite Abelian group is a direct sum of cyclic groups.
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Actually we proved more. We proved that every finite Abelian group is a
direct sum of cyclic p-groups.
Now a fundamental question arises. A finite Abelian group is a direct sum

of cyclic groups all right, but in how many ways? Let’s restrict attention to
p-groups. Consider the cyclic group Z(2) of order 2. Denote its elements by 0
and 1. Let

G = Z(2)⊕ Z(2),

the external direct sum of Z(2) and Z(2). Then

G = {(0, 0), (1, 0)} ⊕ {(0, 0), (0, 1)}
= {(0, 0), (1, 1)} ⊕ {(0, 0), (0, 1)}
= {(0, 0), (1, 1)} ⊕ {(0, 0), (1, 0)}.

Thus G can be written in several ways as the direct sum of cyclic groups. Even
for a given cyclic subgroup, say H = {(0, 0), (1, 1)}, there were two distinct
subgroups K and L such that G = H⊕K = H⊕L. This simple example shows
that there will be, in general, many ways to write a finite Abelian group as a
direct sum of cyclic groups. Is there anything worthwhile that is unique about
such a direct sum decomposition? The answer is a resounding yes. Let G be a
finite Abelian p-group, and let G = G1 ⊕G2 ⊕ · · · ⊕Gm = H1 ⊕H2 ⊕ · · · ⊕Hn

with each Gi and Hi cyclic and non-zero. We will show that m = n, and after
a possible renumbering, Gi ≈ Hi. Another way to say this is that for each
positive integer k, the number of Gi of order pk is the same as the number of
Hi of order pk. That is, this number depends only on G, not on a particular
direct sum decomposition of it. These numbers will be our magic invariants.

Theorem 2.7.8 Let G be a finite p-group. If

G = G1 ⊕G2 ⊕ · · · ⊕Gm = H1 ⊕H2 ⊕ · · · ⊕Hn

with each Gi and Hi non-zero and cyclic, then m = n, and after suitable renum-
bering, Gi ≈ Hi for all i.

Proof. The proof is by induction onm. Ifm = 1, then G is a cyclic p-group.
Thus G has an element g with o(g) = o(G). Write g = h1 +h2 + · · ·+hn. Then
o(hi) = o(g) for some i. Thus o(Hi) = o(G), so Hi = G. Therefore n = 1 and
obviously G1 ≈ H1.
Now assume that m > 1. Number the Gi so that for all i, o(G1) ≥ o(Gi).

Let g1 be a generator of G1, and write g1 = h1 +h2 + · · ·+hn with hi ∈ Hi. The
order of g1 is the maximum of the o(hi). Thus o(g1) = o(hj) for some j. Since
o(g1) = o(G1) and o(hj) ≤ o(Hj), it follows that o(G1) ≤ o(Hj). Similarly some
o(Gk) ≥ o(Hj), whence o(G1) = o(Hj). We may as well suppose that j = 1.
Note that G1 ∩ (H2 ⊕ · · · ⊕Hn) = {0}. Indeed,

kg1 = k(h1 + · · ·+ hn) = x2 + · · ·+ xn
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with xi ∈ Hi yields kh1 = 0, and hence kg1 = 0. Since

o(G1 ⊕ (H2 ⊕ · · · ⊕Hn)) = o(H1 ⊕ (H2 ⊕ · · · ⊕Hn)),

G = G1 ⊕H2 ⊕ · · · ⊕Hn.

So we have
G/G1 ≈ G2 ⊕ · · · ⊕Gm ≈ H2 ⊕ · · · ⊕Hn.

Now let α be an isomorphism from H2 ⊕ · · · ⊕ Hn to G2 ⊕ · · · ⊕ Gm. We get
G2 ⊕ · · · ⊕ Gm = α(H2) ⊕ · · · ⊕ α(Hn). By the induction hypothesis, after
suitable renumbering, Gi ≈ α(Hi) for all i ≥ 2. But Hi ≈ α(Hi) for all i ≥ 2,
and so Gi ≈ Hi for all i. The theorem follows.
We now have the desired invariants for finite Abelian groups. If G is a finite

p-group, then G = G1⊕ · · · ⊕Gm with Gi cyclic. For convenience, let’s arrange
the Gi so that

o(G1) ≥ o(G2) ≥ · · · ≥ o(Gm).

Now Gi, being cyclic, is determined by o(Gi. Thus, the family {o(G1), o(G2),
. . ., o(Gm)} determines G. Furthermore, by 2.7.8, it does not depend on the
particular decomposition G1 ⊕ · · · ⊕ Gm. That is, {o(G1), . . . , o(Gm)} is an
invariant of G. Denote it I(G). What all this means is that if H is a finite
Abelian p-group, H = H1 ⊕ · · · ⊕Hn with Hi cyclic and

o(H1) ≥ o(H2) ≥ · · · ≥ o(Hn),

then G ≈ H if and only if

{o(G1), . . . , o(Gm)} = {o(H1), . . . , o(Hn)}.

This means that m = n, and o(Gi) = o(Hi) for all i.
Now, given such an invariant, that is, a family {i1, i2, . . . , in} with ij a power

of p and i1 ≥ i2 ≥ · · · ≥ in, we can construct the finite p-group Z(i1)⊕· · ·⊕Z(in),
where Z(ij) denotes the cyclic group of order ij . The invariant associated with
this group is clearly {i1, i2, . . . , in}. In summary, two finite p-groups G and H
are isomorphic if and only if I(G) = I(H), and given any family {i1, i2, . . . , in}
of powers of p with i1 ≥ i2 ≥ · · · ≥ in, there is a finite p-group G such that
I(G) is that family.
Consider now the general case. That is, let G be any finite Abelian group.

First, G = ⊕p∈PGp, where P is the set of primes dividing o(G), and Gp is the
p-component of G. If H is another such group, then G ≈ H if and only if their
corresponding p-components are isomorphic. Thus we could define Ip(G) =
I(Gp), and then the finite Abelian groups G and H would be isomorphic if and
only if Ip(G) = Ip(H) for all p. There is a little neater way to do this however.
There is a complete invariant for G more analogous to the one when G is a
p-group.
First, notice that if A and B are finite cyclic with o(A) and o(B) relatively

prime, then A ⊕ B is cyclic. In fact, if a generates A and b generates B, then
a + b generates A ⊕ B. This generalizes. If A1, A2, . . . , An are cyclic and
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(o(Ai), o(Aj)) = 1 for i 6= j, then ⊕ni=1Ai is cyclic with generator Σni=1ai, where
ai generates Ai.
Now let us consider an example. Suppose that

G = [Z(53)⊕ Z(52)⊕ Z(52)⊕ Z(5)]

⊕
[
Z(33)⊕ Z(33)⊕ Z(32)

]
⊕ [Z(24)⊕ Z(2)].

The subgroups in square brackets are the p-components of G. Regroup these
summands of Glike this:

G = [Z(53)⊕ Z(33)⊕ Z(24)]

⊕
[
Z(52)⊕ Z(33)⊕ Z(2)

]
⊕
[
Z(52)⊕ Z(32)

]
⊕ [Z(5)].

Now the subgroups in square brackets are cyclic and the order of the first is
divisible by the order of the second, the order of the second is divisible by the
order of the third, and so on. These orders are, in fact, 533324, 5233, 5232, and
5. Therefore, we have associated the family

{
533324, 5233, 5232, 5

}
with G. We

can reconstruct G (up to isomorphism) from this family, namely

G ≈ Z(53 · 33 · 24)⊕ Z(52 · 33 · 2)⊕ Z(52 · 32)⊕ Z(5).

Thus this family determines G. What is not so clear is that if G = Z(n1) ⊕
Z(n2)⊕ · · · ⊕Z(nk) with n1 divisible by n2, n2 divisible by n3, and so on, then
n1 = 53 · 33 · 24, n2 = 52 · 33 · 2, and so on. However, this is indeed the case.
What we are asserting is that the family {n1, n2, · · ·, nk} is an invariant of G.
This is the same as saying that if

G = G1 ⊕ · · · ⊕Gm = H1 ⊕ · · · ⊕Hn,

with the Giand Hi non-zero cyclic, and with o(Gi) divisible by o(Gi+1) and
o(Hi) divisible by o(Hi+1) for all appropriate i, then m = n and o(Gi) = o(Hi),
whence Gi ≈ Hi. To see that this is the case, consider a p-component K of
G. Then K = ⊕mi=1(Gi)p. That is, the p-component of G is the sum of the
p-components of the Gi’s. But (Gi)P is cyclic since Gi is cyclic. Similarly K =
⊕mi=1(Hi)p. But o((Gi)p) ≥ o((Gi+1)p), and similarly for the (Hi)p. Therefore,
from the discussion of the invariant I(K) for p-groups K, (Gi)p ≈ (Hi)p for all
i. Since the p-component of Gi is isomorphic to the p-component of Hi for all
p, it follows that Gi ≈ Hi.
The result of all this discussion is this. With each finite Abelian group

G there is associated, in exactly one way, a family {n1, n2, · · ·, nk} of positive
integers such that ni is divisible by ni+1for i < k. The association is made by
writing G = ⊕ki=1Gi with Gi cyclic of order ni, and we have shown that the ni’s
are unique. If we know {n1, n2, · · ·, nk}, we can retrieve G, up to isomorphism:
G ≈ ⊕ki=1Z(ni). So for a finite Abelian group G we have a complete invariant
I(G), the family {n1, n2, · · ·, nk} of positive integers. In case G is a p-group, it
is the same invariant as discussed for p-groups. In case G is cyclic, I(G) is the
family whose only member is o(G).
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Definition 2.7.9 The family I(G) is called the family of invariant factors
of the finite Abelian group G. The invariant factors of the p-components GP of
G are the elementary divisors of G.

Thus the invariant factors of

Z(22 · 32 · 53)⊕ Z(2 · 32 · 53)⊕ Z(2 · 3 · 5)⊕ Z(3 · 5)⊕ Z(3)

are {22 · 32 · 53, 2 · 32 · 53, 2 · 3 · 5, 3 · 5, 3} and the elementary divisors are
{22, 2, 2}, {32, 32, 3, 3, 3}, and {53, 53, 5, 5}.
Since the finite Abelian groups G and H are isomorphic if and only if Gp ≈

Hp for all primes p, and G ≈ H if and only if I(G) = I(H), we have the following
theorem.

Theorem 2.7.10 Let G and H be finite Abelian groups. The following are
equivalent.

a. G ≈ H.

b. G and H have the same invariant factors.

c. G and H have the same elementary divisors.

Now that we have the invariant I(G) for finite Abelian groups G, we can
calculate how many non-isomorphic Abelian groups there are of a given order.
Let n be any positive integer, and write n = n1 · n2 · · ·nk, where the ni are
powers of distinct primes pi. If a finite Abelian group G has order n then its pi-
component must have order ni. Now two finite Abelian groups are isomorphic
if and only if their corresponding p-components are isomorphic. Therefore, if
N(n) denotes the number of non-isomorphic Abelian groups of order n, then
N(n) = Πk

i=1N(ni). So we must calculate N(pn), where p is an arbitrary prime.
If G is an Abelian p-group of order pn, then

I(G) = {i1, i2, · · · , ik},

where each ij is a power of p and i1 ≥ i2 ≥ · · · ≥ ik. Let ij = pnj . Then
n = Σki=1ni. Thus N(pn) is the same as the number of distinct ways we can
write n in the form n1 + n2 + . . . +nr with n1 ≥ n2 ≥ · · · ≥ nr ≥ 1. That
is, N(pn) is the same as the number of partitions of n. We have proved the
following theorem.

Theorem 2.7.11 The number of non-isomorphic Abelian groups of order n =
pn11 pn22 · · · p

nk
k , where the pi’s are distinct primes, is P (n1)P (n2) · · ·P (nk), where

P (ni) is the number of partitions of ni.

Thus the number of Abelian groups of order 4 is 2, of order 6 is 1, of order
100 is 4, and of order 175 · 974 is 35.
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PROBLEMS

All groups in these problems are Abelian.

1. Prove that G is the direct sum of the two subgroups H and K if and only
if every g ∈ G can be written g = h + k with h ∈ H and k ∈ K, and
H ∩K = {0}.

2. Prove that G is the direct sum of the subgroups G1, G2, . . . , Gn if and
only if every g ∈ G can be written g = g1 + g2 + · · ·+ gn with gi ∈ Gi for
all i, and Gi ∩ (G1 +G2 + · · ·+Gi−1 +Gi+1 + · · · +Gn) = {0} for all i.

3. Let G = ⊕ni=1Gi, and g = Σ gi with gi ∈ Gi. Prove that o(g) = lcm{o(g1),
o(g2) , . . . , o(gn)} if o(g) is finite. Prove that if G is a p-group, then o(g)
is the maximum of the o(gi).

4. Prove that every finite group G is a direct sum of p-groups in the following
way. Let p divide o(G), p a prime. Let Gp be the p-component of G, and
let G∗p = {g ∈ G : ((o(g), p) = 1}. Prove that G = Gp ⊕G∗p. Complete by
inducting on the number of primes that divide the order of G.

5. Prove that every finite group is a direct sum of p-groups as follows.

(a) If G is a p-group and (n, p) = 1, then

n : G→ G : g → ng

is an automorphism.

(b) Let o(G) = i1i2 · · · ir, with the ij powers of distinct primes pj. Let
q = o(G)/i1. Then q is an automorphism of the p1-component of G,
and hence has an inverse f . Now q is an endomorphism of G, and f ◦q
is an idempotent endomorphism of G with image the p1-component
of G. Apply 2.6.2 and induct.

6. Let G be a group, not necessarily finite, all of whose elements are of finite
order. Suppose that only finitely many primes are relevant for G. That
is, there are finitely many primes p1, p2, . . . , pr such that if g ∈ G, then
o(g) is a product of powers of these primes. Prove that G is the direct
sum of its p-components.

7. Prove that the plane is the direct sum of any two distinct straight lines
through the origin.

8. Let α : G → H be an isomorphism. Prove that if A is a summand of G,
then α(A) is a summand of H. Prove that it is not enough to assume that
α is a monomorphism, nor enough to assume that α is an epimorphism.

9. Prove that if Gi ≈ Hi for i = 1, 2, . . . , n, then

⊕ni=1Gi ≈ ⊕ni=1Hi.
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10. Prove that the subgroups of a cyclic p-group form a chain. That is, if A
and B are two subgroups of Z(pn), then A ⊃ B or A ⊂ B.

11. Prove that Z(pn) is indecomposable.

12. Prove that for each m ≤ n, Z(pn) has exactly one quotient group isomor-
phic to Z(pm).

13. Prove that for each m ≤ n, Z(pn) has exactly one subgroup isomorphic to
Z(pm).

14. Prove that a finite p-group G is a direct sum of cyclic groups as follows.
Let g ∈ G be an element of maximum order. If G 6= {0}, then o(G/Zg) <
o(G), so that G/Zg = ⊕ni=1(Ai/Zg), with Ai/Zg cyclic. Each Ai/Zg =
Z(ai + Zg) with o(a) = o(ai + Zg). Then Ai = Zai ⊕ Zg, and

G = Zg ⊕ Za1 ⊕ Za2 ⊕ . . . ⊕ Zan.

15. Prove that a finite p-group G is a direct sum of cyclic groups as follows.
Let g ∈ G be an element of maximum order. Let H be a subgroup of G
such that H ∩Zg = {0} and such that if K is any subgroup of G properly
containing H, then K ∩ Zg 6= {0}. Then G = Zg ⊕H. Induct on o(G).

16. Find the number of non-isomorphic groups of order 71, 712, 492, 10011,
and p5

1 · p5
2 · p4

3 · p3
4 · p2

5 · p6, where the pi’s are distinct primes.

17. Write down all non-isomorphic groups of order 73 · 112.

18. Let G = H ⊕K, with G finite. How does one get the invariant factors of
G directly from those of H and K? Given the invariant factors of G and
H, calculate those of K.

19. Prove that if G1⊕G2 = H1⊕H2 is finite, and if G1 ≈ H1, then G2 ≈ H2.

20. Let G and H be finite. How does one tell from the invariant factors of G
and H whether or not

(a) H is isomorphic to a summand of G;

(b) H is isomorphic to a subgroup of G;

(c) H is isomorphic to a quotient group of G?

21. Let G be a finite group and let pn divide o(G). Prove that G has a
subgroup of order pn. (This is true even if G is not necessarily Abelian,
but is considerably more diffi cult to prove in that case.)

22. Prove that every finite group of order greater than 2 has a non-trivial
automorphism. Prove this also for non-Abelian groups.
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23. Prove that G ≈ G1⊕G2 if and only if there are homomorphisms αi : Gi →
G such that if H is any group and βi : Gi → H are any homomorphisms,
then there is a unique homomorphism α : G→ H such that α ◦ αi = βi.

24. Let Hom(G, H) be the group of all homomorphisms from G into H. Prove
that

Hom(G1 ⊕G2, H) ≈ Hom(G1, H)⊕Hom(G2, H), and

Hom(G, H1 ⊕H2) ≈ Hom(G, H1)⊕Hom(G, H2).

Generalize.

25. Suppose that there is an epimorphism G → Z. Prove that G = A ⊕ B
with A ≈ Z. Generalize.



Chapter 3

Vector Spaces

3.1 Definitions and Examples

In this chapter we begin the study of vector spaces, perhaps the most universally
useful algebraic system. Let us begin by looking at a familiar example. Consider
the plane, that is, the set P of all pairs (a, b) of real numbers. Two such pairs
may be added by the rule

(a, b) + (c, d) = (a+ c, b+ d).

There is another fundamental operation that is performed on the elements of
P . An element (a, b) ∈ P can be “multiplied”by a real number r by the rule

r(a, b) = (ra, rb).

Now real numbers themselves can be added and multiplied. We have four op-
erations at hand – addition of elements of P , addition and multiplication of
real numbers in R, and multiplication of elements of P by elements of R to get
elements of P . These four operations satisfy some basic rules. First, P is an
Abelian group under addition of its elements. The real numbers R, together
with ordinary addition and multiplication of its elements, constitute what is
called a field, an algebraic system which we will formally define shortly. The
multiplication of elements of P by elements of R satisfies several basic rules
involving the other operations. For example, r((a, b) + (c, d)) = r(a, b) + r(c, d).
It is a setup such as this that arises over and over again in mathematics (and
elsewhere). It has been formalized and called a vector space. We proceed now
to its formal definition, and we first need to define a field.

Definition 3.1.1 A field is a set F with two commutative binary operations,
called addition and multiplication, and denoted + and · respectively, such that

a. F is a group under +,

b. F ∗ = F \ {0} is a group under · , where 0 is the additive identity, and

79
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c. a · (b+ c) = a · b+ a · c for all a, b, and c ∈ F .

As noted in (b), the additive identity is denoted by 0. The identity of
the multiplicative group F ∗ is denoted by 1. Condition (c) is called the left
distributive law. Following the custom for groups, the negative of an element
a in the additive group F is denoted − a, and the inverse of an element a in the
multiplicative group F ∗ is denoted a−1. Also, a · b is usually written simply ab.

We note now some rather immediate but useful consequences of the axioms.

Theorem 3.1.2 Let F be a field. Then for a, b, c ∈ F , the following hold.

a. 0 · a = a · 0 = 0.

b. (a+ b)c = ac+ bc.

c. a(−b) = −(ab) = (−a)b.

d. ab = (−a)(−b).

e. (e)a(b− c) = ab− ac.

f. (−1)a = − a.

g. 1 6= 0.

Proof.

a. a · 0 = a · (0 + 0) = a · 0 +a · 0, so a · 0−a · 0 = 0 = a · 0 +a · 0−a · 0 = a · 0.
Also, 0 · a = a · 0 since multiplication is commutative.

b. This follows from 3.1.1 (c) and commutativity.

c. ab+ a(−b) = a(b+ (−b)) = a · 0 = 0. Thus −ab = a(−b). Now, (−a)b =
b(−a) = −(ba) = −(ab).

d. (−a)(−b) = −(a(−b)) = −(−(ab)) = ab, using (c).

e. a(b− c) = a(b+ (−c)) = ab+ a(−c) = ab+ (−(ac)) = ab− ac.

f. 0 = 0 · a = (1 + (−1))a = 1 · a+ (−1)a = a+ (−1)a. Thus −a = (−1)a.

g. 1 ∈ F ∗ and 0 /∈ F ∗.

Let S be a subset of a field F . Restricting addition and multiplication to
elements of S might make S into a field. If so, S is a subfield of F .

Theorem 3.1.3 Let S be a subset of a field F . Then S is a subfield of F if
and only if S is a subgroup of the additive group F , and S∗ is a subgroup of the
multiplicative group F ∗.
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Proof. Suppose S is a subfield of F . Then addition and multiplication must
be binary operations on S which make S into a field. Thus S must be a group
under addition, hence an additive subgroup of F . Similarly S∗ is a subgroup of
F ∗.
Now suppose S is an additive subgroup of G and S∗ is a subgroup of F ∗.

Since 0 · a = 0 for all a ∈ F , and 0 ∈ S, multiplication is a binary operation
on S. Addition is a binary operation on S since S is an additive subgroup of
F . So S is an Abelian group under +, S∗ is an Abelian group under · , and
a · (b + c) = a · b + a · c for all a, b, c ∈ S. That is, S is a field. Thus S is a
subfield of F .
Suppose that S and T are subfields of a field F . Then S ∩ T is a subfield

of F , since S ∩ T is an additive subgroup of F , and (S ∩ T )∗ = S∗ ∩ T ∗ is a
subgroup of the multiplicative group F ∗. Similarly, the intersection of any set
of subfields of F is a subfield of F . One important subfield of a field F is the
intersection of all subfields of F . That subfield is called the prime subfield of
F .

Example 3.1.4 Examples of Fields.

a. The set of rational numbers Q with ordinary addition and multiplication
is a field.

b. The set of real numbers R with ordinary addition and multiplication is a
field.

c. The set of complex numbers C with ordinary addition and multiplication
is a field. Notice that Q is a subfield of R and C, and R is a subfield of R
and C. The field Q is the prime subfield of all three. (See Problem 4 at
the end of this section.)

d. Let Q[
√

2] = {a+ b
√

2 : a, b ∈ Q}. Then Q[
√

2] is a subfield of R. This is
easy to check. For example, the inverse of a non-zero element a+ b

√
2 is

a/(a2−2b2)− (b/(a2−2b2))
√

2. Note that a2−2b2 6= 0. (In this example,√
3 works just as well as

√
2.)

e. Let Q[i] = {a+ bi : a, b ∈ Q}. Then Q[i] is a subfield of C. (i2 = −1.)

f. Let F be any subfield of C and let c be any element of C such that c2 ∈ F .
Then F [c] = {a + bc : a, b ∈ F} is a subfield of C. This example can
be generalized. What makes this work is that c satisfies a polynomial of
degree two with coeffi cients in F . Suppose F is a subfield of C and c is an
element of C that satisfies a polynomial of degree n with coeffi cients in F .
Then

F [c] = {a0 + a1c+ . . . + an−1c
n−1 : ai ∈ F}

is a subfield of C. However, delving into such examples as this takes us
too far afield at the moment.
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g. Let p be a prime. Then the “integers modulo p” form a field. Specifically,
in the Abelian group Z/Zp, multiply by the rule (m + Zp)(n + Zp) =
mn + Zp. This makes Z/Zp into a field. Two things need checking –
that multiplication is well defined, and that every non-zero element has an
inverse. No tricks are needed to do either, but the fact that p is a prime
is necessary to get the latter.

h. Let F be a field, and let K be a set. Suppose f : K → F is a one-to-one
map from K onto F . For a, b ∈ K, define a+ b = f−1(f(a) + f(b)), and
a · b = f−1(f(a)f(b)). This makes K into a field.

Now that we have the definition of a field, we can formally define a vector
space. A vector space consists of several things. Recall the situation with the
plane. We had the Abelian group P of pairs of real numbers, the field R of real
numbers, and a way to multiply elements of P by elements of R to get elements
of P . This last multiplication satisfies some basic rules. Here is the definition.

Definition 3.1.5 A vector space is an Abelian group V , a field F , and a
mapping · : F ×V → V satisfying (a) —(d) below. (The image of (a, v) ∈ F ×V
under the mapping · is denoted a · v.)

a. a · (v + w) = a · v + a · w for a ∈ F , and v, w ∈ V .

b. (a+ b) · v = a · v + b · v for a, b ∈ F , and v ∈ V .

c. (ab) · v = a · (b · v) for a, b ∈ F , and v ∈ V .

d. 1 · v = v for all v ∈ V .

The elements of V are called vectors, and the elements of F are called
scalars. The mapping F × V → V is called scalar multiplication. Vectors
may be multiplied by elements of F (scalar multiplication). Scalars may be
added and multiplied since F is a field. We denote both addition in V and
addition in F by+. The context will make it clear which operation is meant.
For example, in (a), both + signs denote addition in V . In (b), however, the +
on the left is in F , and the one on the right is in V . We will habitually drop
the · denoting scalar multiplication. Thus a · v will be written simply av. There
are two zeroes around, the additive identity of F and the identity of V . Both
will be denoted by 0. Again the context will make it clear which zero is meant.
A vector space may be viewed as a special kind of Abelian group, namely one

where a multiplication of its elements by those of a field is given which satisfies
(a) —(d) above. A vector space is sometimes denoted simply by one letter, such
as V , but V actually is just the underlying set of vectors. It is understood that
V is an Abelian group and that there is a field F of scalars around. Also we say
that V is a vector space over F .
The following theorem gives some elementary consequences of the vector

space axioms.
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Theorem 3.1.6 Let V be a vector space over F , let a, b ∈ F , and let v, w ∈ V .
Then the following hold.

a. a · 0 = 0.

b. 0 · v = 0.

c. (−a) · v = −(a · v) = a · (−v).

d. (−a) · (−v) = a · v.

e. (−1) · v = −v.

f. a(v − w) = av − aw.

g. (a− b)v = av − bv.

h. av = 0 if and only if either a = 0 or v = 0.

Proof.

a. a ·0 = a(0+0) = a ·0+a ·0. Thus a ·0−a ·0 = 0 = a ·0+a ·0−a ·0 = a ·0.

b. 0 · v = (0 + 0)v = 0 · v + 0 · v, whence 0 = 0 · v.

c. (a + (−a))v = 0 · v = 0 = av + (−a)v, so (−a)v = −(av). Similarly,
a(−v) = −(av).

d. (a−)(−v) = −(a(−v)) = −(−(av)) = av, using (c).

e. (−1)v = −(1 · v) = −v.

f. a(v − w) = a(v + (−w)) = aw + a(−w) = av + (−(aw)) = av − aw.

g. The proof of (g) is similar to that of (f).

h. If av = 0, and a 6= 0, then a−1(av) = (a−1a)v = 1 · v = v = 0. If either
a = 0 or v = 0, then av = 0 by (a) and (b).

Let V be a vector space over F , and let S be a subset of V . Restricting
vector addition to elements of S, and restricting scalar multiplication to F × S
might make S into a vector space over F . If so, S is called a subspace of V .
A vector space V always has the trivial subspaces, V itself and {0}.

Theorem 3.1.7 Let V be a vector space over F and let S be a non-empty subset
of V . Then S is a subspace of V if and only if S is closed under vector addition
and scalar multiplication, that is, if and only if s + t ∈ S whenever s, t ∈ S,
and as ∈ S whenever a ∈ F and s ∈ S.
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Proof. Suppose S is a subspace of V . Then S is a group under vector
addition so is closed under that addition. Scalar multiplication must map F ×S
into S. In other words, as ∈ S for all a ∈ F and s ∈ S.

Conversely, suppose that S is a non-empty subset of V closed under vector
addition and scalar multiplication. Since (−1)s = −s ∈ S if s ∈ S, S is a
subgroup of V . Since S is closed under scalar multiplication, the restriction of
scalar multiplication to F × S maps F × S into S. Now it is clear that S is a
subspace of V .

Corollary 3.1.8 The intersection of any family of subspaces of a vector space
V is a subspace of V .

Proof. Just note that the intersection of any family of subspaces is closed
under addition and scalar multiplication, so is a subspace by 3.1.7.
Thus by 3.1.8, if S is any subset of a vector space V , then there is a unique

smallest subspace of V containing S, namely the intersection of all the subspaces
of V which contain S. As in the case for groups (2.2.3), we define this subspace
to be the subspace generated by S. A vector space is finitely generated if
it is generated by a finite set. If S = {v}, where v is an element of V , then the
subspace generated by S is Fv = {av : a ∈ F}. If V1, V2, . . . , Vn are subspaces
of V , then the smallest subspace containing them all is

V1 + V2 + · · ·+ Vn = {v1 + v2 + · · ·+ vn : vi ∈ Vi}.

Therefore, if S = {v1, v2, . . . , vn}, then the subspace generated by S is Fv1 +
Fv2 + · · · + Fvn. In vector spaces, the word span is often used in place of
generate. Thus we also speak of the subspace spanned by a set. (See Problems
17 and 18.)

Example 3.1.9 To give an example of a vector space, we must specify three
things– an Abelian group V , a field F , and a mapping F × V → V , and we
must make sure that this mapping satisfies conditions (a)—(d) in 3.1.5.

a. Let V be the Abelian group of all pairs of real numbers with addition given
by

(a, b) + (c, d) = (a+ c, b+ d).

Let R be the field of real numbers, and let R× V → V be given by

c(a, b) = (ca, cb).

Then V is a vector space over R. It is finitely generated since V = R(1, 0)+
R(0, 1). We have a convenient geometric representation of it, namely the
Cartesian plane. Its non-trivial subspaces are precisely the straight lines
through the origin. (See PROBLEM 10.)

b. Let F be any field. Let V be the set of all pairs of elements of F , and add
by the rule

(a, b) + (c, d) = (a+ c, b+ d).
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Define F × V → V by
c(a, b) = (ca, cb).

This makes V into a vector space over F . Every subspace of V not V is
of the form Fv for some v in V . (See PROBLEM 10.)

c. Let F be any field. For any integer n ≥ 1, let V be the set of all n-tuples
(a1, a2, . . . , an) with ai ∈ F . Add by the rule

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

Define F × V → V by

a(a1, a2, , an) = (aa1, aa2, , aan).

Then V is a vector space over F . This vector space will be denoted
Fn. It is finitely generated since

Fn = F (1, 0, 0, ..., 0) + F (0, 1, 0, ..., 0) + · · ·+ F (0, 0, ..., 1).

We will show later that any (finite dimensional) vector space is essentially
one of these. Notice that when n = 1, V is just the additive group of
F , and scalar multiplication is just multiplication in F . Thus any field
may be regarded as a vector space over itself.

d. Let F be any field, and let F [x] be the set of all polynomials in x with
coeffi cients in F . Add polynomials just as you would add polynomials with
real coeffi cients. Scalar multiplication is given by

a(a0 + a1x+ a2x
2 + · · ·+ anx

n) = aa0 + aa1x+ aa2x
2 + · · ·+ aanx

n.

Then F [x] is a vector space over F . It is not finitely generated. (See
Problem 11.) For a given n, all polynomials of degree ≤ n form a subspace,
as do all those polynomials which have given elements a and b of F as
roots.

e. Let V be all continuous functions from the real numbers into the real num-
bers. Add by the rule

(f + g)(x) = f(x) + g(x).

For r ∈ R and f ∈ V , define rf by

(rf)(x) = r(f(x)).

This makes V into a vector space over the field R of real numbers. (It is
proved in calculus that f+g and rf , as defined above, are again continuous
functions.) Instead of all continuous functions from R into R, we could
just as well take all integrable functions, or all differentiable functions, or
even all functions from R into R. The set of differentiable functions is a
subspace of the vector space of continuous functions, of course.
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f. Let V be the additive group of the complex numbers. Then multiplication
of complex numbers makes V into a vector space over the field of real
numbers. In fact, if V is any vector space over any field F , and if K is a
subfield of F , then V is automatically a vector space over K. In particular,
the additive group of any field is a vector space over any subfield of that
field.

g. Consider the system

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...

am1x1 + am2x2 + · · ·+ amnxn = 0

of linear homogeneous equations with aij ∈ R, and unknowns xi. Let S be
the set of all solutions of this system. That is, S is the set of all n-tuples
(s1, s2, . . . , sn) with si ∈ R, such that Σjaijsj = 0 for all i. Then S is a
vector space over R, in fact, a subspace of Rn. Of course we could replace
R by any field.

PROBLEMS

1. Prove that there is no field with six elements.

2. Prove that there is a field with four elements.

3. Find all subfields of a field with four elements.

4. Prove that Q is the only subfield of Q.

5. Find all subfields of Q[
√

2]; of Q[i].

6. Let F be a field, and let S be a subset of F . Prove that there is a subfield
K of F such that S ⊂ K and such that every subfield of F that contains
S contains K.

7. Let V be the set of all functions f from R into R such that f(x) = f(x+2π).
Prove that V is a vector space with the usual definitions of addition and
scalar multiplication.

8. Let V be the set of all functions f from the closed interval [0, 1] into itself
such that f(x) = f(1−x). Prove that V is a vector space under the usual
definitions of addition and scalar multiplication.

9. Let V be the set of all functions f from R into R which have second
derivatives f ′′, and such that f ′′ = −f . Prove that V is a vector space
under the usual definitions of addition and scalar multiplication. (It is
actually a subspace of the vector space in Problem 7.)
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10. Prove that every subspace of F 2 not F 2 is Fv for some v in F 2. Prove
that every non-trivial subspace of the plane is a straight line through the
origin.

11. Prove that the vector space of all polynomials over any field is not finitely
generated.

12. Let S be a set and let F be a field. Let V be the set of all mappings from
S into F . Add such mappings by the rule (v + w)(s) = v(s) + w(s), and
define scalar multiplication by the rule (af)(s) = a · f(s).

(a) Prove that V is a vector space over F .

(b) Prove that V is finitely generated if and only if S is finite.

13. Prove that the subspace of R3 generated by {(1, 2, 3), (4, 5, 0), (0, 6, 7)}
is R3 itself.

14. Find the intersection of the two subspaces R(1, 2, 3)+R(4, 5, 6) and R(1, 2, 0)+
R(4, 5, 0) of R3.

15. Let F = Z/Z2. Write down all the subspaces of F 2. Write down all the
subspaces of F 3.

16. Let F = Z/Z3. Write down all the subspaces of F 2.

17. Let S and T be subspaces of a vector space V . Prove that

S + T = {s+ t : s ∈ S, t ∈ T}

is a subspace of V . This is called the sum of the subspaces S and T .
Prove that S + T is the intersection of all subspaces of V that contain
both S and T .

18. Generalize Problem 17 to any finite set of subspaces of a vector space.

19. Let {Si}i∈I be a family of subspaces of V such that for any i, j ∈ I, there
is a k ∈ I such that Si ⊂ Sk and Sj ⊂ Sk. Prove that ∪i∈ISi is a subspace
of V .

20. Let {Si}i∈I be any family of subspaces of a vector space V . For any finite
subset A of I, let SA be the sum of the subspaces Si for i in A. Let
F be the set of all finite subsets of I. Prove that {SA}A∈F satisfies the
hypothesis of Problem 19, and that the union of the SA’s is the subspace
generated by the family {Si}i∈I .

21. Let A, B, and C be subspaces of a vector space V such that B ⊂ A. Prove
that

A ∩ (B + C) = B + (A ∩ C).

22. Prove that in the definition 3.1.5 of a vector space, 1 · v = v cannot be
proved from the other postulates.
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3.2 Homomorphisms of Vector Spaces

In the study of any algebraic system, the concept of a homomorphism from one
of those systems to another is fundamental. A homomorphism from one group
to another was a map that preserved the group operations. In the case of vector
spaces, we not only have the Abelian group of vectors around, but also the field
of scalars, and it may not be clear just what a homomorphism should be. It
turns out that the proper concept is that of a suitable mapping between two
vector spaces over the same field. The mapping is required to preserve addition
and scalar multiplication.

Definition 3.2.1 Let V and W be vector spaces over a field F. A homomor-
phism from V into W is a mapping f : V →W such that

a. f(v1 + v2) = f(v1) + f(v2) for all v1, v2 in V , and

b. f(a · v) = a · f(v) for all a ∈ F and v ∈ V .

Condition (a) just says that f is a homomorphism from the group V into
the group W , and condition (b) makes the map pay some attention to scalar
multiplication. Condition (b) is expressed by saying that f preserves scalar
multiplication. As in the case of groups, a homomorphism is an epimorphism
if it is onto, a monomorphism if it is one-to-one, and an isomorphism if it
is one-to-one and onto. If there is an isomorphism f : V → W , we say that
V is isomorphic to W , and write V ≈ W . As in the case of groups, V ≈ V ,
V ≈ W implies W ≈ V , and V ≈ W and W ≈ U imply that V ≈ U . An
automorphism of V is an isomorphism of V with itself. A homomorphism
from V into V is an endomorphism.
Compositions of homomorphisms are homomorphisms. That is, if f : U → V

and g : V →W are homomorphisms, then so is g ◦ f . This is Problem 1.
The set Hom(V,W ) of all homomorphisms from V into W is itself a vector

space in a natural way, and it will be studied from that point of view in section
3.4.
In the case of vector spaces, homomorphisms are usually called linear trans-

formations. An automorphism of a vector space is called a non-singular lin-
ear transformation, and an endomorphism that is not an automorphism is called
singular. From now on, we will call homomorphisms of vector spaces linear
transformations.
If f is a linear transformation from V into W , then the kernel of f is

denoted Ker f , and defined by

Ker f = {v ∈ V : f(v) = 0},

and the image of f is denoted Im f , and defined by

Im f = {f(v) : v ∈ V }.

Theorem 3.2.2 Let f : V →W be a linear transformation. Then the following
hold.
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a. f(0) = 0.

b. f(−v) = −f(v).

c. f is one-to-one if and only if Ker f = {0}.

d. Ker f is a subspace of V .

e. Im f is a subspace of W .

Proof. Parts (a), (b), and (c) hold because f is a homomorphism from
the group V into the group W . For the same reason, Ker f is a subgroup
of V and Im f is a subgroup of W . Let a ∈ F and let v ∈ Ker f . Then
f(av) = af(v) = 0. Thus av ∈ Ker f , and so Ker f is a subspace of V . Let
a ∈ F and let w ∈ Im f . Then there is some v ∈ V such that f(v) = w. But
f(av) = af(v) = aw ∈ Im f . Thus (d) and (e) hold.

Example 3.2.3 In these examples, it is straightforward to verify that what are
claimed to be linear transformations are indeed linear transformations.

a. Let V and W be vector spaces over any field F . The maps V →W : v → 0
and 1V : V → V : v → v are linear transformations.

b. Let V be a vector space over F , and let a ∈ F . The map f : V → V
defined by f(v) = av is a linear transformation. Thus each scalar induces
a linear transformation V → V . If a 6= 0, then this linear transformation
is non-singular.

c. Let F be any field, let Fn be the vector space of n-tuples of elements of F ,
and let (a1, a2, . . . , an) ∈ Fn. The map f : Fn → Fn defined by

f(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn)

is a linear transformation. It is non-singular if and only if each ai is
non-zero.

(a) A special case is the linear transformation

(a1, a2, . . . , an)→ (0, a2, a3, . . . , an)

d. The map Fn → Fn defined by

(a1, a2, . . . , an)→ (aσ(1), aσ(2), aσ(3), . . . , aσ(n)),

where σ is an element of Sn, is a linear transformation. It is non-singular.

e. Consider F as a vector space over itself. Let (a1, a2, . . . , an) ∈ Fn. The
map f : Fn → F given by

f(b1, b2, . . . , bn) = Σni=1aibi

is a linear transformation. Its kernel consists of those elements of Fn that
are “orthogonal” to (a1, a2, . . . , an).
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f. Let aij, i, j = 1, 2, . . . , n, be elements of a field F . Then the map
Fn → Fn given by

(a1, a2, . . . ,an)→ (Σnj=1a1jaj, . . . ,Σnj=1anjaj)

is a linear transformation.

g. Let aij, i = 1, 2, . . . , m and j = 1, 2, . . . , n be elements of a field F .
The map Fn → Fm given by

(a1, a2, . . . , an)→ (Σnj=1a1jaj, . . . , Σnj=1amjaj)

is a linear transformation. In a sense, every linear transformation between
finite dimensional vector spaces is like this one, and the relation between
linear transformations and matrices will be studied in detail in Chapter 5.

h. Rotation of the plane through any number of degrees about the origin
is an automorphism of the vector space R2. The formula for rotation
counterclockwise through θ◦ is given by (x, y) → (x · cos θ◦ + y · sin θ◦,
y · cos θ◦ − x · sin θ◦). This example is a special case of (f).

i. Let V be the vector space of all sequences {a1, a2, a3, . . .} of real numbers.
Define f and g by the formulas

f({a1, a2, a3, . . .}) = {0, a1, a2, a3, . . .},

g({a1, a2, a3, . . .}) = {a2, a3, a4, . . .}

Then f and g are linear transformations, f is one-to-one but not onto, g
is onto but not one-to-one, g ◦ f = 1V , and f ◦ g 6= 1V .

j. Let W be the subspace of V in (i) consisting of all those sequences which
converge. For {ai} in W , let

f({ai}) = lim
i→∞
{ai}.

Then f is a linear transformation from W onto R, and its kernel consists
of those sequences which converge to zero.

Kernels of linear transformations are subspaces. It will turn out that every
subspace of a vector space is the kernel of a linear transformation from that
vector space to another one. In fact, given a subspace S of a vector space V
over a field F , we will construct a vector space V/S over F , the quotient space
of V with respect to S. There will be a natural epimorphism V → V/S, with
kernel S. This construction is similar to that of quotient groups, in fact, uses
that of quotient groups, and is fundamental.

Definition 3.2.4 (The Construction of Quotient Spaces) Let V be a vec-
tor space over a field F , and let S be a subspace of V . Then S is, in particular,
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a subgroup of the Abelian group V , so we have the quotient group V/S. Its
elements are cosets v + S, and one adds by the rule

(v + S) + (w + S) = (v + w) + S.

We will make V/S into a vector space over F by defining a scalar multiplication.
Let a ∈ F and let v+S ∈ V/S. The most natural thing to do is to let a(v+S) =
av+S. However, we must make sure that this defines a map F ×(V/S)→ V/S.
To do this, we must show that if v + S = w + S, then av + S = aw + S. So
suppose that v + S = w + S. Then v = w + s for some s ∈ S. Then

av = a(w + s) = aw + as,

and as ∈ S since S is closed under scalar multiplication. Thus av+S = aw+S,
and we at least have a map F × (V/S)→ V/S. But it is easy to check that this
makes V/S into a vector space over F . For example,

a((v + S) + (w + S)) = a((v + w) + S) = (a(v + w)) + S =

(av + aw) + S = (av + S) + (aw + S) = a(v + S) + a(w + S),

and the other required properties follow just as readily. The vector space V/S is
called the quotient space of V with respect to S, or more simply, V modulo
S, or V over S. The mapping V → V/S : v → v+S is an epimorphism, called
the natural linear transformation from V to V/S. Note that its kernel is
S.

Consider the vector space V = R2 and the subspace S = Rv, where v is a
non-zero vector in V . Then S is a straight line through the origin, and a coset
(a, b) + S is a line in the plane parallel to S. Thus the cosets of S are just the
lines parallel to S.
Recall that the subgroups of V/S are in one-to-one correspondence with the

subgroups of V containing S. That is, every subgroup of V/S is of the formW/S
where W is a subgroup of V containing S, and distinct such W give distinct
W/S. But the subgroup W/S is a subspace of V/S if and only if W/S is
closed under scalar multiplication. Thus W/S is a subspace of V/S if and only
if for a ∈ F and w + S ∈ W/S, it is true that a(w + S) = aw + S ∈ W/S.
This is true if and only if aw ∈ W . Thus the subspaces of V/S are in one-
to-one correspondence with the subspaces W of V such that W ⊃ S. The
correspondence is W →W/S.
Let V = R3, which we view as ordinary 3-space. The non-trivial subspaces

of V are the straight lines through the origin and the planes through the origin.
Let S be a straight line through the origin. That is, S = R(a, b, c), where not
all of a, b, and c are 0. Then the subspaces of V/S are the T/S, where T is a
plane through the origin containing the line S. (See Problem 7.)

The various isomorphism theorems for groups have analogues for vector
spaces.
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Theorem 3.2.5 Let f : V →W be a linear transformation. Then

V/(Ker f) ≈ Im f.

Proof. There is little to do. The mapping

f : V/(Ker f)→ Imf : f(v + Ker f) = f(v)

is a group isomorphism. All we need is that f preserves scalar multiplication.
But

f(a(v + Ker f)) = f(av + Ker f) = f(av) = af(v) = af(v + Ker f).

We actually proved more than is stated in 3.2.5. The map V/(Ker f) →
Im f induced by f is an isomorphism. As in the case of groups, 3.2.5 gets
immediately the following isomorphism theorems, which are very useful.

Theorem 3.2.6 Let S and T be subspaces of V with S ⊂ T . Then

(V/S)/(T/S) ≈ V/T.

Proof. V/S → V/T : v + S → v + T is an epimorphism with kernel T/S.
Apply 3.2.5.
Let V = R3, let S be a line through the origin, and let T be a plane through

the origin containing S. Then T/S is a subspace of V/S, so we may form the
quotient space (V/S)/(T/S). But that vector space is isomorphic to V/T by
3.2.6. They both are isomorphic to R, in fact. (See Problem 9.)

Theorem 3.2.7 Let S and T be subspaces of V . Then

S/(S ∩ T ) ≈ (S + T )/T .

Proof. Note that S+T is indeed a subspace of V containing T (3.1, Problem
17). Now S → (S + T )/T : s → s + T is an epimorphism with kernel S ∩ T .
Apply 3.2.5.

To illustrate 3.2.7, consider distinct planes S and T through the origin in
the vector space R3. Then S+T = R3, so S/(S∩T ) ≈ (S+T )/T = R3/T ≈ R.
(See Problem 11.)

PROBLEMS

1. Prove that the composition of two linear transformations (when defined)
is a linear transformation.

2. Prove that a mapping f : V →W is a linear transformation if and only if
f(av1 + bv2) = af(v1) + bf(v2).



3.2. HOMOMORPHISMS OF VECTOR SPACES 93

3. Let V be the vector space of all polynomials with real coeffi cients. For
p in V , let d(p) be the derivative of p. Let fx(p) = xp, that is, just
multiplication by x. Prove that d and fx are linear transformations, and
that d ◦ fx − fx ◦ d = 1V . What does this problem have to do with real
numbers?

4. Prove that there is a linear transformation i on V in Problem 3 such that
d ◦ i = 1V , and that d does not have a left inverse.

5. Let f be any linear transformation from R2 onto R. Prove that Ker f = Rv
for some v 6= 0.

6. Let v be any non-zero element of R2. Prove that R2/Rv ≈ R.

7. Prove that every non-trivial subspace of R3 is a line through the origin or
a plane through the origin.

8. Prove that every non-trivial subspace of F 3 is of the form Fv + Fw for
suitable v and w in F 3.

9. Prove that for any non-trivial subspace S of F 3, F 3/S is isomorphic to
either F or F 2.

10. Let V = F 3, and let S = Fv for some non-zero v. Prove that there is a
subspace T of V strictly between S and V . Prove that there is no subspace
strictly between T and V .

11. For the vector spaces in Problem 10, prove that V/S ≈ F 2 and V/T ≈ F .

12. In R3, let
S = R(1, 2, 3) + R(4, 5, 2),

and
T = R(2, 1,−4) + R(1, 1, 1)3.

Find (a, b, c) in R3 such that S ∩ T = R(a, b, c).

13. In Problem 12, find a set of representatives for the cosets of S in R3. Find
a set of representatives for the cosets of S ∩ T in S.

14. Suppose that v is a non-zero vector in a vector space V over a field F .
Prove that the subspace Fv is isomorphic to the vector space F .

15. Prove that F 1 is not isomorphic to F 2. Generalize.

16. Let S and T be subspaces of V , with S ⊂ T . Prove that there is an
epimorphism V/S → V/T .

17. Prove that the set of automorphisms of a vector space, with multiplication
given by composition of maps, is a group.
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18. Let f : V → W be a linear transformation, and suppose that S is a
subspace contained in Ker f . Let η : V → V/S be the natural linear
transformation. Prove that there is a unique linear transformation g :
V/S →W such that g ◦ η = f .

19. Let f : V →W be a linear transformation. Suppose that S is a subspace of
V such that whenever g : U → V is a linear transformation with f ◦g = 0,
then Im g ⊂ S. Prove that S ⊃ Ker f .

20. Let V be the vector space of all mappings of a set S into a field F . (See
Problem 12, section 3.1.) Let σ be a mapping of S into S. Prove that the
mapping

V → V : v → v ◦ σ

is a linear transformation. Prove that this linear transformation is non-
singular if and only if σ is a permutation of S.

3.3 Linear Independence and Bases

Let F be a field and consider the vector space F 2 of all pairs of elements of
F . The set consisting of the two vectors (1, 0) and (0, 1) has the property that
every element in F 2 can be written uniquely in the form

a(1, 0) + b(0, 1).

In fact, (a, b) = a(1, 0) + b(0, 1), and if (a, b) = c(1, 0) + d(0, 1), then (a, b) =
(c, 0) + (0, d) = (c, d), so that a = c and b = d. One of our principal aims in this
section is to show that this phenomenon holds in any finitely generated vector
space 6= {0}. Specifically, we want to show that if V is a finitely generated
vector space and V 6= {0}, then there are vectors v1, v2, . . . , vn of V such that
every element of V can be written uniquely in the form

a1v1 + a2v2 + · · ·+ anvn.

Such a non-empty family {v1, v2, . . . , vn} of V will be called a basis of V . It
is a very useful concept in the study of vector spaces.
For a1, a2, . . . , an ∈ F , the vector Σni=1aivi ∈ V is a linear combination of

v1, v2, . . . , vn. Thus the subspace generated by {v1, v2, . . . , vn} is the set of all
linear combinations of the of the vectors v1, v2, . . . , vn. The non-empty family
{v1, v2, . . . , vn} is linearly independent if Σni=1aivi = 0 implies that all the
ai = 0. This is equivalent to the condition that whenever Σni=1aivi = Σni=1bivi,
then ai = bi for all i.

Definition 3.3.1 The non-empty family {v1, v2, . . . , vn} of vectors in the
vector space V is a basis of V if it is linearly independent and generates (or
spans) V .
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Thus, {v1, v2, . . . , vn} is a basis of V if and only if every v ∈ V is a unique
linear combination Σni=1aivi of the vi’s; that is, the ai’s are uniquely determined
by v. Indeed, if {v1, v2, . . . , vn} is a basis of V , then every v ∈ V is certainly
a linear combination v = Σni=1aivi of the vi’s, and if v = Σni=1aivi = Σni=1bivi,
then 0 = Σni=1(ai − bi)vi, whence ai = bi. Conversely, if every v ∈ V can be
written Σni=1aivi with the ai’s unique, then 0 = Σni=1aivi only if each ai = 0.
Hence {v1, v2, . . . , vn} is a basis of V .
Thus we see that {(1, 0), (0, 1)} is a basis of the vector space F 2 of all

pairs (a, b) of elements of the field F . More generally, if Fn = {(a1, a2, . . . ,
an) : ai ∈ F} is the vector space of all n-tuples of elements of the field F , then

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}

is a basis of Fn. This basis is called the natural basis of Fn. Two other bases
of F 3 are

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and

{(1, 1, 1), (0, 1, 1), (0, 0, 1)}.

At this point we have the following things on our mind. We want to show
that every finitely generated vector space 6= {0} has a basis and that any two
bases of such a vector space are the same size. The number of elements in a
basis of V will be called the dimension of V , and it will turn out that two
vector spaces over a field F are isomorphic if and only if they have the same
dimension.

Theorem 3.3.2 Every finitely generated vector space 6= {0} has a basis.

We will prove 3.3.2 by proving the following stronger theorem.

Theorem 3.3.3 If {v1, v2, . . . , vn} spans V , then some subfamily is a basis
of V .

Proof. We may as well suppose that no proper subfamily of {v1, v2, . . .
, vn} spans V . It will suffi ce to show that {v1, v2, . . . , vn} is a basis. All
we need is that it is linearly independent. If Σni=1aivi = 0 and aj 6= 0, then
vj = −Σi 6=j(ai/aj)vi. Therefore the family of vectors {v1, v2, . . . , vj−1, vj+1,
. . . , vn} spans V , contrary to the fact that no proper part of {v1, v2, . . . , vn}
spans V .

Theorem 3.3.4 If V is finitely generated, then any linearly independent family
{v1, v2, . . . , vr} can be extended to a basis {v1, v2, . . . vr, vr+1, . . . , vn}.

Proof. Let {w1, w2, . . . , wm} span V . If some wi is not in Fv1 +Fv2 + . . .
+Fvr, then let vr+1 be the first such wi. Then {v1, v2, . . . , vr, vr+1} is
independent. If some wi is not in Fv1 + Fv2 + · · · +Fvr+1, then let vr+2 be
the first such wi. Then {v1, v2, . . . , vr+1, vr+2} is independent. Continuing
this process, we run out of w′s in finitely many steps, obtaining an independent
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family {v1, v2, . . . , vn} such that Fv1 +Fv2 + · · · +Fvn contains every wi, and
hence V . Thus {v1, v2, . . . , vn} is a basis of V .

The proof actually yields a little more than the theorem states. If {v1, v2,
. . . , vr} is linearly independent, and {w1, w2, . . . , wm} is any generating set,
then {v1, v2, . . . , vr} can be augmented by some of the wi’s to a basis of V .
For example, if {v1, v2} is linearly independent in F 3, then {v1, v2} together
with one of (1, 0, 0), (0, 1, 0), and (0, 0, 1) is a basis of F 3.

Theorem 3.3.5 If {v1, v2, . . . , vm} spans V and {w1, w2, . . . , wn} is a
linearly independent subset of V , then m ≥ n.

Proof. Since {v1, v2, . . . , vm} spans V , then wn = Σmi=1aivi, and so
0 = −wn + Σmi=1aivi. Hence

{wn, v1, v2, . . . , vn}

is dependent. Remove from this family the first member that is a linear combi-
nation of the preceding ones. There is such a member, and it is not wn. This
new family

{wn, v1, v2, . . . , vi−1, vi+1, . . . , vm}
still spans V . Do the same thing with this generating family and wn−1. Continue
the process. At each step, a w gets added and a v gets removed. When a w is
added, a dependent family results. But {wk, wk+1, . . . , wn} is independent for
every k ≤ n. Hence there are at least as many v’s as w’s, and so m ≥ n.

Letting {v1, v2, . . . , vm} and {w1, w2, . . . , wn} be bases, we conclude that
m = n, and hence get the following corollary.

Corollary 3.3.6 Any two bases of a finitely generated vector space have the
same number of elements.

Definition 3.3.7 The number of elements in a basis of a finitely generated vec-
tor space V is called the dimension of V , and denoted dim(V ). The dimension
of V = {0} is defined to be 0.

Since the number of elements in a basis of a finitely generated vector space
is finite, we call such vector spaces finite dimensional.
A couple of things are worth noticing at this point. It is not entirely obvious

that a subspace of a finitely generated vector space is finitely generated. It
follows from 3.3.5, however. Let V be finitely generated, and letW be a subspace
of V . If dim(V ) = n, then by 3.3.5, no independent subset of W can have more
then n elements. Let {w1, w2, . . . , wm} be an independent subset of W with
m as large as possible. Then {w1, w2, . . . , wm} spans W . Otherwise there is
an element wm+1 ∈W and not in

Fw1 + Fw2 + · · · + Fwm.

That is, {w1, w2, . . . , wm, wm+1} is linearly independent, an impossibility.
Therefore {w1, w2, . . . , wm} is a basis of W . In particular, W is finitely
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generated. Furthermore, dim(W ) ≤ dim(V ). Of course, by 3.3.4 any basis of
W extends to one of V .
Let F be any field and Fn the vector space of all n-tuples of elements of F .

Since
{(1, 0, ..., 0), (0, 1, 0, ..., 0), . . . ,(0, 0, ..., 0, 1)}

is a basis of Fn, dim(Fn) = n. We will show that any vector space V over F is
isomorphic to Fn if and only if dim(V ) = n. This is equivalent to the following
theorem.

Theorem 3.3.8 Two finitely generated vector spaces V and W over a field F
are isomorphic if and only if dim(V ) = dim(W ).

Proof. Suppose that α : V → W is an isomorphism, and let {v1, v2, . . . ,
vn} be a basis of V . (If V = {0}, then the theorem is trivial.) We will show
that

{α(v1), α(v2), . . . , α(vn)}
is a basis of W . If Σni=1aiα(vi) = 0, then α(Σmi=1aivi) = 0, whence Σmi=1aivi = 0
since α is one-to-one. Thus each ai = 0 and {α(v1), α(v2), . . . , α(vn)} is
independent. Let w ∈ W . Then α(v) = w for some v ∈ V . But v = Σ aivi for
appropriate ai ∈ F , and

α(v) = w = α(Σ aivi) = Σ α(aivi) = Σ aiα(vi).

Hence dim(V ) = dim(W ).
The other half follows from the very useful theorem below.

Theorem 3.3.9 Let V and W be vector spaces over F , {v1, v2, . . . , vn} a basis
of V , and w1, w2, . . . , wn ∈ W . Then there is a unique linear transformation
α : V → W such that α(vi) = wi for all i. The linear transformation α is
one-to-one if and only if {w1, w2, . . . , wn} is linearly independent, and is onto
if and only if {w1, w2, . . . , wn} spans W .

Proof. For v ∈ V , v = Σ aivi. Define α by α(v) = Σ aiwi. Now α is well
defined since the a′is are unique. It is easy to check that α is a linear transforma-
tion with α(vi) = wi. Now suppose β : V → W is a linear transformation with
β(vi) = wi for all i. Then β(v) = β(Σ aivi) = Σ β(aivi) = Σ aiβ(vi) = Σ aiwi =
α(v). Thus α = β. Now α is one-to-one if and only if α(Σ aivi) = 0 implies
Σ aivi = 0, which holds if and only if ai = 0 for all i. But α(Σ aivi) = Σ aiwi.
Thus α is one-to-one if and only if Σ aiwi = 0 implies that ai = 0 for all i. Since

Im α = Fw1 + Fw2 + · · ·+ Fwn,

α is onto if and only if {w1, w2, . . . , wn} spans W .
To get the missing half of 3.3.8, let dim(V ) = dim(W ), and let {v1, v2, . . .

, vn} and {w1, w2, . . . , wn} be bases of V and W respectively. The linear
transformation α : V →W such that α(vi) = wi for all i is one-to-one and onto
by 3.3.9. Hence V ≈W .
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Corollary 3.3.10 The vector space V over the field F is isomorphic to Fn if
and only if dim(V ) = n. In particular, Fn ≈ Fm if and only if m = n.

Consider all the finitely generated vector spaces over the field F . By 3.3.8,
a complete isomorphism invariant of such a vector space V is dim(V ). That
is, V is determined up to isomorphism by the number dim(V ). This does not
conclude the study of vector spaces though. The real things of interest about
vector spaces are linear transformations, and we have hardly begun to study
them.
Let V1, V2, . . . , Vn be vector spaces over a field F . Let V1 ⊕ V2 ⊕ · · · ⊕ Vn

be the vector space whose elements are the elements of V1 × V2 × · · · × Vn and
whose vector addition and scalar multiplication are defined by

(v1, v2, . . . , vn) + (w1, w2, . . . , wn) = (v1 + w1, v2 + w2, . . . , vn + wn),

and
a(v1, v2, . . . , vn) = (av1, av2, . . . , avn).

This construction is the same as that for Abelian groups except that here
we also have scalar multiplication involved. That V1 ⊕ V2 ⊕ · · · ⊕ Vn is indeed
a vector space follows easily. This vector space is the external direct sum of
V1, V2, . . . , Vn. For example, Fn is the external direct sum of n copies of the
vector space F .
If V ∗i consists of those elements of V1 ⊕ V2 ⊕ · · · ⊕Vn of the form

{(0, 0, ..., 0, vi, 0, ..., 0)}

where vi is in the ith place, then V ∗i is a subspace, and as in the case for
Abelian groups, every element in V1 ⊕ · · · ⊕ Vn can be written uniquely in the
form Σni=1v

∗
i , with v

∗
i ∈ V ∗i .

Definition 3.3.11 If a vector space V has subspaces V1, V2, . . . , Vn such that
every element in V can be written uniquely in the form v1 + v2 + · · ·+ vn with
vi ∈ Vi, then we write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn
and say that V is the (internal) direct sum of the subspaces V1, V2, . . . , Vn.

For example, in Fn let Vi be all elements of the form (0, 0, . . . , 0, a, 0, . . . , 0)
, where a is in the ith position. Then Fn is the internal direct sum of the Vi.

This procedure is completely analogous to the one followed for Abelian
groups (2.6.1). In particular, if V is the internal direct sum of subspaces Vi,
then V is isomorphic to the external direct sum of the vector spaces Vi. We
want to prove two things. Here they are.

Theorem 3.3.12 Every finite dimensional vector space 6= {0} is the direct sum
of one dimensional subspaces.

Theorem 3.3.13 Every subspace of a finite dimensional vector space V is a
direct summand of V .
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Proof. Let {v1, v2, . . . , vn} be a basis of V . The subspaces Fvi are one
dimensional, and

V = Fv1 ⊕ Fv2 ⊕ · · · ⊕ Fvn.
This proves 3.3.12.
To prove 3.3.13, let W be a subspace of V . Then W is finite dimensional as

we have seen. Let {w1, w2, . . . , wm} be a basis of W . By 3.3.4, this extends to
a basis

{w1, w2, . . . , wm, wm+1, . . . , wn}
of V . Thus V = W ⊕ (FWm+1 + Fwm+2 + · · · +Fwn).

We conclude this section with some relations between the dimensions of
various vector spaces and subspaces. Let’s collect what we already know along
these lines into one theorem. We will assume throughout that all our vector
spaces are finite dimensional.

Theorem 3.3.14

a. V ≈W if and only if dim(V ) = dim(W ).

b. If α : V →W is an epimorphism, then dim(W ) ≤ dim(V ).

c. If α : V →W is a monomorphism, then dim(V ) ≤ dim(W ).

d. Let W be a subspace of V . Then dim(V/W ) ≤ dim(V ) and dim(W ) ≤
dim(V ).

Let W be a subspace of V . Then W = V if and only if dim(W ) = dim(V ).
All these have appeared earlier in one guise or another. Note that (d) follows

from (b) and (c). The exact relationship between dimensions of subspaces and
quotient spaces is given next.

Theorem 3.3.15 Let W be a subspace of V . Then

dim(V ) = dim(W ) + dim(V/W ).

Proof. Let V = W ⊕X. If {v1, v2, . . . , vr} is a basis ofW and {vr+1, vr+2,
. . . , vn} is a basis of X, then {v1, v2, . . . , vn} is a basis of V . Since V/W ≈ X,
the theorem follows.
Now let W and X be two subspaces of V . We have the subspaces W , X,

W ∩X, and W +X. The relationship between their dimensions is given in the
next theorem.

Theorem 3.3.16 Let W and X be subspaces of V . Then

dim(W +X) + dim(W ∩X) = dim(W ) + dim(X).

Proof. (W +X)/X ≈W/(W ∩X), so using 3.3.15 we get

dim(W +X)− dim(X) = dim(W )− dim(W ∩X).

Also 3.3.15 gives us the following theorem.
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Theorem 3.3.17 Let α : V →W be a linear transformation. Then

dim(V ) = dim(Ker α) + dim(Im α).

Proof. V/Ker α ≈ Im α. Apply 3.3.15.

PROBLEMS

1. Prove that if {v1, v2, . . . , vn} is independent, then v1 6= v2, and v1 6= 0.

2. Show by direct computation that in Q3, the set

S = {(3, 0,−3), (−1, 1, 2), (4, 2,−2), (2, 1,−1)}

is linearly dependent. Does S generate Q3? Does S contain a basis of Q3?

3. Do the following.

(a) Show that {(1, 0,−1), (1, 2, 1), (0,−3, 2)} is a basis of Q3.

(b) Is {(1, 1, 2, 4), (2,−1,−5, 2), (1,−1,−1, 0), (2, 1, 1, 0)} linearly inde-
pendent in Q4?

4. Let F = Z/Z2. Write down all bases of F 2. Write down all bases of F 3.

5. Let F = Z/Z3. Write down all bases of F 2.

6. In R4, let V = R(1, 1, 1, 1), and let W = V + R(1, 1, 1, 0). Let V ⊥ =
{(a1, a2, a3, a4) ∈ R4 : Σ aibi = 0 for all (b1, b2, b3, b4) ∈ V }, and define
W⊥ similarly. Find a basis for V ⊥. Find a basis for W⊥.

7. Suppose that v1 6= 0. Prove that {v1, v2, . . . , vn} is dependent if and only
if some vi+1 is a linear combination of v1, v2, . . . , vi.

8. Prove that {v1, v2, . . . , vn} is a basis if and only if it is linearly independent
and every family {w1, w2, . . . , wm} with m > n is dependent.

9. Prove that {v1, v2, . . . , vn} is a basis of V if and only if it spans V and
no family {w1, w2, . . . , wm} with m < n spans V .

10. Prove that {v1, v2, . . . , vn} is a basis if and only if it is linearly independent
and every family properly containing it is dependent.

11. Prove that {v1, v2, . . . , vn} is a basis of V if and only if it spans V and
no proper subfamily spans V .

12. Prove that (V ⊕W )/W ≈ V .

13. Let {v1, v2, . . . , vm} and {w1, w2, . . . , wn} be bases of V . Prove that
m = n in the following way. Write v1 = Σni=1aiwi. We may suppose that
a1 6= 0. Then V = Fv1 ⊕ Fw2 ⊕ · · · ⊕Fwn, so

V/Fv1 ≈ Fv2 ⊕ · · · ⊕ Fvm ≈ Fw2 ⊕ · · · ⊕ Fwn.

Inducting on m yields m = n.
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14. Prove that if α : V → W is an epimorphism and V is finite dimensional,
then so is W , and dim(W ) ≤ dim(V ).

15. Prove that if α : V →W is a monomorphism, V is finite dimensional, and
dim(V ) = dim(W ), then α is an isomorphism.

16. Prove that if V is finite dimensional and W is a subspace of V , then there
is an idempotent endomorphism of V with image W .

17. Let F be any field. As a vector space over F , what are the bases of F?
What is dim(F )? Prove that {(a1, a2), (b1, b2)} is a basis of F 2 if and
only if a1b2 − a2b1 6= 0.

18. Suppose that F is a field with 9 elements. (There is such a field.) Suppose
that P is a subfield with 3 elements. (There is such a subfield.) Consider
F as a vector space over P . What is dim(F )?

19. Consider the complex numbers as a vector space over the real numbers.
What is its dimension?

20. Consider the real numbers as a vector space over the rational numbers.
Prove that it is not finite dimensional.

21. Suppose that {u, v, w} is independent. Prove that {u, u+ v, u+ v + w}
is independent.

22. Let V be the vector space over the field of real numbers consisting of all
functions from the real numbers into the real numbers. Prove that V is
not finite dimensional.

23. Let V1, V2 . . . , Vn be subspaces of V . Prove that the map from the external
direct sum V1⊕ · · · ⊕Vn into V given by α(v1, v2, . . . , vn) = v1 + v2 + . . .
+vn is a linear transformation. Prove that V is the direct sum of the
subspaces V1, V2, . . . , Vn if and only if α is an isomorphism.

24. Prove that if V = V1 ⊕ . . . ⊕Vn, then dim(V ) = Σni=1 dim(Vi).

25. Let V be finite dimensional, and letW and X be subspaces of V . Let {v1,
v2, . . . , vr} be a basis of W ∩X, {v1, . . . , vr, w1, . . . , ws} a basis of W ,
and {v1, . . . , vr, x1, . . . , xt} a basis of X. Prove that {v1, . . . , vr, w1,
. . . , ws, x1, . . . , xt} is a basis of W +X. (This proves 3.3.16.)

26. Let W be a subspace of V , {w1, . . . , wr} a basis of W , and {v1 + W ,
v2 +W , . . . , vs +W} a basis of V/W . Prove that {w1, ..., wr, v1, ..., vs} is
a basis of V . (This proves 3.3.15.)

27. Define an infinite set in a vector space to be linearly independent if every
non-empty finite subset of it is linearly independent. Define a basis of V
to be a linearly independent set that generates V . Prove that the vector
space of polynomials over any field has a basis.
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28. Let V be the vector space of all sequences {a1, a2, . . . .} of real numbers.
Let S be the subspace consisting of those sequences with only finitely
many non-zero terms. Prove that S has a basis. Try to prove that V has
a basis.

3.4 Dual Spaces

Suppose V and W are vector spaces over the field F . Let Hom(V,W ) denote
the set of all linear transformations from V into W . There is a natural way to
make Hom(V,W ) into a vector space over F . To make it into an Abelian group,
for f , g ∈ Hom(V,W ), define f + g by the equation

(f + g)(v) = f(v) + g(v).

That is, f + g : V → W : v → f(v) + g(v). We need to check first that
f + g ∈ Hom(V,W ). It must preserve vector addition and scalar multiplication.
The equations

(f + g)(v1 + v2) = f(v1 + v2) + g(v1 + v2)

= f(v1) + f(v2) + g(v1) + g(v2)

= (f(v1) + g(v1)) + (f(v2) + g(v2))

= (f + g)(v1) + (f + g)(v2),

and

(f + g)(av) = f(av) + g(av) = af(v) + ag(v)

= a(f(v) + g(v)) = a((f + g)(v))

show that it does.
At this point we have an addition defined on Hom(V,W ). To verify that

Hom(V,W ) is an Abelian group under this addition is straightforward. For
example, the negative of f ∈ Hom(V,W ) is the map − f defined by (−f)(v) =
−(f(v)). The zero is the map that takes every v ∈ V to the 0 ∈ W . We leave
the details to the reader. There are no diffi cult points.
Scalar multiplication in Hom(V,W ) is defined by

(af)(v) = a(f(v)).

We must make sure that af ∈ Hom(V,W ). But

(af)(v1 + v2) = a(f(v1 + v2)) = a(f(v1) + f(v2))

= a(f(v1)) + a(f(v2)) = (af)(v1) + (af)(v2),

and

(af)(bv) = a(b(f(v))) = ab(f(v))

= ba(f(v)) = b(a(f(v))) = b((af)(v)).
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Now we must make sure that the equations

a(f + g) = af + ag,

and
a(bf) = (ab)f

hold. The first holds because for v ∈ V,

(a(f + g))(v) = a((f + g)(v)) = a(f(v) + g(v))

= (af)(v) + (ag)(v) = (af + ag)(v).

The second follows similarly. Note finally that 1 · f = f .
Thus from the vector spaces V and W over F we have built the vector space

Hom(V,W ) over F . There are two very special cases to consider: W = F and
W = V . Now Hom(V, V ) is more than a vector space. It is a ring. Indeed, it
is an algebra over F . It will be studied in Chapter 8. Our concern here will be
with Hom(V, F ).

Definition 3.4.1 The vector space Hom(V, F ) is called the dual space of V ,
and denoted V ∗.

Other names for V ∗ are conjugate space, and adjoint space. The first
thing we will do is decide what the dimension of V ∗ is. It is about as easy
to compute dim(Hom(V,W )). We will assume throughout that all our
vector spaces are finite dimensional.

Theorem 3.4.2 dim(Hom(V,W )) = dim(V ) · dim(W ).

Proof. If either of V or W is {0}, the theorem is clear. If neither is {0},
then dim(Hom(V,W )) is the size of any basis of Hom(V,W )). We will simply
write down a basis of Hom(V,W ) in terms of ones of V and W and note its
size. Let {v1, v2, . . . , vm} be a basis of V , and let {w1, w2, . . . , wn} be a basis
of W . By 3.3.9, there is exactly one linear transformation from V into W that
takes v1 to x1, v2 to x2, . . . , and vm to xm, where x1, x2, . . . , xm are any
prescribed vectors in W . Thus we have defined an element of Hom(V,W ) when
we prescribe images for v1, v2, . . . , vm. For i = 1, 2, . . . , m, and j = 1, 2, . . .
, n, let fij be the element in Hom(V,W ) such that

fij(vi) = wj ,

and
fij(vk) = 0 if i 6= k.

Thus f23(v1) = 0, f23(v2) = w3, f23(v3) = 0, . . . , f23(vm) = 0.
These functions are more conveniently defined using the Kronecker delta.

Let δij = 0 ∈ F if i 6= j, and δij = 1 ∈ F if i = j. Then for i = 1, 2, . . . , m and
j = 1, 2, . . . , n,

fij(vk) = δikwj .
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We claim that the fij constitute a basis for Hom(V,W ). At least it has the size
we want.
Suppose Σi,jaijfij = 0. Then

Σi,jaijfij(vk) = 0 = Σi,j(aijfij(vk)) = Σi,jaijδikwj = Σi,jakjwj .

Therefore akj = 0 for j = 1, 2, . . . , n. This holds for k = 1, 2, . . . , m, so that
aij = 0 for all i and j. Thus the fij are linearly independent.

Let f ∈ Hom(V,W ). Then f(vi) = Σjaijwj . But

(Σk,jakjfkj)(vi) = Σk,j(akjfkj(vi)) = Σk,j(akjδkiwj) = Σjaijwj .

Hence Σk,jakjfkj = f , so that the fij span Hom(V,W ). The proof is complete.

Corollary 3.4.3 dim(V ∗) = dim(V ).

Of course 3.4.3 implies that V ≈ V ∗. Now one can wonder why all the fuss
about V ∗. Up to isomorphism it is just V itself. The reason for the fuss is
this. The vector space V ∗ is constructed from V , and there is a natural way
to associate subspaces of V with subspaces of V ∗. Furthermore, while there is
no natural isomorphism V → V ∗, there is a natural isomorphism V → V ∗∗.
Also, with each linear transformation f : V → W , there is associated a linear
transformation f∗ : W ∗ → V ∗. The relations between all these things, and
in general the properties they enjoy, are important and useful. This section
develops some of these properties.
In the proof of 3.4.2, we defined a linear transformation fij ∈ Hom(V,W )

in terms of given bases {v1, v2, . . . , vm} and {w1, w2, . . . , wn} of V and W ,
respectively. In case W = F , there is a natural basis to pick, namely {1}. Let’s
consider that case.
Let {v1, v2, . . . , vn} be a basis of V . Then v∗i ∈ V ∗ defined by

v∗i (vj) = δij

gives a basis {v∗1 , v∗2 , . . . , v∗n} of Hom(V, F ) = V ∗. This we proved in the
course of proving 3.4.2.

Definition 3.4.4 The basis of V ∗ given by

v∗i (vj) = δij

is the basis of V ∗ dual to the basis v1, v2, ,vn of V .

Let v ∈ V . If v∗ ∈ V ∗, then v∗(v) ∈ F . Thus v gives a map V ∗ → F . This
map is linear– that is, it is in V ∗∗.

Definition 3.4.5 The map η : V → V ∗∗ defined by

η (v) (v∗) = v∗ (v) 0

is called the natural map from V into V ∗∗.
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Theorem 3.4.6 The map η : V → V ∗∗ is an isomorphism

Proof. We do not know yet that η is even into V ∗∗. To see this, we need
that for a ∈ F and x, y ∈ V ∗,

η(v)(x+ y) = η(v)(x) + η(v)(y),

and
η(v)(ax) = a(η(v)(x)).

But this follows from the equations

η(v)(x+ y) = (x+ y)(v) = x(v) + y(v) = η(v)(x) + η(v)(y),

and
η(v)(ax) = (ax)(v) = a(x(v)) = a(η(v)(x)).

Thus η maps V into V ∗∗. Now η must preserve vector addition and scalar
multiplication. That it does is left to the reader. (Problem 2) To get η to be an
isomorphism, it suffi ces to get it to be one-to-one since V is finite dimensional
and dim(V ) = dim(V ∗∗). Suppose that η(v) = 0. Then η(v)(v∗) = 0 = v∗(v)
for all v∗ ∈ V ∗. But if v 6= 0, then v is an element of a basis of V , and the
appropriate element of the basis dual to it takes v to 1 ∈ F . Thus v = 0, and
we are done.

Let S be a subset of V . Consider all those v∗ ∈ V ∗ such that Ker(v∗) ⊃ S.
This subset of V ∗ is called the annihilator of S in V ∗. Denote it by K(S).
Thus

K(S) = {v∗ ∈ V ∗ : v∗(s) = 0 for all s ∈ S}.

Similarly, if T is a subset of V ∗, let

K∗(T ) = {v ∈ V : t(v) = 0 for all t ∈ T}.

Then K∗(T ) is called the annihilator of T in V . Now K(S) is defined when
S is a subset of a given vector space V . Strictly speaking, we should denote the
dependence of K on V some way, say by writing KV (S), but we won’t. If T is
a subspace of V ∗, then K(T ) ⊂ V ∗∗. Similar remarks hold for K∗.
The following properties are readily verified.

a. If S1 ⊂ S2, then K(S1) ⊃ K(S2).

b. If S generates the subspace W of V , then K(S) = K(W ).

c. K(S) is a subspace of V ∗.

d. K({0}) = V ∗; K(V ) = {0}.

e. Statements analogous to (a), (b), (c), and (d) hold for K∗.

f. K∗(K(S)) ⊃ S; K(K∗(T )) ⊃ T .
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The map K is from the set of subsets of V to the set of subspaces of V ∗.
In light of (b) however, the real interest in it will be as a map from the set of
subspaces of V to the set of subspaces of V ∗. As such, we are going to show
that it is one-to-one and onto. By (a), K reverses inclusions, so K will be a
duality between the set of subspaces of V and those of V ∗. First we note a
useful relation between η , K, and K∗.

Lemma 3.4.7 Let T be a subspace of V ∗. Then η(K∗(T )) = K(T ).

Proof. Let v∗∗ ∈ K(T ). Then v∗∗ = η(v) for some v ∈ V . For t ∈ T ,
η(v)(t) = v∗∗(t) = 0 = t(v), so v ∈ K∗(T ). Let v ∈ K∗(T ). Then η(v)(t) =
t(v) = 0, so η(v) ∈ K(T ).

Theorem 3.4.8 Let S be a subspace of V , and let T be a subspace of V ∗. Then

dim(V ) = dim(S) + dim(K(S)), and

dim(V ∗) = dim(T ) + dim(K∗(T )).

Proof. Let {v1, v2, . . . , vm} be a basis of S. Extend it to a basis {v1, v2,
. . . , vm, . . . , vn} of V . Let

{v∗1 , v∗2 , . . . , v∗n}

be dual to it. Now Σni=1aiv
∗
i is in K(S) if and only if (Σ aiv

∗
i )(vj) = 0 for j = 1,

2, . . . , m. But
(Σ aiv

∗
i )(vj) = Σ ai(v

∗
i (vj)) = aj .

Hence

K(S) = Fv∗m+1 + · · ·+ Fv∗n, and dim(K(S)) = dim(V )− dim(S).

If T is a subspace of V ∗, then dim(V ∗) = dim(T )+dim(K(T )). But dim(K(T )) =
dim(K∗(T )) by 3.4.7. Thus

dim(V ∗) = dim(T ) + dim(K∗(T )).

Now we can show that K is a duality.

Theorem 3.4.9 K is a one-to-one correspondence between the set of subspaces
of V and the set of subspaces of V ∗. Its inverse is K∗.

Proof. Let T be a subspace of V ∗. Then K(K∗(T )) ⊃ T , but the two have
the same dimension by 3.4.8. Therefore K(K∗(T )) = T . Let S be a subspace
of V . Then K∗(K(S)) ⊃ S, and by 3.4.8 they have the same dimension. Hence
K∗(K(S)) = S. Thus K and K∗ are inverses of each other, and the theorem
follows.
The maps K and K∗ reverse inclusions. That is, if A ⊂ B, then K(A) ⊃

K(B), and similarly for K∗. A stronger result is that K and K∗ interchange +
and ∩.
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Theorem 3.4.10 Let S1 and S2 be subspaces of V , and let T1 and T2 be sub-
spaces of V ∗. Then

a. K(S1 + S2) = K(S1) ∩K(S2),

b. K(S1 ∩ S2) = K(S1) +K(S2),

c. K∗(T1 + T2) = K∗(T1) ∩K∗(T2), and

d. K∗(T1 ∩ T2) = K∗(T1) +K∗(T2).

Proof. Let v∗ ∈ K(S1 + S2). Then v∗(s1 + s2) = 0 for all s1 ∈ S1 and
s2 ∈ S2. Letting s2 = 0, we get v∗ ∈ K(S1). Similarly, v∗ ∈ K(S2). Thus
K(S1 + S2) ⊂ K(S1) ∩K(S2). Now let v∗ ∈ K(S1) ∩K(S2). Then v∗(si) = 0
for all si ∈ Si, i = 1, 2. Thus v∗(s1 + s2) = v∗(s1) + v∗(s2) = 0, so (a) holds.
Part (c) is almost identical to (a). Using 3.4.9 and (c), part (b) follows from

the equations

K(S1) +K(S2) = K(K∗(K(S1) +K(S2)))

= K((K∗(K(S1))) ∩ (K∗(K(S2)))) = K(S1 ∩ S2).

Part (d) follows similarly.
Let α : V →W be a linear transformation. With any w∗ ∈W ∗ we have the

map w∗◦α . It is linear, being the composition of two linear maps. Furthermore,
w∗ ◦α : V → F , so w∗ ◦α ∈ V ∗. Thus α induces a map α∗ : W ∗ → V ∗, namely

α∗(w∗) = w∗ ◦ α .

That α∗ itself is linear should be no surprise.

Definition 3.4.11 Let α : V → W be linear. The map α∗ : W ∗ → V ∗ induced
by α is called the conjugate of α, or the adjoint of α, or the dual of α.

These two facts are formalities:

a. α∗ is a linear transformation, and

b. the map Hom(V,W )→ Hom(W ∗, V ∗) : α→ α∗ is a linear transformation
(Problem 8).

There are some important relations between α and α∗. One is that α and α∗

have the same rank, where the rank r(α) of a linear transformation α is defined
to be dim(Im α). We will relate this to the rank of matrices at the end of this
section.

Theorem 3.4.12 The annihilator of the image of α is the kernel of α∗. The
image of α∗ is the annihilator of the kernel of α.
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Proof. We need that K(Im α) = Ker α∗. Let α : V → W . Then w∗ ∈
K(Im α) if and only if w∗(α(v)) = 0 for all v ∈ V if and only if α∗(w∗)(v) = 0
for all v ∈ V if and only if α∗(w∗) = 0 if and only if w∗ ∈ Ker α∗.
The second assertion is Problem 11.

Corollary 3.4.13 α and α∗ have the same rank.

Proof. From 3.4.12, we have

dim(K(Im α)) = dim(W )− r(α) = dim(Ker α∗) = dim(W )− r(α∗).

Corollary 3.4.14 α is one-to-one if and only if α∗ is onto, and α is onto if
and only if α∗ is one-to-one.

Proof. The details are left as an exercise (Problem 9).

Corollary 3.4.15 The linear transformation

Hom(V,W )→ Hom(W ∗, V ∗) : α→ α∗

is an isomorphism.

Proof. Hom(V,W ) andHom(W ∗, V ∗) both have dimension dim(V ) dim(W ),
so it suffi ces to get the linear transformation to be one-to-one. But if α∗ = 0,
then K(Im α) = Ker α∗ = W ∗, so that Im α = {0}. Therefore α = 0.
Here is an application to matrices. Consider the m × n matrix (aij) with

entries from any field F . The row space of (aij) is the subspace of Fn generated
by the rows (ai1, ai2, . . . , ain) of (aij), and its dimension is called the row rank
of (aij). The column space of (aij) is the subspace of Fm generated by the
columns (a1j , a2j , . . . , amj) of (aij), and its dimension is called the column
rank of (aij). How are these dimensions related?

Theorem 3.4.16 The row rank of a matrix equals its column rank.

Proof. This theorem is a reflection of the fact that the rank of a linear
transformation is the rank of its dual (3.4.13). Let {v1, v2, . . . , vm} be the
natural basis of Fm, and {w1, w2, . . . , wn} the natural basis of Fn. Let {v∗1 ,
. . . , v∗m} and {w∗1 , . . . , w∗n} be bases dual to these bases. Let α : Fm → Fn be
given by

α(vi) = (ai1, ai2, . . . , ain).

Then r(α) is the row rank of (aij). Let β be the isomorphism defined by
β(v∗i ) = vi. Then α∗(w∗i ) = Σjajiv

∗
j since

(α∗(w∗i ))(vk) = (w∗i ◦ α)(vk) = w∗i (α(vk))

= w∗i (ak1, . . . , akn) = w∗i Σkakjwj = aki.
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Thus
β ◦ α∗(w∗i ) = β(Σ ajiv

∗
j ) = Σ ajivj) = (a1i, a2i, . . . , ami).

Hence r(βα∗) is the column rank of the matrix (aij). Since β is an isomorphism,
r(β ◦ α∗) = r(α∗), and we know that r(α∗) = r(α). The theorem is proved.

The row rank of a matrix is called simply the rank of that matrix. Let (aij)
be a matrix and (aij)

′ its transpose. That is, the ijth entry in (aij)
′ is aji.

Then the rows of (aij) are the columns of (aij)
′ and the columns of (aij) are

the rows of (aij)
′. Sometimes 3.4.16 is expressed by saying that the rank of a

matrix equals the rank of its transpose.

PROBLEMS

1. Give a complete proof that Hom(V,W ) is a vector space.

2. Prove in detail that η : V → V ∗∗ is linear.

3. Let {v1, v2, . . . , vn} be a basis of V , {v∗1 , . . . , v∗n} the basis of V ∗ dual
to it, and {v∗∗1 , . . . , v∗∗n } the basis of V ∗∗ dual to {v∗1 , . . . , v∗n}. Let η be
the natural isomorphism from V to V ∗∗. Prove that η(vi) = v∗∗i .

4. Let ηV : V → V ∗∗ and ηW : W →W ∗∗ be the natural isomorphisms. Let
α ∈ Hom(V,W ). Prove that α∗∗ ◦ ηV = ηW ◦ α.

5. Let S1 and S2 be subsets of V . Prove that K(S1) = K(S2) if and only if
S1 and S2 generate the same subspace of V .

6. Let T1 and T2 be subsets of V ∗. Prove that K∗(T1) = K∗(T2) if and only
if T1 and T2 generate the same subspace of V ∗.

7. Prove in detail parts (c) and (d) of 3.4.10.

8. Let α be an element of Hom(V,W ). Prove that α∗ is an element of
Hom(W ∗, V ∗), and that the mapping

Hom(V,W )→ Hom(W ∗, V ∗) : α→ α∗

is a linear transformation.

9. Prove that α is one-to-one if and only if α∗ is onto, and that α is onto if
and only if α∗ is one-to-one.

10. Let x∗, y∗ ∈ V ∗. Prove that if Ker x∗ ⊂ Ker y∗, then ax∗ = y∗ for some
a ∈ F .

11. Let α ∈ Hom(V,W ). Prove that Im α∗ = K(Ker α).

12. Let α ∈ Hom(V,W ), and let β ∈ Hom(W , X). Prove that

(βα)∗ = α∗β∗.
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13. Let vi be the vector in Fn with 1 in the ith place and 0 elsewhere. Let
{v∗1 , . . . v∗n} be the basis dual to {v1, . . . , vn}. Identify Fn∗ with Fn via
the isomorphism α given by α(v∗i ) = vi. Prove that

(a1, a2, . . . , an)((b1, b2, . . . , bn)) = Σ aibi.

14. Identifying R3∗ with R3 as in Problem 13, find a basis of the annihilator
of the subspace generated by {(1, 1, 0), (0, 1, 2)} and a basis of the
annihilator of the subspace generated by {(1, 1, 1)}.



Chapter 4

Rings and Modules

4.1 Definitions and Examples

Several algebraic concepts are introduced in this chapter, and the main purpose
is to prove one of the fundamental structure theorems in algebra. This theorem
generalizes the fundamental theorem of finite Abelian groups and the theorem
that every finitely generated vector space has a basis. It is useful in analyzing
linear transformations, and will be put to that use in Chapter 5. Before we can
even formulate the theorem, a number of definitions and facts are necessary.
These preliminaries are themselves basic.

Definition 4.1.1 A ring is a set R with two binary operations, called addition
and multiplication, and denoted + and · respectively, such that

a. R is an Abelian group under +,

b. · is associative, and

c. a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c) for all a, b, c in
R.

The two equalities in (c) are called the left and right distributive laws, re-
spectively. As usual for additively written Abelian groups, the additive identity
of R is denoted by 0, and −a denotes the element of R such that a+ (−a) = 0.
It may happen that · is commutative, that is, that a · b = b · a for all a, b in

R. In that case, R is called a commutative ring. If R 6= {0} and there is an
element x in R such that x · a = a · x = a for all a in R, then that element is
unique, is always denoted by 1, and R is called a ring with identity. As in the
case of fields, which are special kinds of rings, we will tend to write a · b as ab.
Before proceeding with examples, some immediate consequences of the ax-

ioms will be proved that are needed in making elementary calculations in rings.

Theorem 4.1.2 Let R be a ring. Then for a, b, c ∈ R, the following hold.
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a. a · 0 = 0 · a = 0.

b. a(−b) = −(ab) = (−a)b.

c. ab = (−a)(−b).

d. a(b− c) = ab− ac and (a− b)c = ac− bc.

e. If R has an identity, then (−1)a = −a.

f. 1 6= 0.

Proof.

a. a · 0 = a(0 + 0) = a · 0 + a · 0. Thus a · 0− a · 0 = 0 = (a · 0 + a · 0)− a · 0 =
a · 0 + (a · 0− a · 0) = a · 0. Similarly, 0 · a = 0.

b. ab + a(−b) = a(b + (−b)) = a · 0 = 0. Thus a(−b) = −(ab). Similarly
(−a)b = −(ab).

c. (−a)(−b) = −(a(−b)) = −(−(ab)) = ab, using (b).

d. a(b− c) = a(b + (−c)) = ab + a(−c) = ab + (−(ac)) = ab− ac. Similarly
(a− b)c = ac− bc.

e. (1− 1)a = 0 · a = 0 = 1 · a+ (−1) · a = a+ (−1)a. Thus (−1)a = −a.

f. If R has an identity, then R 6= {0}, so there is an a in R such that a 6= 0.
But 1 · a = a and 0 · a = 0. Thus 1 6= 0.

We have several classifications of rings already – rings with an identity,
commutative rings, and fields. There are other general types of rings that should
be kept in mind when looking at the examples below. For example, it may
happen that a · b = 0 without a or b being 0. Such elements are called zero
divisors.

Definition 4.1.3 An integral domain is a commutative ring with identity
that has no zero divisors.

Thus, a commutative ring with identity is an integral domain if and only if
a, b in R, ab = 0, imply that a = 0 or b = 0. If a ring R has no zero divisors,
then its set R∗ of non-zero elements is closed under multiplication. It could
happen then, that R∗ is a group under multiplication.

Definition 4.1.4 A ring R is a division ring if the set R∗ of non-zero ele-
ments of R is a group under multiplication.

Theorem 4.1.5 A finite ring with identity and no zero divisors is a division
ring.
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Proof. Let R be such a ring, and let r be a non-zero element of R. We need
only to get that r has a right inverse. (See 2.1, Problem 19.) Consider the set
S = {rx : x ∈ R}. If rx = ry, then r(x − y) = 0, whence x − y = 0 and x = y
since R has no zero divisors. Thus the rx are distinct for distinct x, and since
R is finite, S = R. Therefore some rx = 1, and it follows that R is a division
ring.

Corollary 4.1.6 A finite integral domain is a field.

Recall that a field is a commutative division ring. Actually, a finite division
ring is a field, but that is diffi cult to prove, and is postponed until 7.5.1.
If R is a ring with identity, the elements in R which have inverses are called

units. That is, an element u of R is a unit if there is an element v ∈ R such
that uv = vu = 1. If u is a unit, then the element v is unique and is denoted
u−1 or 1/u.
If S is a subset of a ring R, then restricting addition and multiplication to S

might make S into a ring. If so, S is called a subring of R. Thus S is a subring
of R if and only if S is a subgroup of R which is closed under multiplication.

Example 4.1.7 These examples should be examined carefully, and the reader
should verify that each example is what it is claimed to be.

a. Any field is a ring. Thus the rational numbers Q with the ordinary opera-
tions of addition and multiplication is a ring. Similarly, the real numbers
and the complex numbers are rings, being fields.

b. The integers Z with ordinary addition and multiplication is a ring, in fact,
an integral domain.

1. The set Z2 of even integers is a subring of the ring Z. This ring does not
have an identity, but is commutative and has no zero divisors.

c. The set Zn for any integer n is a subring of the ring Z.

d. In the additive group Z/Zn of integers modulo n, multiply modulo n. This
makes Z/Zn into a ring, called the ring of integers modulo n. (See
2.1.2 (e), 2.3.13, and 3.1.4 (g).)

e. Let Z2 be the set of all 2×2 matrices over Z. That is, Z2 is the set of all 2×
2 matrices whose entries are integers. Define addition and multiplication
by the equations(

a11 a12

a21 a22

)
+

(
b11 b12

b21 b22

)
=

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
,

and(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
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These definitions of + and · make Z2 into a ring with identity. Since

0 =

(
0 1
0 0

)(
1 0
0 0

)
6=
(

1 0
0 0

)(
0 1
0 0

)
,

Z2 is not commutative, and has zero divisors.

f. Let R be any ring, and n any positive integer. Let Rn be the set of all
n× n matrices over R. An element

a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
an1 an2 ... ann


of Rn has all the aij in R, and is denoted simply by (aij). The element
aij denotes the (i, j) entry of (aij). Addition and multiplication then are
defined by the equations

(aij) + (bij) = (aij + bij)

and
(aij) · (bij) = (Σnk=1aikbkj).

Again, it is straightforward to check that Rn is a ring. It has an identity
if and only if R has an identity.

g. Let R be the field of real numbers. Let C be the set of 2× 2 matrices with
entries from R of the form (

a b
−b a

)
.

Then C is a subring of R2. Would you believe that C is the field of complex
numbers?

h. Let R be any commutative ring. Let R[x] be the set of all polynomials
in x with coeffi cients in R. That is, R[x] is the set of all expressions of
the form anx

n + · · · + a1x + a0, with ai in R. Under the usual rules for
adding and multiplying polynomials, R[x] is a commutative ring, and has
an identity if and only if R does. (See 4.5.)

i. Let R be any ring. Let S be the set of all mappings f of the set of non-
negative integers into R such that f(n) = 0 for all but finitely many n.
Define (f + g)(n) = f(n) + g(n), and (f · g)(n) = Σi+j=nf(i)g(j). Then
S is a ring with this definition of + and ·. What is the difference between
(i) and (j)? Is commutativity necessary in (h)?
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j. Let G be any Abelian group and let R be the set of all endomorphisms of
G. For f , g ∈ R, define f + g and f · g by

(f + g)(x) = f(x) + g(x)

and
(f · g)(x) = f(g(x)).

Then R is a ring with identity, called the endomorphism ring of G. If
G is the additive group of Z, then R is an integral domain (4.2, Problem
23). If G is the additive group Z/pZ of the integers modulo the prime p,
then R is a field (4.2, Problem 24).

k. Let V be any vector space, and let R be the set of all linear transformations
from V into V . Define addition and multiplication as in (k). Then R is
a ring with identity, called the ring of linear transformations of V .
We will look at this ring in some detail in Chapter 8.

l. Let p be a prime and let

R = {a/b : a, b ∈ Z, (b, p) = 1}.

Then R is a subring of the field Q of rational numbers. This ring is called
the ring of integers localized at p.

m. Let P be a non-empty subset of the set of all prime numbers. Let R =
{a/b : a, b ∈ Z, (b, p) = 1 for all p ∈ P}. Then R is a subring of Q.

n. Let G be a group and R a ring. Let R(G) be the set of all maps f from G
into R such that f(x) = 0 for all but finitely many x in G. Define f + g
and fg by

(f + g)(x) = f(x) + g(x) and (fg)(x) = Σuv=xf(u)g(v).

With these definitions, R(G) is a ring. It has an identity if R does, and
is commutative if R and G are commutative. The ring R(G) is called the
group ring of G over R.

o. Let R be any ring. Then R × R is a ring if one defines addition and
multiplication coordinatewise. That is, (a, b) + (c, d) = (a+ c, b+ d) and
(a, b)(c, d) = (ac, bd). It has an identity if and only if R does, and is
commutative if and only if R is commutative. Since (a, 0)(0, b) = (0, 0) =
0, R×R has many zero divisors if R 6= {0}.

p. Let S be any non-empty set, and let R be any ring. Let RS be the set of
all mappings from S into R. Define addition and multiplication in RS by

(f + g)(s) = f(s) + g(s) and (fg)(s) = f(s)g(s).

With these definitions of addition and multiplication, RS is a ring. It has
an identity if and only if R does, and is commutative if and only if R is.
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q. Let R be any ring, and let Z be the ring of integers. Let S = Z × R.
Define addition and multiplication in S by (m,x) + (n, y) = (m+n, x+y)
and (m,x)(n, y) = (mn, xy + my + nx). Then S is a ring with identity.
Identifying R with the subring of elements of S of the form (0, r) imbeds
R into a ring with identity.

r. Let S be any set and let P (S) be the set of all subsets of S. For a, b ∈ P (S),
define addition and multiplication by

a+ b = {s ∈ S : s ∈ a ∪ b, s /∈ a ∩ b} and ab = a ∩ b.

Then P (S) is a commutative ring with identity. It is called the ring of
subsets of S.

s. Let D be the set of all 2× 2 matrices over the field C of complex numbers
which have the form (

a b
−b̄ ā

)
,

where x̄ denotes the conjugate of the complex number x. Then D is a
subring of the ring C2 of all 2 × 2 matrices over C and D is a division
ring. (D is the ring of quaternions. See 2.2, page 33.)

t. Let Z [i] = {m + ni : m, n ∈ Z}. Then Z[i] is an integral domain, in
fact, a subdomain of the field C of complex numbers. Replacing Z by any
subdomain of C yields a subdomain of C, as does replacing i by

√
2.

PROBLEMS

1. Do the following.

(a) Prove that a ring with identity has just one identity.

(b) Find an example of a ring with identity that has a subring with a
different identity.

(c) Find an example of a ring with no identity that has a subring with
identity.

2. Let R be a ring, and let r ∈ R. For positive integers n, define rn induc-
tively by

r1 = r,

and
rn+1 = rn · r.

Prove that rmrn = rm+n and (rm)n = rmn. Prove that if R is commuta-
tive, then for r, s ∈ R, (rs)m = rmsm.

3. Let R be a ring. Since it is an Abelian group, we can “multiply”elements
of R by integers. That is, nr is defined for all n ∈ Z and r ∈ R, and this
“multiplication”enjoys certain properties (2.1.4). Prove that for integers
m, n and for elements r and s of R,
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(a) m(rs) = (mr)s,

(b) (mn)r = m(nr), and

(c) (mr)(ns) = (mn)(rs).

4. Let R be a ring with identity. Let U be the set of units of R. That is,
u ∈ U if and only if there is a v ∈ R such that uv = vu = 1. Prove that U
is a group under multiplication. (U is called the group of units of R.)
What is the group of units of Z?

5. Do the following.

(a) Determine which elements in the ring Q2 of all 2 × 2 matrices over
the field Q of rational numbers are units.

(b) Determine which elements in the ring Z2 of all 2 × 2 matrices over
the ring of integers are units.

(c) Let R be a commutative ring with identity. Determine which ele-
ments in the ring R2 of all 2× 2 matrices over R are units.

6. Find all subrings of Z.

7. Find all the subrings of Q which contain Z.

8. Prove that the intersection of any non-empty set of subrings of a ring is a
subring.

9. Let S be a subset of the ring R. Prove that there is a subring T such that
S ⊂ T and such that every subring of R containing S contains T .

10. Let S be a non-empty subset of a ring R. Let T be the subring in Problem
9. Determine the elements of T in terms of the elements of S.

11. Let R be a ring. Let

Z(R) = {a ∈ R : ar = ra for all r ∈ R}.

Prove that Z(R) is a commutative subring of R. (Z(R) is called the
center of R.)

12. Prove that the center of a division ring is a field.

13. Prove that if r2 = r for all r in a ring R, then R is commutative.

14. Prove that if r3 = r for all r in a ring R, then R is commutative.

15. Let G be an Abelian group. Prove that the group ring Z(G) is an integral
domain if and only if G is torsion free, that is, if and only if G has no
nonzero elements of finite order.
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4.2 Homomorphisms and Quotient Rings

In studying algebraic systems such as groups, vector spaces, or rings, a basic
concept is that of a homomorphism from one of them to another. A homomor-
phism from one group to another was a mapping that preserved the operation.
A ring has two operations, addition and multiplication, and a homomorphism
from one ring to another is simply a mapping that preserves both these opera-
tions.

Definition 4.2.1 Let R and S be rings. A homomorphism from R into S is
a mapping f : R→ S such that

a. f(x+ y) = f(x) + f(y), and

b. f(xy) = f(x)f(y).

As in the case of groups, a homomorphism is an epimorphism if it is onto,
a monomorphism if it is one-to-one, and an isomorphism if it is one-to-one
and onto. If there exists an isomorphism f from R to S, we say that R is
isomorphic to S, and write R ≈ S. As in the case for groups, isomorphism
is an equivalence relation on any set of rings. An automorphism of R is an
isomorphism of R with itself.

Definition 4.2.2 Let R and S be rings and let f : R→ S be a homomorphism.
Then Ker f = {x ∈ R : f(x) = 0}.

Thus Ker f is the kernel of f considered as a homomorphism from the
additive group of R into the additive group of S. Since f is a homomorphism
from the additive group of R into the additive group of S, we have, for example,
that f(0) = 0, f(−x) = −f(x), and that f is a monomorphism if and only if
Ker f = {0}. Since Im f = {f(x) : x ∈ R} is an additive subgroup of S, and
since f(x)f(y) = f(xy), Im f is a subring of S.
For x ∈ R and y ∈ Ker f , f(xy) = f(x)f(y) = f(x) · 0 = 0 = 0 · f(x) =

f(y)f(x) = f(yx). Thus Ker f is an additive subgroup of R such that for x ∈ R
and y ∈ Ker f , xy and yx are in Ker f . That is, Ker f is an additive subgroup
such that for all elements x ∈ R, x(Ker f) ⊂ Ker f and (Ker f)x ⊂ Ker f .
This latter property of Ker f is crucial in making R/Ker f into a ring (4.2.5).

Example 4.2.3

a. Let R and S be rings. Then the identity map 1R of R and the map f :
R→ S defined by f(r) = 0 for all r ∈ R are homomorphisms.

b. Let C be the field of complex numbers. The mapping from C to C given
by f(a+ bi) = a− bi is an automorphism of C.

c. Let F be any field and let a ∈ F . The mapping ϕ from F [x] to F defined
by ϕ(f) = f(a) is a homomorphism. The action of ϕ on a polynomial
is to evaluate that polynomial at a. Note that ϕ is an epimorphism. Ker
ϕ = {f ∈ F [x] : f(a) = 0}. That is, Ker ϕ is the set of polynomials of
which a is a root.
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d. Let R be a ring and S a non-empty set. Let RS be the ring of all mappings
from S into R, as in Example 4.1.7 (q). Let s ∈ S. Define ϕ : RS → R
by ϕ(f) = f(s). Then ϕ is an epimorphism.

e. Let R(G) be the ring in Example 4.1.7 (o). Define the mapping ϕ :
R(G)→ R by ϕ(f) = Σg∈Gf(g). Then ϕ is an epimorphism.

f. Let R×R be the ring in Example 4.1.7 (p). Then the mapping η : R×R→
R defined by η(x, y) = x is an epimorphism. The mapping ϕ : R→ R×R
given by ϕ(x) = (x, 0) is a monomorphism.

g. Let R2 be the ring of 2× 2 matrices over a ring R The map

R→ R2 : r 7→
(
r 0
0 r

)
is a monomorphism. So is the map

R→ R2 : r 7→
(
r 0
0 0

)
Analogous facts hold for n× n matrices.

Let f : R → S be a homomorphism. Then Ker f is a subgroup of R closed
under multiplication on either side by any element of R, as we have seen. Such
subsets of rings play a role analogous to the role played for groups by normal
subgroups.

Definition 4.2.4 An ideal of a ring R is a subgroup I of the additive group of
R such that ri and ir are in I for all i ∈ I and all r ∈ R.

Kernels of homomorphisms are ideals. It will turn out that every ideal of a
ring R is the kernel of a homomorphism from R to another ring. In fact, given
an ideal I of a ring R, we will now construct a ring R/I, the quotient ring
of R with respect to I. There will be a natural homomorphism from R onto
R/I whose kernel is I. This construction is fundamental.

Example 4.2.5 Let R be a ring and I an ideal of R. Since R is an Abelian
group under addition and I is a subgroup of that group, we have the quotient
group R/I. Its elements are the cosets r + I of the subgroup I of R. Further-
more, addition in R/I is given by

(r + I) + (s+ I) = (r + s) + I.

In order to make R/I into a ring, we need to define a suitable multiplication on
it. The most natural thing to do is to let

(r + I)(s+ I) = rs+ I.
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However, it is not clear that this defines a binary operation on R/I. It is
conceivable that r + I = r1 + I and s+ I = s1 + I, and that rs+ I 6= r1s1 + I.
If this could be ruled out, however, we would have a binary operation on R/I.
So suppose r + I = r1 + I and s+ I = s1 + I. Then r = r1 + i and s = s1 + j
with i and j in I. Thus

rs+ I = (r1 + i)(s1 + j) + I = r1s1 + r1j + is1 + ij + I.

But r1j, is1, and ij are all in I since i and j are in I and I is an ideal. Thus
r1j + is1 + ij is in I, so that rs+ I = r1s1 + I.

It is easy to verify that with the multiplication

(r + I)(s+ I) = rs+ I,

the group R/I becomes a ring. For example,

(r + I)((s+ I) + (t+ I)) = (r + I)((s+ t) + I) = r(s+ t) + I

= (rs+ rt) + I = (rs+ I) + (rt+ I)

= (r + I)(s+ I) + (r + I)(t+ I),

so that the left distributive law holds. The other axioms of a ring are just as
easy to check. If R has an identity, then 1 + I is the identity for R/I. If R is
commutative, then R/I is commutative. The mapping η : R → R/I defined by
η(r) = r + I is an epimorphism.

Definition 4.2.6 The ring R/I constructed in 4.2.5 is called the quotient ring
of R with respect to the ideal I, or more simply “R modulo I.” The ho-
momorphism η : R → R/I : r → r + I is called the natural homomorphism
from R to R/I.

Notice that Ker η = I.

Theorem 4.2.7 (First Isomorphism Theorem for Rings) Let R and S be
rings and let f : R→ S be a homomorphism. Then

R/(Ker f) ≈ Im f

Proof. There is little to do. The mapping

f̄ : R/(Ker f)→ Im f : r + Ker f → f(r)

establishes an isomorphism between the additive groups of R/(Ker f) and Im
f by the first isomorphism theorem for groups. We need only show that f̄
preserves multiplication. That follows from

f̄((r + Ker f)(s+ Ker f)) = f̄(rs+ Ker f) = f(rs) = f(r)f(s)

= f̄(r + Ker f)f̄(s+ Ker f).
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Other isomorphism theorems are in Problem 27. Let I be an ideal in R. We
will determine the ideals in the ring R/I. Ideals of R/I must be of the form
J/I for J a subgroup of R since ideals are, in particular, subgroups. If J/I is
an ideal, then for any r ∈ R and j ∈ J , we must have

(r + I)(j + I) = rj + I ∈ J/I.

That is, rj must be in J . Similarly, jr must be in J , whence J must be an
ideal. On the other hand, if J is an ideal of R containing I, then J/I is an ideal
of R/I since it is a subgroup of R/I and

(r + I)(j + I) = rj + I ∈ J/I

for all r in R and j in J . We have the following result.

Theorem 4.2.8 Let I be an ideal in the ring R. Associating each ideal J of
R which contains I with J/I is a one-to-one correspondence between the set of
ideals containing I and the set of ideals of R/I.

Let F be a field, and let I be an ideal of F . If i ∈ I and i 6= 0, then i has an
inverse, and i · i−1 = 1 is in I. If a ∈ F , then a · 1 ∈ I, so that I = F . Therefore
a field F has only the trivial ideals F and {0}.
Now we will look at the ideals and quotient rings of the ring Z of integers. Let

I be an ideal in Z. In particular, I is a subgroup of Z, so it is cyclic. Therefore
I consists of all integral multiples of some integer n, that is, I = Zn. Also,
for any n ∈ Z, Zn is clearly an ideal. The ring Z/Zn is the ring of integers
modulo n. Suppose Zn = Zm. Then m and n are integral multiples of each
other, so that m = ±n. Since Zn = Z(−n), we have that an ideal I = Zn for
a unique n ≥ 0. Thus the ideals of Z are in one-to-one correspondence
with the non-negative integers. When does Zm ⊃ Zn? If Zm ⊃ Zn, then
n ∈ Zm, so n = km for some integer k. On the other hand, if n = km, clearly
Zm ⊃ Zn. Hence Zm ⊃ Zn if and only if n is a multiple of m. This says that p
is a prime if and only if the only ideal which properly contains Zp is Z · 1 = Z.
To put it another way, p is a prime if and only if Z/Zp has only the two trivial
ideals Zp/Zp and Z/Zp.

Since fields F have only the two trivial ideals {0} and F , if Z/Zn is a field,
n must be prime. But if n = p is prime, then for any a + Zp 6= 0, a and p are
relatively prime. Thus there are integers x and y such that ax+ py = 1, and

ax+ Zp = 1− py + Zp = 1 + Zp,

so that Z/Zp is a field. We have then that n is prime if and only if Z/Zn is
a field.

Definition 4.2.9 A maximal ideal in a ring R is an ideal M of R such that
M 6= R, and whenever I is an ideal such that M ⊂ I ⊂ R, then I = M or
I = R.
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Thus a maximal ideal is one that is not the whole ring, and such that there
are no ideals strictly between it and the whole ring. The maximal ideals of Z
are Zp with p prime, and these were also the ideals I of Z such that Z/I was a
field.

Theorem 4.2.10 Let R be a commutative ring with identity. An ideal M of R
is maximal if and only if R/M is a field.

Proof. If R/M is a field, then it has at least two elements. Therefore
M 6= R. If I were an ideal strictly betweenM and R, then by 4.2.8, I/M would
be an ideal strictly between R/M and 0. But we have observed that fields have
no non-trivial ideals. Therefore M is maximal.
Now suppose thatM is maximal. Since R is commutative with identity, so is

R/M . We need only show that every non-zero element in R/M has an inverse.
Let a+M ∈ R/M with a+M 6= 0. Then

{ra+m : r ∈ R,m ∈M}

is an ideal. If m ∈ M , then m = 0 · a + m ∈ Ra + M , and a = 1 · a + 0 is an
element of Ra+M . Therefore Ra+M is an ideal properly containingM . Since
M is maximal, Ra + M = R. Thus for some r ∈ R and m ∈ M , ra + m = 1.
Now

(r +M)(a+M) = ra+M = (1−m) +M = 1 +M

shows that R/M is a field.
We will use this theorem many times. One half of it can be strengthened.

Suppose that R is any ring, and that R/M is a field. Then there are no ideals
strictly between M and R, whence M is maximal. Thus if R/M is a field,
then M is maximal.

PROBLEMS

1. Find all rings with two elements. (First, decide what this problem means.)

2. Prove that the rings Z2 and Z3 are not isomorphic. Prove that if m
and n are distinct positive integers, then the rings Zm and Zn are not
isomorphic.

3. Prove that the fields R and C are not isomorphic.

4. Let Q
[√

2
]

= {a + b
√

2 : a, b ∈ Q}, and define Q
[√

5
]
similarly. Prove

that these are rings, and prove that they are not isomorphic.

5. Let R be the set of 2× 2 matrices of the form(
a 2b
b a

)
with a and b elements of Q. Prove that R is a ring and is isomorphic to
the ring Q

[√
2
]
of Problem 4.
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6. Find all homomorphisms from the ring Z/Z12 to the ring Z/Z20.

7. Prove that the quaternions form a division ring (4.1.5 (t)).

8. An element x in a ring is idempotent if x2 = x. Find all idempotent
elements in the rings Z/Z20 and Z/Z30.

9. An element x in a ring is nilpotent if xn = 0 for some integer n. Find
all nilpotent elements in the rings Z/Z30 and Z/Z40.

10. Let R be a ring with identity and suppose that x is a nilpotent element
of R. Prove that 1− x is a unit.

11. Prove that the set of nilpotent elements in a commutative ring R forms
an ideal N , and that R/N has no non-zero nilpotent elements.

12. Suppose that R is a ring with identity and that f is a homomorphism
from R into an integral domain S. Prove that f(1) = 1 unless f(1) = 0.

13. Prove that the composition of ring homomorphisms is a ring homomor-
phism.

14. Suppose that R and S are rings and that f : R → S is an epimorphism.
Prove the following.

(a) f(I) is an ideal of S if I is an ideal of R.

(b) f−1(J) is an ideal of R if J is an ideal of S.

(c) If R has an identity, then so does S if S 6= {0}.
(d) If S has an identity, then R might not.

15. Prove that the set Aut(R) of all automorphisms of a ring R is a group
under composition of automorphisms.

16. Let u be a unit in the ring R. Prove that

fu : R→ R : r → uru−1

is an automorphism of R. (f is called an inner automorphism of R.)

17. Let R be a ring with identity, and let Inn(R) be the set of all inner au-
tomorphisms of R. Prove that Inn(R) is a subgroup of Aut(R), and is
normal in Aut(R).

18. Let R be a ring with identity, and let U(R) be the group of units of R.
Prove that the map

U(R)→ Inn(R) : u→ fu

is a homomorphism. What is its kernel?
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19. Determine Aut(Z), Inn(Z), and U(Z).

20. DetermineAut(Q), Inn(Q), and U(Q). DetermineAut(Q[
√

2]) andAut(Q[i]).

21. Determine Aut(R) for the field R of real numbers.

22. Find all automorphisms f of C such that f(R) = R.

23. Prove that the endomorphism ring of the additive group Z is isomorphic
to the ring Z.

24. Prove that the endomorphism ring of the additive group Z/Zn is isomor-
phic to the ring Z/Zn.

25. Prove that the intersection of any non-empty set of ideals of a ring R is
an ideal of R.

26. Let S be a subset of a ring R. Prove that there is a unique smallest ideal
of R containing S. If S is non-empty, what is this ideal in terms of the
elements of S?

27. Let I and J be ideals of R. Prove that

I + J = {i+ j : i ∈ I, j ∈ J}

is an ideal of R. Prove that

(I + J)/J ≈ I/(I ∩ J).

Prove that if I, J , and K are ideals of R such that I ⊃ K ⊃ J , then

(I/J)/(K/J) ≈ I/K.

28. Let {Is}s∈S be a family of ideals of a ring R. Prove that∑
s∈S

Is =

{∑
s∈S

is : is ∈ Is, is = 0 for all but finitely many s

}
is an ideal of R.

29. Let I and J be ideals of R. Prove that

IJ = {i1j1 + i2j2 + ...+ injn : i1, i2, ..., in ∈ I, j1, j2, ..., jn ∈ J , n ∈ Z+}

is an ideal of R. (IJ is the product of I and J .)

30. Let I and J be ideals of R. What is the relation between IJ and I ∩ J?

31. Let P be a set of primes. Let

ZP = {a/b : a, b ∈ Z, b 6= 0, (b, p) = 1 for all p ∈ P}.

Find all the maximal ideals M of the ring Zp, and in each case determine
the field Zp/M .
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32. Find an example of an integral domain that has exactly one maximal ideal.
Now find such an example that is not a field.

33. Find the maximal ideals of Z/Zn.

34. For which n does Z/Zn have exactly one maximal ideal?

35. Let S be any set, and let P (S) be the ring of subsets of S. (See 4.1.7 (r).)
Let T ⊂ S. Prove that

P (S)→ P (T ) : a→ a ∩ T

is an epimorphism. What is its kernel?

36. Let S be a non-empty set, and let P (S) be the ring of subsets of S. For
s ∈ S, let Is = {a ∈ P (S) : s /∈ a}. Prove that Is is a maximal ideal of
P (S). What is the field P (S)/Is? Prove that if S is finite, then every
maximal ideal of P (S) is an IS .

37. Let S be a set, and let P (S) be the ring of subsets of S. For any s ∈ S,
show that U = {u ∈ P (S) : s ∈ u} satisfies the following.

(a) S ∈ U and ∅ /∈ U .
(b) If u, v ∈ U , then u ∩ v ∈ U .
(c) If u ∈ U , v ∈ P (S), and u ⊂ v, then v ∈ U .
(d) For each a ∈ P (S), either a or its complement S\ a is in U .

38. Let S be a set, and let P (S) be the ring of subsets of S. A subset U of
P (S) which satisfies (a) —(d) of Problem 37 is called an ultra-filter on
S. Prove that a subset M of P (S) is a maximal ideal of P (S) if and only
if its complement is an ultra-filter on S.

39. Let S be a set, and let F be the field with two elements. Prove that the
ring FS of all mappings from S into F is isomorphic to the ring P (S) of
all subsets of S.

40. Let R be a ring with identity. Define a new ring S as follows. The elements
of S are those of R. If + and · are addition and multiplication in R, define
⊕ and ∗ on S by

a⊕ b = a+ b+ 1,

and
a ∗ b = a · b+ a+ b.

Prove that S is a ring, and that it is isomorphic to the ring R.

41. Let G = {e, a, b} be the cyclic group of order 3. Calculate the following
products in the group ring Q(G).

(a) (e+ 2a+ 3b)(a+ b).
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(b) (e− a)3 + (e− a2)3.

(c) (1/3(e − a) + 1/3(e − a2))(x(e − a) + y(e − a2)), where x and y are
any elements of Q.

42. Let Q(G) be the ring in Problem 41. Prove that

Q(G) = Q(e+ a+ a2)⊕Q(e− a)⊕Q(e− a2)

is a vector space over Q. Prove that Q(e+ a+ a2) is a field isomorphic to
Q. Prove that Q(e− a)⊕Q(e− a2) is a field. Prove that as a ring, Q(G)
is the direct sum of these two fields.

4.3 Field of Quotients of an Integral Domain

An integral domain is a commutative ring with identity such that if ab = 0,
then a = 0 or b = 0. Fields are integral domains since ab = 0 and a 6= 0 imply
that a−1ab = a−10 = b = 0. An integral domain is not necessarily a field, as
the ring Z of integers testifies. However, the ring Z is a subring of the field
Q of rational numbers. More than that, every element of Q can be written in
the form ab−1 with a, b ∈ Z. Rational numbers are quotients of integers. This
phenomenon holds for any integral domain. That is, any integral domain D
is contained in a field F such that for every element a in F , a = bc−1 with b,
c ∈ D. Such a field is a field of quotients of D.

Definition 4.3.1 A field of quotients of an integral domain D is a field F
and a ring monomorphism ϕ : D → F with the property that every element a
in F can be written in the form a = ϕ(b)(ϕ(c))−1 for some b, c ∈ D.

We have two things in mind. We want to show that every integral domain D
has a field of quotients, and that any two fields of quotients of D are essentially
the same. We must decide what this last part should mean.

Definition 4.3.2 Two fields of quotients ϕ : D → F and ϕ′ : D → F ′ of an
integral domain D are equivalent if there is an isomorphism β : F → F ′ such
that β · ϕ = ϕ′.

This definition just says that F and F ′ must be isomorphic via an isomor-
phism that respects the embeddings ϕ : D → F and ϕ′ : D → F ′. If we
think of D as being contained in F and F ′, then it says that there must be an
isomorphism β : F → F ′ fixing D elementwise. Here is a picture.

F F ′-
β

ϕ
�

�
�
�	

D

?

ϕ′
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Theorem 4.3.3 Any integral domain D has a field of quotients, and any two
fields of quotients of D are equivalent.

Proof. This proof is a little long and formal, but conceptually it is easy.
A field F will be constructed from D in the same way that Q is constructed
from Z. A rational number is a quotient a/b = ab−1 of integers, but two such
quotients a/b and c/d may be the same rational number with a 6= c and b 6= d.
For example, 1/2 = 5/10. In fact, a/b = c/d if and only if ad = bc. We will
follow this lead in building our field. Recall that D∗ = D\{0}. In the set
D ×D∗, let

(a, b) (c, d) if ad = bc.

This is an equivalence relation on D × D∗. Only transitivity threatens to be
diffi cult. If (a, b) (c, d) and (c, d) (e, f), then ad = bc and cf = de. We need
af = be. But ad = bc implies adf = bcf , and cf = de implies bcf = bde. Since
D is an integral domain, af = be. Thus is transitive.
The equivalence relation ˜ on D × D∗ partitions D × D∗ into equivalence

classes. Let F be the set of these equivalence classes. We will make F into
a field. Denote the equivalence class containing (a, b) by a/b. Then we have
a/b = c/d if and only if ad = bc. We need to define addition and multiplication
on F . Let

(a/b)(c/d) = ac/bd,

and
a/b+ c/d = (ad+ bc)/bd.

First, we must make sure that we have really defined binary operations on
F . It is conceivable that a/b = a′/b′, c/d = c′/d′, and ac/bd 6= a′c′/b′d′, and
similarly for addition. So suppose a/b = a′/b′. We will show that (ad+bc)/bd =
(a′d + b′c)/b′d. This holds if and only if (ad + bc)b′d = (a′d + b′c)bd. Since
ab′ = ba′, the left side is (a′bd + bb′c)d and so is the right. It follows that
addition is well defined. The proof that multiplication is well defined is similar.
Note that both operations are commutative. Under this addition and mul-

tiplication, F is a field. First, 0/1 is the additive identity since 0/1 + a/b =
(0 · b + a · 1)/b = a/b. The negative of a/b is (−a)/b. The associative laws are
not diffi cult. The multiplicative identity is 1/1. Let’s check the distributive law.

(a/b)(c/d+ e/f) = (a/b)((cf + de)/df) = a(cf + de)/bdf,

while

(a/b)(c/d) + (a/b)(e/f) = ac/bd+ ae/bf = (acbf + bdae)/bdbf

= ((acf + ade)/bdf)(b/b)

= ((acf + ade)/bdf)/(1/1) = (acf + ade)/bdf.

Thus the distributive law holds. If a/b 6= 0/1, then a 6= 0, and b/a ∈ F . Further,
(a/b)(b/a) = ab/ba = 1/1. Therefore

(a/b)−1 = b/a.
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In short, one computes with these a/b just as with rational numbers.
We now have a field F . The map

ϕ : D → F : a→ a/1

is a ring monomorphism. In fact,

ϕ(a+ b) = (a+ b)/1 = a/1 + b/1 = ϕ(a) + ϕ(b),

and
ϕ(ab) = ab/1 = (a/1)(b/1) = ϕ(a)ϕ(b).

If ϕ(a) = 0/1, then 0/1 = a/1, and so 1 · a = 0 · 1 = a = 0. We have
already observed that 1/b = (b/1)−1. Thus, for a/b ∈ F , a/b = (a/1)/(b/1) =
ϕ(a)(ϕ(b))−1.
It remains to show that any two fields of quotients of D are equivalent. Let

ϕ : D → F and ϕ′ : D → F ′ be such. Define

β : F → F ′ : ϕ(a)(ϕ(b))−1 → ϕ′(a)(ϕ′(b))−1.

It is not entirely obvious that β is well defined. To make sure that it is,
suppose that ϕ(a)(ϕ(b))−1 = ϕ(a′)(ϕ(b′))−1. Then ϕ(a)ϕ(b′) = ϕ(a′)ϕ(b) =
ϕ(ab′) = ϕ(a′b), and so ab′ = a′b. Therefore ϕ′(ab′) = ϕ′(a′b), and hence
ϕ′(a)(ϕ′(b))−1 = ϕ′(a′)(ϕ′(b′))−1. Obviously, β · ϕ = ϕ′.
We need β to be an isomorphism. First, if a, b ∈ D with a 6= 0 6= b, then

ϕ(ab) = ϕ(a)ϕ(b), so (ϕ(ab))−1 = (ϕ(a)ϕ(b))−1 = (ϕ(a))−1(ϕ(b))−1. Now

β((ϕ(a)(ϕ(b))−1)(ϕ(c)(ϕ(d))−1)) = β(ϕ(ac)(ϕ(bd))−1) = ϕ′(ac)(ϕ′(bd))−1

= (ϕ′(a)(ϕ′(b))−1)(ϕ′(c)(ϕ′(d))−1)

= β(ϕ(a)(ϕ(b))−1)β(ϕ(c)(ϕ(d))−1).

Thus β preserves multiplication. We are simply using the definition of β and
the fact that every element of F can be written in the form ϕ(a)(ϕ(b))−1. If
β(ϕ(a)(ϕ(b))−1) = 0, then ϕ′(a)(ϕ′(b))−1 = 0, whence ϕ′(a) = 0, and so a = 0.
Thus ϕ(a)(ϕ(b))−1 = 0, and β is one-to-one. β is onto since every element
of F can be written in the form ϕ′(a)(ϕ′(b))−1, and so β(ϕ(a)(ϕ(b))−1) =
ϕ′(a)(ϕ′(b))−1. We need that β preserves addition.

β(ϕ(a)(ϕ(b))−1 + ϕ(c)(ϕ(d))−1)

= β(ϕ(a)(ϕ(b))−1(ϕ(d))−1ϕ(d) + ϕ(c)(ϕ(d))−1(ϕ(b))−1ϕ(b))

= β(ϕ(ad)(ϕ(bd))−1 + ϕ(bc)(ϕ(bd))−1)

= β((ϕ(ad) + ϕ(bc))(ϕ(bd))−1) = β(ϕ(ad+ bc)(ϕ(bd))−1)

= ϕ′(ad+ bc)(ϕ′(bd))−1 = ϕ′(a)(ϕ′(b))−1 + ϕ′(c)(ϕ′(d))−1

= β(ϕ(a)(ϕ(b))−1) + β(ϕ(c)(ϕ(d))−1).

The proof is complete.
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In practice, if D is an integral domain, and ϕ : D → F is a field of quotients
of D, then D is identified with its image in F . Then F contains D, and every
element in F is of the form ab−1 with a, b ∈ D. Also, we write 1/b for b−1, or
more generally, a/b for ab−1.
This construction has been generalized in many ways. There is an extensive

literature on “rings of quotients.”One way to generalize it is as follows. Let R be
a commutative ring with an identity, and let S be a non-empty multiplicatively
closed subset of R containing no zero divisors. If R is an integral domain, then
the non-zero elements of R is such a set. For any commutative ring with identity,
the set of elements that are not zero divisors will serve. In R× S, let

(a, b) (c, d) if and only if ad = bc.

This defines an equivalence relation, and the set of equivalence classes is a ring
under the operations defined as in the integral domain case. This ring is denoted
RS , R is “contained”in RS , and every element of S has an inverse in RS . Even
if R is an integral domain, S does not have to be taken to be all the non-zero
elements of R. For example, in Z let S be all those integers relatively prime
to a fixed prime p. The resulting ring of quotients consists of all those rational
numbers whose denominators are relatively prime to p.
There are generalizations to the non-commutative case. If R is a ring with no

zero divisors, there is a condition due to Oré which insures that the construction
above can be carried out, yielding an embedding of R in a division ring.

PROBLEMS

1. Find the field of quotients of the integral domain

{a+ b
√

3 : a, b ∈ Z}.

2. Let f : R→ S be a ring homomorphism, and let R and S be commutative
rings with identities. Let G be a subgroup of the group of units of S.
Prove that S = f−1(G) is a multiplicatively closed subset of R containing
no zero divisors. What is S if f is the natural homomorphism Z→ Z/Zp
for a prime p, and G = (Z/Zp)∗?

3. Prove that if F is a field, then 1F : F → F is a field of quotients of F .

4. Prove that if ϕ : D → F is a monomorphism, D is a integral domain, and
F is a field, then F contains a subfield F ′ such that ϕ : D → F ′ is a field
of quotients of D.

5. Prove that if ϕ : D → F is a field of quotients of the integral domain D,
and F ′ is a subfield of F containing ϕ(D), then F ′ = F .

6. Let S be a non-empty multiplicatively closed subset of a commutative ring
R with identity. Suppose that S contains no zero divisors of R. Define
˜ on R × S by (a, b) ˜ (c, d) if ad = bc. Let RS be the set of equivalence
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classes of ˜ . Let a/b denote the equivalence class containing (a, b). Prove
that

(a/b)(c/d) = ac/bd,

and
a/b+ c/d = (ad+ bc)/bd

make RS into a commutative ring with identity. Let s ∈ S. Prove that

ϕS : R→ RS : a→ (as/s)

is a monomorphism, and for any t ∈ S, ϕS(t) has an inverse in RS . Prove
that every element in RS is of the form ϕS(a)(ϕS(t))−1 for some a ∈ R
and t ∈ S.

7. Let R = Z/Zn, and let S be the set of all elements of R that are not zero
divisors. Find RS .

8. Let S be a non-empty multiplicatively closed subset of an integral domain
D such that 0 /∈ S. Let S̄ = {a ∈ D : ab ∈ S for some b ∈ D}. S is called
saturated if S = S̄.

(a) Find all saturated subsets of Z.
(b) Find all saturated subsets of Q.
(c) Find all saturated subsets of a field F .

(d) Prove that (as)/s ∈ DS has an inverse if and only if a ∈ S̄.

9. Let S and T be two non-empty multiplicatively closed subsets of an inte-
gral domain D such that 0 /∈ S, 0 /∈ T . Prove that there is an isomorphism
β : DS → DT such that β ◦ ϕS = ϕT if and only if S̄ = T̄ .

4.4 Principal Ideal Domains

For any element in a commutative ring R, the set

Ra = {ra : r ∈ R}

is an ideal of R. Such an ideal is called principal. Thus if R has an identity,
Ra is the smallest ideal containing the element a. The ideal Ra is generally
denoted (a).

Definition 4.4.1 A principal ideal domain is an integral domain in which
every ideal is principal.

Principal ideal domain will be abbreviated PID. The ring Z is a PID. If I is
an ideal of Z, it is, in particular, a subgroup of Z, so is cyclic. Thus I = Zn for
some n. It turns out that the ring F [x] of all polynomials in x with coeffi cients
in F is a PID for any field F (4.5.11). The ring F [x, y] of polynomials in x and
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y with coeffi cients in F is not a PID. The ideal generated by the set {x, y} is
not principal. The ring Z[x] is not a PID, since the ideal generated by {2, x} is
not principal. We have not studied polynomial rings yet, and these facts may
not be entirely obvious.
Our purpose in this section is to discuss primes, greatest common divisors,

factorization of elements into primes, and the like in PID’s. Application of these
results will be mainly to F [x] in 4.5.
We will assume throughout that R is an integral domain. A number of

definitions are needed.
The element a in R is an associate of the element b in R, if a = ub for some

unit u in R. An element a not a unit and not 0 is irreducible if whenever
a = bc, either b or c is a unit. The element a divides the element b, or b is
a multiple of a, denoted a|b, if b = ac for some c. The non-zero element p
is a prime if p is not a unit, and whenever p|ab, then p|a or p|b. A greatest
common divisor (abbreviated gcd) of the set of elements {a1, a2, . . . , an} is
an element d such that d|ai for all i, and such that if e|ai for all i, then e|d.
Two elements a and b are relatively prime if any gcd of {a, b} is a unit. A
least common multiple (abbreviated lcm) of the set of elements {a1, a2, . . .
, an} with not all ai = 0 is an element a such that a is a multiple of each ai,
and such that if e is a multiple of each ai, then e is a multiple of a.
Being “an associate of”is an equivalence relation. This follows from the fact

that the set U of units of R is a multiplicative group. The set of equivalence
classes of this equivalence relation partitions R. The equivalence classes on Z
are {±n}, n = 0, 1, 2, . . . . There are only two units, ±1, in Z, so each
equivalence class has at most two elements in it. For a field F , {0} and F ∗ are
the only equivalence classes. For any integral domain R and element a in R,
the equivalence class containing a is aU = {au : u ∈ U}, where U is the group
of units of R. If F is the field of quotients of R, a coset xU of U in F ∗ is either
contained in R or is disjoint from R, according to whether x ∈ R or x /∈ R.
Thus the equivalence classes are the cosets of U which are in R.
Suppose that the element a is irreducible and that u is a unit. If au = bc,

then a = b(cu−1). Therefore, either b or cu−1 is a unit, and hence either b or
c is a unit. Therefore if an element a is irreducible and u is a unit, then au is
irreducible.
Notice that if a|b and u is a unit, the au|b. In fact, ac = b implies that

(au)(u−1c) = b. Suppose that a is a prime and that u is a unit. If au|bd, then
a|bc, so a|b or a|c. Thus au|b or au|c. Therefore au is prime if a is prime.
Equivalently, if a is prime, then so is any associate of a.
Suppose d and d′ are both gcd’s of {a1, a2, . . . , an}. Then d|d′ and d′|d.

Hence de = d′ and d′e′ = d for some e and e′. Thus dee′ = d, so ee′ = 1, whence
e and e′ are units. Clearly, if d is a gcd of {a1, a2, . . . , an}, then so is du for any
unit u. Therefore, if a set {a1, a2, . . . , an} has a gcd d, then the set of all gcd’s
of that set is the equivalence class of associates of d. A similar story is true for
lcm’s. One class of associates is the set U of units of the ring. This class has a
natural representative, namely 1. If the set of gcd’s of a set {a1, a2, . . . , an} is
U , then we way that the gcd of the set is 1, and write gcd{a1, a2, . . . , an} = 1.
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Thus a and b are relatively prime if gcd{a, b} = 1.
Suppose that a is prime. If a = bc, then a|bc, so a|b or a|c. If ad = b, then

a = adc, whence 1 = dc and c is a unit. Therefore primes are irreducible.
There are two big facts that we are after. First, if R is a PID, then any

finite subset {a1, a2, , an} of R, with not all the ai = 0, has a gcd d in R, and
d = Σ diai for appropriate di in R. Next we want to show that every non-zero
element a in a PID can be written in the form a = up1p2...pn with u a unit and
the pi’s prime. Furthermore, this can be done in essentially only one way. We
can get the first big fact now.

Theorem 4.4.2 Let R be a PID and let {a1, a2, . . . , an} be a subset of R, with
n ≥ 1 and not all the ai = 0. Then this set has a gcd, and any gcd of it is of
the form Σ riai with ri ∈ R.

Proof. The set I = Ra1 + Ra2 + · · · + Ran is an ideal of R. Therefore,
I = Rd for some d in R. Now each ai is in Rd, so ai = sid for some si ∈ R.
Thus d|ai for all i. The element d is in I, so d = Σ riai for appropriate ri ∈ R.
Therefore, if e|ai for all i, then e|d. Hence d is a gcd of {a1, a2, . . . , an}. Any
gcd of {a1, a2, . . . , an} is of the form du with u a unit. Therefore du = Σ(uri)ai,
and the proof is complete.

The element Σ riai is called a linear combination of the ai’s. Thus any
gcd of {a1a2, . . . , an} is a linear combination of the ai’s.

Corollary 4.4.3 An element in a PID is a prime if and only if it is irreducible.

Proof. We have already seen that a prime is irreducible. Suppose that a is
irreducible, and that a|bc. Let d be a gcd of {a, b}. Then a = de and b = df .
If e is a unit, then a|b since d|b. If e is not a unit, then d is a unit, and hence
ar + bs = 1 for some r and s in R. Hence arc + bsc = c. Since a divides both
terms on the left of this equation, a|c. Hence a is prime.

In PID’s we can now use the words “prime”and “irreducible” interchange-
ably. It is not true that prime and irreducible are the same for arbitrary integral
domains. There is an example in 8.2, page 284.

Corollary 4.4.4 A non-zero ideal Rp in a PID R is maximal if and only if p
is prime.

Proof. Suppose that p is prime. If Rp ⊂ Ra, then p = ra for some r in R.
Either r or a is a unit. If r is a unit, then Rp = Ra. If a is a unit, then Ra = R.
Thus Rp is maximal.
Suppose that Rp is maximal and non-zero. If p = ab, then Rp ⊂ Ra, so

Ra = R or Ra = Rp. If Ra = R, then a is a unit. If Ra = Rp, then a = rp, so
p = ab = rpb, whence 1 = rb. Thus b is a unit. Therefore p is prime.
To write a non-zero element in a PID as a unit times a product of primes is

a little bit tricky. In fact, suppose a is not a unit. Why does a have a prime
divisor? It is not obvious at all that it does. Even if every non-unit has a prime
divisor, then a = p1b1 with p1 prime, b1 = p2b2 with p2 prime, and so on, but
conceivably the process will never end. So there is a little bit of preliminary
work to be done.
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Definition 4.4.5 Let R be any ring. Then R satisfies the ascending chain
condition, or R isNoetherian, if every ascending sequence I1 ⊂ I2 ⊂ I3 ⊂ · · ·
of ideals of R becomes constant.

That is, R satisfies the ascending chain condition (abbreviated acc) if R has
no infinite chain I1 ⊂ I2 ⊂ I3 ⊂ · · · of ideals with the inclusions all proper ones.

Theorem 4.4.6 A PID is Noetherian.

Proof. Let I1 ⊂ I2 ⊂ I3 ⊂ · · · be a chain of ideals of a PID R. Then⋃
Ii = I is an ideal of R. But I = Ra for some a in R, and a must be in In for

some n. Thus
In = In+1 = In+2 = · · · .

Corollary 4.4.7 Let R be a PID. Every ideal I 6= R is contained in a maximal
ideal.

Proof. If I 6= R and I is not maximal, then I is properly contained in an
ideal I1 6= R. If I1 is not maximal, then I1 is properly contained in an ideal
I2 6= R. The chain

I ⊂ I1 ⊂ I2 ⊂ · · ·
must stop. It stops at a maximal ideal.

Now we are ready to factor an element into a product of primes.

Theorem 4.4.8 (The Fundamental Theorem of Arithmetic) Let R be a
PID. Then any non-zero element a in R can be written in the form a = up1p2...pn,
where u is a unit and each pi is a prime. If also a = vq1q2...qm with v a unit
and each qi prime, then m = n and, after suitable renumbering, pi and qi are
associates for all i.

Proof. If a is a unit, there is nothing to do. Suppose that a is not a unit.
If a is not prime, then a = a1b1 with neither a1 nor b1 a unit. Thus Ra $ Rb1.
If b1 is not prime, then b1 = a2b2 with neither a2 nor b2 a unit. Thus Ra $ Rb1
$ Rb2. Keep going. We get an ascending chain of ideals of R. It must terminate.
Thus we come to a bn that is prime. Hence a = (a1a2...an)bn, so a is divisible by
a prime. We have shown that every non-unit non-zero element in R is divisible
by a prime.
Write a = p1c1 with p1 a prime. If c1 is not a unit, then c1 = p2c2 with p2

prime. If c2 is not a unit, then c2 = p3c3 with p3 prime. Thus we get a chain
Ra $ Rc1 $ Rc2 $ Rc3 $ · · · . It must terminate. Therefore some cn is a unit.
Hence a = up1p2 · · · pn with u a unit and with each pi a prime.
Now suppose that a = vq1q2 · · · qm with v a unit and each qi a prime. We

will induct on n. If n = 0, then a is a unit and hence m = 0. If n > 0, then
m > 0. In this case, p1|a so p1 divides some qi, and we may as well suppose
i = 1. This means that p1u1 = q1 for some unit u1. We have a = up1p2 · · · pn
= (vu1)p1q2q3 · · · qm. Cancel p1. We get up2p2 · · · pn = (vu1)q2q3 · · · qm. By the
induction hypothesis, we are through.
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Corollary 4.4.9 Every non-zero element a in a PID can be written in the form

a = upn11 pn22 · · · p
nk
k ,

where u is a unit and the pi are nonassociate primes. If

a = vqm1
1 qm2

2 · · · qmj

j ,

where v is a unit and the qi are nonassociate primes, then j = k, and after
suitable renumbering, pi and qi are associates for all i.

PROBLEMS

1. Prove that being “an associate of”is an equivalence relation.

2. Let p be a prime in Z, and let R = {a/pn : a, n ∈ Z}. Prove that R is
a PID. What are the primes, and what are the units in R? Prove that if
p = 3, then a gcd of {5, 7} is 9.

3. Prove that any subring of Q which contains Z is a PID.

4. Let S be a nonempty multiplicatively closed subset of Z with 0 /∈ S. What
are the primes, and what are the units of ZS?

5. Let R be a PID, and let S be a non-empty multiplicatively closed subset
of R with 0 /∈ S. Prove that RS is a PID. What are its units?

6. Do the following.

(a) Describe, in terms of the primes of Z, all the subrings of Q containing
Z.

(b) Let R be a PID, and let F be its field of quotients. Describe, in terms
of the primes of R, all the subrings of F containing R.

7. Prove that Z[i] = {a+ bi : a, b ∈ Z} is a PID.

8. Prove that any two lcm’s of a set {a1, a2, . . . , an} are associates.

9. Let R be a PID, a and b in R, and

a = upn11 pn22 · · · p
nk
k , b = vpm1

1 pm2
2 · · · pmk

k ,

with u and v units, the pi’s primes, and ni and mi ≥ 0. Write down a gcd
and an lcm of {a, b}.

10. Let a and b be in R. Prove that if R is a PID, and if d is a gcd of {a, b},
then ab/d is an lcm of {a, b}.

11. Prove that the ideals of a PID R are in one-to-one correspondence with
the associate classes of elements of R.
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12. Let I and J be ideals of the PID R. If I = Ra and J = Rb, prove that
IJ = Rab. (See 4.2, Problem 29, for the definition of the product IJ .)

13. Let I and J be ideals of the PID R. Prove that if I = Ra and J = Rb,
then I + J = Rd, where d is any gcd of a and b. Prove that I ∩ J = Rc,
where c is any lcm of a and b.

14. Let I and J be ideals in the PID R. Let I = Ra, and let J = Rb. Prove
that IJ = I ∩ J if and only if ab is an lcm of a and b.

15. Call an ideal I in a commutative ring R with identity a prime if I 6= R
and if ab ∈ I implies that a ∈ I or b ∈ I. Prove that I 6= R is a prime ideal
in R if and only if R/I is an integral domain. Prove that every maximal
ideal of R is a prime ideal.

16. Let R be a PID, and let r 6= 0 nor be a unit. Prove that R/Rr is either a
field or has zero divisors.

17. Find those r in a PID R such that R/Rr has no non-zero nilpotent ele-
ments.

18. Let R be a PID. Prove that an ideal I 6= 0 is a prime ideal if and only if
I = Rp for some prime p.

19. Let R be a PID, and let I be an ideal of R such that 0 6= I 6= R. Prove
that I = P1P2 · · ·Pn, where each Pi is a prime ideal. Prove that if
I = Q1Q2 · · ·Qm with each Qi prime, then m = n, and after suitable
renumbering, Pi = Qi for all i. That is, prove that every ideal 6= R or 0
is uniquely a product of prime ideals.

20. Call an ideal I in a commutative ring R with an identity primary if I 6= R
and if ab ∈ I and a /∈ I, then bn ∈ I for some n. Prove that prime ideals
are primary. Prove that if R is a PID, then I is primary if and only if
I = Pn for some prime ideal P . Prove that if R is a PID and if Pm = Qn

for prime ideals P and Q of R, then P = Q and m = n.

21. Let I be an ideal in the PID R, with I 6= R. Prove that

I = Pn11 ∩ P
n2
2 ∩ · · · ∩ P

nk
k

where the Pi are distinct prime ideals. Prove that if

I = Q1 ∩Q2 ∩ · · · ∩Qm

with the Qi primary and no Qi contained in Qj for j 6= i, then m = k,
and after suitable renumbering,

Qi = Pnii

for all i.
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22. Let R be a PID, and let a and b be in R with (a, b) = 1. Prove that

R/Rab→ (R/Ra)⊕ (R/Rb) : r +Rab→ (r +Ra, r +Rb)

is a ring isomorphism. Generalize

23. (Chinese Remainder Theorem) Let a, b, c, and d be integers with gcd(a, b) =
1. Prove that x = c (mod a) and x = d (mod b) has a simultaneous integral
solution x, and that x is unique mod ab. Generalize.

24. Let I and J be ideals of the commutative ring R with identity such that
I + J = R. Prove that

R/(I ∩ J)→ (R/I)⊕ (R/J) : r + I ∩ J → (r + I, r + J)

is a ring isomorphism. Generalize.

4.5 Polynomial Rings

Not only are polynomial rings of interest in their own right, but they will play a
key role in our study of linear transformations in Chapter 5, and in our study of
fields in Chapter 6. They will also make an appearance in a couple of classical
theorems in Chapter 8. We have used them as a source of examples several
times already.
Let R be any ring. We think of a polynomial in x with coeffi cients in R as

a symbol
a0 + a1x+ a2x

2 + · · ·+ anx
n,

with ai ∈ R. If we add and multiply these symbols in the usual way, we get a
new ring, denoted R[x]. “Adding and multiplying these symbols in the usual
way”covers some sins, however. For example, the distinct symbols

1 + 2x+ 0x2 , and

1 + 2x

represent the same element in Z[x]. More generally, the symbols

a0 + a1x+ · · ·+ anx
n

and
b0 + b1x+ · · ·+ bmx

m

represent the same element in R[x] if and only if ai = bi whenever either ai or
bi 6= 0. This defines an equivalence relation, and we could define R[x] to be the
set of its equivalence classes, and addition and multiplication accordingly. This
would give us what we want, but we prefer another way that is equally precise.
Let R be any ring, and let R[x] be the set of all mappings f from the set

{x0, x1, x2, } into the set R such that f(xn) = 0 for all but finitely many



4.5. POLYNOMIAL RINGS 137

n. The largest n such that f(xn) 6= 0, if such exists, is called the degree of f .
If no such n exists, then f has degree −∞ . In R[x], add and multiply by the
rules

(f + g)(xn) = f(xn) + g(xn),

and
(fg)(xn) =

∑
i+j=n

f(xi)g(xj).

This makes R[x] into a ring. There are many things to check, but they are all
easy. Note first that f + g and fg are actually in R[x]. The most diffi cult thing
to check is the associative law for multiplication, which we will do now.

((fg)h)(xn) =
∑
i+j=n

(fg)(xi)h(xj) =
∑
i+j=n

( ∑
k+m=i

f(xk)g(xm)

)
h(xj)

=
∑
i+j=n

( ∑
k+m=i

f(xk)g(xm)h(xj)

)
=

∑
k+m+j=n

f(xk)g(xm)h(xj).

Similarly,
(f(gh))(xn) =

∑
k+m+j=n

f(xk)g(xm)h(xj),

and so the associative law for multiplication holds. The remaining details in
showing that R[x] is a ring are left to the reader.

Definition 4.5.1 The ring R[x] is the ring of polynomials in x with coef-
ficients in R.

Let a ∈ R, and let n be a non-negative integer. One element of R[x] is the
function that sends xn to a and xm to 0 if m 6= n. Denote this element by
axn. That is, (axn)(xm) = δmna. It is called a monomial. Now let f be any
element of R[x]. Clearly

f = f(x0)x0 + f(x1)x1 + · · ·+ f(xn)xn

whenever f(xm) = 0 for all m > n. That is, every element of R[x] is a sum of
monomials. When are two sums

a0x
0 + a1x

1 + · · ·+ anx
n

and
b0x

0 + b1x
1 + · · ·+ bmx

m

equal? By the definition of addition in R[x], the first takes xi to ai for i ≤ n
and xk to 0 for k > n, and similarly for the second. Thus these two sums of
monomials are equal if and only if ai = bi, with the convention that ai = 0
for i > n and bi = 0 for i > m. That is, they are equal if and only if they
are equal as polynomials as we ordinarily think of polynomials. How do such
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sums of monomials add and multiply? Noting that (axm)(bxn) = (ab)xm+n,
and that axm + bxm = (a+ b)xm by their very definition, we see that they add
and multiply just as we should add and multiply polynomials.
Some notational changes are in order. If R has an identity, then the mono-

mial 1xn is written simply as xn. In any case, x1 is written x, and the monomial
ax0 is written simply as a. Hence we can write any element in R[x] in the form

a0 + a1x+ a2x
2 + · · ·+ anx

n

with the ai ∈ R, and we have already observed how unique such a representation
is. The letter x is called the indeterminate, and the ai the coeffi cients. We
could just as well have used y, or z, or anything for the indeterminate.
Having R[x], we can form R[x][y], or more generally, R[x1][x2] · · · [xn]. How-

ever, R[x][y] ≈ R[y][x] in the following special way. An element in R[x][y] is a
polynomial in y with coeffi cients in R[x], and is the sum of monomials. Let

(a0 + a1x+ · · ·+ anx
n)ym

be a monomial in R[x][y]. Since

(a0 + a1x+ · · ·+ anx
n)ym = a0y

m + a1xy
m + · · ·+ anx

nym,

every element in R[x][y] is a sum of monomials of the form aijx
iyj with aij ∈ R.

Associate with aijx
iyj the monomial aijyjxi in R[y][x]. Now the mapping

R[x][y]→ R[y][x] that sends Σaijx
iyj to Σaijy

jxi is an isomorphism. The rings
R[x][y] and R[y][x] are usually identified and denoted R[x, y]. Since any element
in R[x][y] can be written in the form Σ aijx

iyj with aij ∈ R, the elements in
R[x][y] are “polynomials in x and y”with coeffi cients in R. Similar remarks
apply to R[x1][x2] · · · [xn] . We leave the details to the reader and will not further
concern ourselves with “polynomials in several variables”at the moment.
We are not going to study general polynomial rings in any depth. Our

primary interest is in F [x] where F is a field, and at this point it is convenient
to restrict attention to rings D[x] where D is an integral domain. So from now
on, D will be an integral domain.
The map D → D[x] : a → ax0 is clearly a ring monomorphism. In fact, we

are already writing ax0 simply as a. Therefore, we consider D as a subring of
D[x]. The elements of D in D[x] are called constants. The reason is this. For
any element a0 + a1x+ · · · anxn ∈ D[x], there is associated a mapping from D
into D defined by

d→ a0 + a1d+ · · ·+ and
n.

The constant polynomial a0 corresponds to the constant function D → D : d→
a0.
An element of D[x] will typically be denoted p(x). If p(x) = a0 + a1x +

· · · + anx
n and d ∈ D, then p(d) denotes the element a0 + a1d + · · · + and

n of
D. That is, p(d) is “p(x) evaluated at d.” Thus with each p(x) ∈ D[x] we have
associated a map from D into D. Letting Map(D,D) denote the set of all maps
from D into D, we have then a map

ε : D[x]→ Map(D,D).
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It is given by ε(p(x))(d) = p(d).

Theorem 4.5.2 If p(x) and q(x) are in D[x] and d ∈ D, then p(x) + q(x)
evaluated at d is p(d) + q(d), and p(x)q(x) evaluated at d is p(d)q(d).

Proof. Proof. Let p(x) = Σ aix
i and q(x) = Σ bix

i. Then

p(x)q(x) = Σi(Σj+k=iajbk)xi.

Hence p(x)q(x) evaluated at d is Σi(Σj+k=iajbk)di. Now

p(d)q(d) = (Σiaid
i)(Σibid

i) = Σi(Σj+k=iajbk)di,

using commutativity of D. Similarly, p(x) + q(x) evaluated at d is p(d) + q(d).

The image of the map

ε : D[x]→ Map(D,D)

is the set of polynomial functions on D. Furthermore, Map(D,D) is a ring
if we add and multiply by the rules

(α+ β)(d) = α(d) + β(d), and

(αβ)(d) = α(d)β(d).

Now observe that 4.5.2 just says that ε : D[x] → Map(D,D) is a ring
homomorphism. This homomorphism is a monomorphism if and only if D is
infinite. If D is finite, then ε cannot be one-to-one since D[x] is infinite and
Map(D,D) is finite. However, if D is infinite and ε(p(x)) = 0, then p(d) = 0
for all d ∈ D. Thus p(x) would have infinitely many roots in D. We will see in
4.5.10 below that this is an impossibility unless p(x) = 0.

The upshot is this. IfD is an infinite integral domain, thenD[x] is isomorphic
to a subring of Map(D,D), namely the subring of polynomial functions on D.
These functions can be identified in Map(D,D) without first defining D[x]. A
polynomial function on D is a function f : D → D such that there exist

a0, a1, a2, , an ∈ D such that

f(d) = a0 + a1d+ · · ·+ and
n

for all d ∈ D. Now one could define D[x] as the set of all these polynomial
functions on D, and then verify that it is a subring of the ring Map(D,D). In
fact, in elementary analysis, we are used to thinking of polynomials (with real
coeffi cients, say) as functions. In any case, if D is an infinite integral domain,
the ring D[x] and the ring of polynomial functions on D may be identified– they
are isomorphic.
If

a0x
0 + a1x

1 + · · ·+ anx
n 6= 0,
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its degree is the largest m such that am 6= 0. The degree of 0 ∈ D[x] is
defined to be the symbol −∞, and we make the conventions that

−∞+ n = n+−∞ = −∞+−∞ = −∞

for all non-negative integers n. We write deg(p(x)) for the degree of the poly-
nomial p(x).

Theorem 4.5.3 If p(x) and q(x) are in D[x] and if D is an integral domain,
then

deg(p(x)q(x)) = deg(p(x)) + deg(q(x)).

Proof. Write p(x) = a0 +a1x+· · ·+anxn and q(x) = b0 +b1x
1 +· · ·+bmxm.

If either is 0, the desired equality is clear. So take an 6= 0 6= bm. The term of
the largest degree in p(x)q(x) is anbmxm+n, and it is not zero since D is an
integral domain.

Corollary 4.5.4 If D is an integral domain, then D[x] is an integral domain.

Corollary 4.5.5 If D is an integral domain, then the units of D[x] are the
units of D.

Proof. If p(x)q(x) = 1, then deg(p(x)q(x)) = deg(1) = 0 = deg(p(x)) +
deg(q(x)), so that deg(p(x)) = 0 = deg(q(x)). That is, p(x) and q(x) are in D.
Therefore, if p(x) is a unit in D[x], it is not only in D, but is a unit there. Units
of D are clearly units of D[x].

Corollary 4.5.6 If F is a field, then the units of F [x] are the non-zero elements
of F .

Suppose that D is an integral domain and that

g(x) = a0 + a1x+ · · ·+ amx
m ∈ D[x]

with am a unit in D. In particular, g(x) 6= 0. For any

f(x) = b0 + b1x+ · · ·+ bnx
n ∈ D[x],

we want to write f(x) = g(x)q(x) + r(x) with q(x) and r(x) in D[x] and
deg(r(x)) < deg(g(x)). If deg(f(x)) < deg(g(x)), it is easy. Just let q(x) = 0
and r(x) = f(x). If not, n ≥ m, and

f(x)− a−1
m bnx

n−mg(x)

has degree at most n − 1. Therefore, letting q1(x) = a−1
m bnx

n−m and h1(x) =
f(x)− g(x)q1(x), we have

f(x) = g(x)q1(x) + h1(x)
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with deg(h1(x)) < deg(f(x)). If deg(h1(x)) ≥ deg(g(x)), write h1(x) = q2(x)g(x)+
h1(x) with deg(h2(x)) < deg(h1(x)). Eventually we get

f(x) = q1(x)g(x) + q2(x)g(x) + · · ·+ qn(x)g(x) + hn(x)

with deg(hn(x)) < deg(g(x)). Denoting

q1(x) + q2(x) + · · ·+ qn(x)

by q(x) and hn(x) by r(x), we have shown that

f(x) = q(x)g(x) + r(x)

with deg(r(x)) < deg(g(x)). If

f(x) = q1(x)g(x) + r1(x)

with
deg(r1(x)) < deg(g(x)),

then
g(x)(q(x)− q1(x)) = r1(x)− r(x).

Unless
q(x)− q1(x) = 0,

deg(g(x)(q(x)− q1(x))) > deg(r1(x)− r(x)).

Therefore q(x) = q1(X) and r(x) = r1(x). Thus we have

Algorithm 4.5.7 (The Division Algorithm for Polynomials) Let D be
an integral domain, let f(x) and g(x) be in D[x], and suppose that g(x) 6= 0
and has leading coeffi cient a unit. Then there exist unique polynomials q(x) and
r(x) in D[x] such that

f(x) = g(x)q(x) + r(x), and

deg(r(x)) < deg(g(x)).

Theorem 4.5.8 (Remainder Theorem) Let D be an integral domain, and
let a be an element of D. For any f(x) ∈ D[x],

f(x) = (x− a)q(x) + f(a).

Proof. Write f(x) = (x − a)q(x) + r(x) with deg(r(x)) < deg(x − a). We
can do this because the leading coeffi cient of x − a is 1, which is a unit in D.
Since deg(x− a) = 1, r(x) = d ∈ D. Hence f(a) = (a− a)q(a) + d = d.

Corollary 4.5.9 Let D be an integral domain, let a ∈ D, and let f(x) ∈ D[x].
Then x− a divides f(x) in D[x] if and only if f(a) = 0.
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Proof. If x − a divides f(x), then f(x) = (x − a)q(x), and f(a) = (a −
a)q(a) = 0. Conversely, if f(a) = 0, then since f(x) = (x− a)q(x) + f(a) by the
Remainder Theorem, we have that f(x) = (x− a)q(x).

Corollary 4.5.10 Let D be an integral domain, and let f(x) be a non-zero
element in D[x]. Then there are at most deg(f(x)) elements a ∈ D such that
f(a) = 0. That is, f(x) has at most deg(f(x)) roots in D.

Proof. Suppose that f(a) = 0. Write f(x) = (x− a)q(x). Now deg(q(x)) +
1 = deg(f(x)) since f(x) 6= 0. By induction, q(x) has at most deg(q(x)) roots in
D. Any root of f(x) must be either a or a root of q(x) since f(b) = (b− a)q(b),
and D is an integral domain. The corollary follows.
Our real aim at this point is the following consequence of the Division Al-

gorithm for Polynomials. It is this.

Theorem 4.5.11 Let F be a field. Then F [x] is a principal ideal domain.

Proof. Let I be any ideal of F [x]. If I = {0}, then I is certainly a principal
ideal. So suppose that I 6= {0}. We must find a polynomial g(x) in F [x] such
that I = F [x]g(x). Where can we get hold of such a g(x)? Since I 6= {0}, I has
a non-zero element g(x) in it of least degree, and any such g(x) works. In fact,
let f(x) be any element in I. Write

f(x) = g(x)q(x) + r(x),

with deg(r(x)) < deg(g(x)). Since f(x) and g(x) are in the ideal I, so is r(x).
But no non-zero element in I has degree less than that of g(x). Therefore,
r(x) = 0. Hence I = F [x]g(x), so that F [x] is a PID.
Now we can apply the results of 4.4 to F [x]. Recall that two elements are

associates if one is a unit times the other. The units of F [x] are the non-zero
elements of F , that is, the non-zero constants. Therefore two polynomials are
associates if and only if one is a non-zero constant times the other. If

p(x) = a0 + a1x+ · · ·+ anx
n

is in F [x] and an 6= 0, then

q(x) = a0a
−1
n + a1a

−1
n x+ · · ·+ an−1a

−1
n xn−1 + xn

is an associate of p(x). That is, every non-zero polynomial has an associate
whose coeffi cient of its highest power term is 1. Such polynomials are called
monic. Thus every equivalence class of non-zero associates has a monic repre-
sentative, and clearly two monic polynomials that are associates are equal. So
every such equivalence class of associates has a special element in it, namely the
monic in it.
When is a polynomial in F [x] prime? A non-prime can be factored into

two non-units, and since the units of F [x] are the polynomials of degree 0, a
polynomial p(x) ∈ F [x] is prime if and only if p(x) cannot be written in the
form q(x)r(x) with deg(q(x)) and deg(r(x)) both less than deg(p(x)). Since
every non-zero element in F [x] is a unit or a product of primes, we have the
following theorems.
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Theorem 4.5.12 Let F be a field. Then every non-zero element p(x) ∈ F [x]
can be written in the form

p(x) = ap1(x)p2(x)...pn(x),

where a ∈ F and each pi(x) is a monic prime. If

p(x) = bq1(x)q2(x)...qn(x),

with b ∈ F and each q(x) monic prime, then a = b, m = n, and after suitable
renumbering, pi(x) = qi(x) for all i.

Theorem 4.5.13 Let F be a field. Then every non-zero element p(x) ∈ F [x]
can be written in the form

p(x) = ap1(x)n1p2(x)n2 ...pk(x)nk ,

where a ∈ F and the pi(x) are distinct monic primes. If

p(x) = bq1(x)m1q2(x)m2 ...qj(x)mj

is another such representation, then a = b, j = k, and after suitable renumber-
ing, pi(x) = qi(x) and mi = ni for all i.

Let p(x) be in F [x]. The ideal F [x]p(x) it generates is usually denoted
(p(x)). We know that the quotient ring F [x]/(p(x)) is a field if and only if p(x)
is a prime (4.4.4). Therefore, F [x]/(p(x)) is a field if and only if p(x) cannot be
factored into polynomials of smaller degree.
If p1(x), p2(x), , pn(x) are in F [x], not all zero, then they have a greatest

common divisor, and it can be written in the form Σ ri(x)pi(x) (4.4.2). Since
any two greatest common divisors must be associates, there is a unique monic
greatest common divisor. Similarly, results in PID’s for least common multiples
hold for F [x].
The division algorithm for polynomials (4.5.7) yields an algorithm for com-

puting the greatest common divisor of two polynomials p1(x) and p2(x), and
produces the greatest common divisor as a linear combination of p1(x) and
p2(x). It works just as is the case of the integers (1.6, page 19). If p2(x) 6= 0,
then writing simply pi for polynomials pi(x), we get the following equations.

p1 = p2q1 + p3 with −∞ < deg(p3) < deg(p2);

p2 = p3q2 + p4 with −∞ < deg(p4) < deg(p3);

p3 = p4q3 + p5 with −∞ < deg(p5) < deg(p4);
...

pk−3 = pk−2qk−3 + pk−1 with −∞ < deg(pk−1) < deg(pk−2);

pk−2 = pk−1qk−2 + pk −∞ < deg(pk) < deg(pk−1);

pk−1 = pkqk−1.
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Then pk is the greatest common divisor of p1 and p2, and from the equations
above, pk may be written as a linear combination of p1 and p2. The procedure
is entirely analogous to that for the integers, and again is called the Euclidean
Algorithm (1.6, page 19).

PROBLEMS

1. Prove that R[x] has an identity if and only if R does.

2. Prove that R[x] is commutative if and only if R is.

3. Prove that Z[x] is not a PID.

4. Prove that if F is a field, then F [x, y] is not a PID.

5. Prove that 2x+ 1 is a unit in (Z/Z4)[x]. Compare with 4.5.5.

6. Let f be a homomorphism from R to S. Prove that

R[x]→ S[x] :
∑

rix
i →

∑
f(ri)x

i

is a homomorphism.

7. If D is an integral domain, F is its field of quotients, and K is the field of
quotients of D[x], prove that F (x) ≈ K, where F (x) denotes the field of
quotients of the integral domain F [x].

8. Let D be an integral domain, and let d ∈ D. By 5.4.2, the map D[x] →
D : p(x)→ p(d) is a ring homomorphism. Is its kernel a principal ideal?

9. Let F be a field, and let K be the quotient field of F [x]. For a ∈ F , let

Ka = {f(x)/g(x) : f(x), g(x) ∈ K, g(a) 6= 0}.

Prove that Ka is a subring of K. Prove that

Ka → F : f(x)/g(x)→ f(a)/g(a)

defines a ring epimorphism. What is its kernel?

10. Prove that if F is a field with n elements, and if the non-zero element
p(x) ∈ F [x] has degree m, then F [x]/(p(x)) has nm elements.

11. Prove that x4 + x and x2 + x in (Z/Z3)[x] determine the same element of
Map(Z/Z3, Z/Z3).

12. Let p be a prime. Prove that in (Z/Zp)[x],

xp − x =
∏

a∈Z/Zp

(x− a)
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13. Let F be a finite field. Prove that every function F → F is a polynomial
function. That is, prove that F [x] → Map(F, F ) is onto. What is the
kernel of this homomorphism?

14. Prove that if F is a field, then F [x] has infinitely many primes.

15. Let F be a finite field. Prove that there are primes in F [x] of arbitrarily
large degree. Prove that the hypothesis that F be finite is necessary.

16. Let F and K be fields with F ⊂ K. Let p(x), q(x) ∈ F [x]. Prove that
the monic greatest common divisor of p(x) and q(x) as elements of F [x]
is the same as their monic greatest common divisor as elements of K[x].

17. Let p be any prime, n ≥ 1, and let F be the field of integers modulo
p. Prove that there exists f(x) ∈ F [x] such that f(x) is irreducible, and
deg(f(x)) = n.

18. Let p be any prime and let n > 1. Prove that there is a field with order
pn.

19. Let X = {x0, x1, x2, } and Y = {y0, y1, y2, }. For any ring R, let
R[x, y] be the set of all maps f from X×Y into R such that f((xi, yj)) = 0
for all but finitely many i and j. Add and multiply in R[x, y] by the rules

(f + g)(xi, yj) = f(xi, yj) + g(xi, yj),

and
(fg)((xi, yj)) =

∑
p+q=i

∑
m+n=j

f((xp, ym))g((xq, yn)).

Prove that R[x, y] is a ring and that R[x, y] ≈ R[x][y].

20. Let G and H be semigroups with identities. (A semigroup is a non-empty
set with an associative binary operation on it.) Let R be any ring. Let
R(G) be the set of all maps α from G into R such that α(g) = 0 for all
but finitely many g ∈ G. Add and multiply by the rules

(α+ β)(g) = α(g) + β(g), and

(αβ)(g) =
∑
xy=g

α(x)β(y).

LetG×H be the direct product of the semigroupsG andH. That is, G×H
is the semigroup whose elements are all pairs (g, h) with g ∈ G, h ∈ H and
whose multiplication is given by (g1, h1)(g2, h2) = (g1g2, h1h2). Prove that
R(G) is a ring (the semigroup ring of the semigroup G with coeffi cients
in R), and that the rings R(G)(H) and R(G×H) are isomorphic.

21. Let X be the semigroup {x0, x1, x2, } with multiplication given by
xmxn = xm+n. Prove that for any ring R, R[x] ≈ R(X). Prove that
R[x][y] ≈ R(X×Y ), where Y is defined analogously. Prove that R[y][x] ≈
R[x][y] via an isomorphism which fixes R elementwise, takes x to y and
takes y to x.
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22. Let F be a field and let S be the subring of the quotient field of F [x]
generated by 1/x and F [x]. Let G be the infinite cyclic group. Prove that
F (G) ≈ S.

23. Define R[x1, x2, x3, . . . ] and show that it is a ring.

24. Show that R ≈ R[x] is possible. (R 6= 0.)

25. Let R be any ring. Define the ring R{x} of “power series” a0 + a1x +
a2x

2 + · · · and show that it is a ring.

26. Prove that if F and K are fields and F [x] ≈ K[x] as rings, then F ≈ K
as rings.

27. Prove that if F is a field and the rings F [x] and R[x] are isomorphic, then
so are the rings F and R.

28. Prove that if the rings Z[x] and R[x] are isomorphic, then so are Z and
R.

29. Prove that R[x]/(x− r) and R are isomorphic as rings.

30. Let F be any field. Prove that the rings F [x]/(x2+1) and F [x]/(x2+4x+5)
are isomorphic.

31. Prove that the rings R[x, y]/(x) and R[y] are isomorphic.

32. Find a non-zero prime ideal in Z[x] that is not maximal.

33. Let D be an integral domain. Find a non-zero prime ideal in D[x, y] that
is not maximal.

34. Use the Euclidean algorithm to find the greatest common divisor of x6−1
and x14 − 1 in Q[x]. Express that greatest common divisor as a linear
combination of the two polynomials.

35. Use the Euclidean algorithm to find the greatest common divisor of x4 +1
and x6 + x4 + x3 + 1 in Q[x]. Express that greatest common divisor as a
linear combination of the two polynomials.

4.6 Modules

The concept of module generalizes both that of an Abelian group and that of a
vector space. The purpose of this section is to introduce the reader to this more
general notion and to lay the groundwork for the theorems in section 4.7.
A vector space is an Abelian group V , a field F , and a map F × V → V

satisfying certain rules (3.1.5). Let G be any Abelian group. We know how to
“multiply”elements of Z times elements of G, getting elements of G. In fact, if
n is a positive integer and g ∈ G, ng = g + g + · · · +g, the sum of g with itself
n times. Letting (−n)g = −(ng) and 0g = 0 completes the definition. Thus
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we have a map Z × G → G. This map satisfies the same rules that the map
F × V → V does. That is, it satisfies

a. n(g + h) = ng + nh for n ∈ Z and g, h ∈ G;

b. (m+ n)g = mg + ng for m, n ∈ Z and g ∈ G;

c. (mn)g = m(ng) for m, n ∈ Z and g ∈ G; and

d. 1g = g for all g ∈ G.

The appropriate generalization that encompasses both of these situations is
given in the following definition.

Definition 4.6.1 A module is an Abelian group M , a ring R with identity,
and a map · : R×M →M satisfying (a)—(d) below. The image of (r,m) under
the mapping · is denoted rm.

(a) r(m+ n) = rm+ rn for r ∈ R and m, n ∈M ;

(b) (r + s)m = rm+ sm for r, s ∈ R and m ∈M ;

(c) (rs)m = r(sm) for r, s ∈ R and m ∈M ; and

(d) 1m = m for all m ∈M .

Thus a module would be a vector space if the ring involved were a field.
In the definition above, the scalars, that is, the elements of R, are written on
the left, and we say that M is a left module over R, or that M is a left
R-module. Right modules are defined in the obvious way. Unless specifically
stated otherwise, module will mean left module. Thus when we say “Let M be
a module over R.”, we mean that M is an Abelian group, R is a ring with an
identity, and there is a map R×M →M on hand satisfying (a)—(d) above. From
the remarks made before 4.6.1, we see that every Abelian group is a module over
Z, and vector spaces are modules over fields. Another example is this. Let R
be any ring with identity. Now R is an Abelian group under +, and there is a
map R × R → R satisfying (a)—(d), namely the ring multiplication of R. Thus
any ring is a module over itself.
For the rest of this section, ring means ring with identity, and by a subring

of R we mean one that contains the identity of R.
Let M be a module over R, let r and s be in R, and let m and n be in M .

Then the following hold, and can be proved just as they were for vector spaces
(3.1.6).

(a) r0 = 0.

(b) 0m = 0.

(c) (−r)m = −(rm)− r(−m).
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(d) (−r)(−m) = rm.

(e) (−1)m = −m.

(f) r(m− n) = rm− rn.

(g) (r − s)m = rm− sm.

The notions of submodule, quotient module, homomorphism, direct sum,
and so on, are completely analogous to the corresponding notions for vector
spaces, and we quickly introduce them.
Let M be a module over R. A submodule of M is a subset S of M such

that restricting addition to elements of S and scalar multiplication to R × S
makes S into a module over R. Thus S is a submodule of M if and only
if S is a subgroup of M closed under multiplication by elements of R. The
intersection of any family of submodules is a submodule. If S is a subset of M ,
there is a smallest submodule of M containing S, namely the intersection of all
submodules of M containing S. This submodule will be denoted by 〈S〉. If S
is not empty, then 〈S〉 consists of all linear combinations of elements of S, that
is all elements of the form Σni=1risi, with ri ∈ R and si ∈ S. The module M is
finitely generated if M = 〈S〉 for some finite subset S of M . If S = {s1, s2,
, sn}, then 〈S〉 = {Σni=1risi : ri ∈ R}. If S = {s}, then 〈S〉 = {rs : r ∈ R}.

This latter set is denoted Rs. If M = Rs for some s ∈ M , then M is cyclic.
If S and T are submodules of M , then S + T = {s + t : s ∈ S, t ∈ T} is a
submodule of M .
Let M and N be modules over R. A homomorphism from the module M

into the module N is a map f : M → N such that

f(m1 +m2) = f(m1) + f(m2), and

f(rm) = rf(m)

for m1, m2, and m ∈ M and r ∈ R. Thus f is a group homomorphism that
preserves scalar multiplication. A homomorphism is a monomorphism if it is
one-to-one, an epimorphism if it is onto, and an isomorphism if it is both a
monomorphism and an epimorphism. If f is an isomorphism, we say that M is
isomorphic to N , and write M ≈ N . A homomorphism f : M → M is called
an endomorphism, and an endomorphism that is an isomorphism is called an
automorphism. The kernel of the homomorphism f : M → N is

Ker f = {m ∈M : f(m) = 0}.

The image of f is
Im f = {f(m) : m ∈M}.

Ker f is a submodule of M and Im f is a submodule of N . We readily see that
f is an isomorphism if and only if Ker f = {0} and Im f = N.

Let S be a submodule of M . Since it is a subgroup of M , we have the
Abelian group M/S. For r ∈ R, let

r(m+ S) = rm+ S.
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If m+ S = m1 + S, then (rm+ S)− (rm1 + S) = r(m−m1) + S = S since
m −m1 ∈ S and S is a submodule. Thus the rule r(m + S) = rm + S defines
a map R ×M/S → M/S, and it is routine to check that this makes M/S into
a module over R. This module is called the quotient module of M with
respect to S, or simply “M over S,”or “M modulo S.”
The isomorphism theorems now follow as in the case of vector spaces. The

proofs are identical.

a. If f : M → N is a homomorphism, then

M/(Ker f) ≈ Im f .

b. If S and T are submodules of M , then

(S + T )/T ≈ S/(S ∩ T ).

c. If S and T are submodules of M with S ⊂ T , then

M/T ≈ (M/S)/(T/S).

There are a couple of new concepts that we need. Let R be any ring. Recall
that R is module over itself. What are the submodules of R? They are subgroups
I of R closed under multiplication on the left by elements of R, that is, subgroups
I such that ri ∈ I for all r ∈ R and i ∈ I.

Definition 4.6.2 Let R be a ring. A left ideal of R is a submodule of R, where
R is considered as a (left) module over itself. Right ideal is defined similarly.

Thus an ideal of R is both a left and a right ideal. If R is commutative,
then right ideals, left ideals, and ideals are the same. If R is the ring of 2 × 2
matrices over the integers, and

m =

(
0 1
0 0

)
,

then Rm is the left ideal consisting of those matrices with first column all zeroes.
However, it is not a right ideal since m is in Rm but m ·m′ is not, where m′ is
the transpose of m.
Now letM be a module over R and letm ∈M . Consider the set 0 : m = {r ∈

R : rm = 0}. Since r, s ∈ 0 : m implies (r − s)m = rm− sm = 0− 0 = 0, 0 : m
is a subgroup of R. If r′ ∈ R and r ∈ 0 : m, then (r′r)m = r′(rm) = r′0 = 0.
so that 0 : m is a submodule of R, that is, a left ideal of R.

Definition 4.6.3 Let M be a module over R, and let m ∈ M . The left ideal
0 : m = {r ∈ R : rm = 0} is the order ideal of m.
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If V is a vector space over the field F , and if v ∈ V , then 0 : v = {0} or
0 : v = F , depending on whether v 6= 0 or v = 0. Thus order ideals in this case
are not of interest. However, let G be an Abelian group. Then G is a module
over Z. For g ∈ G, 0 : g = {n ∈ Z : ng = 0} is a principal ideal and is generated
by some k ≥ 0. If k > 0, then k is the smallest positive integer such that kg = 0,
that is, k is the order of g. If k = 0, we say that the order of g is infinite.
Hence, if the order of an element in an Abelian group is not infinite, that order
is the positive generator of the order ideal of that element. For arbitrary rings
R, we cannot associate a specific element of 0 : m with m and reasonably call
that element the order of m. We can however, associate the whole left ideal
0 : m with m. That is the appropriate generalization of the notion of the order
of an element of an Abelian group.

Theorem 4.6.4 If M is a cyclic R-module, then M ≈ R/I for some left ideal
I of R. In fact, if M = Rm, then

M ≈ R/(0 : m).

Proof. Let M = Rm. The map f : R → M : r → rm is an epimorphism
with kernel 0 : m.
Thus we know what every cyclic R-module looks like. It is a quotient module

of the module R itself. This is a generalization of the fact that every cyclic group
is Z/Zn for some n ∈ Z.

Let M1, M2, , Mk be modules over the ring R. Let

M1 ⊕M2 ⊕ · · · ⊕Mk

be the module whose elements are the elements of the set M1 ×M2 × · · · ×Mk

and whose addition and scalar multiplication are given by

(m1, m2, , mk) + (n1, n2, , nk) =

(m1 + n1, m2 + n2, , mk + nk),

and
r(m1, m2, , mk) = (rm1, rm2, , rmk).

This construction is the same as the one we did for vector spaces. It is
straightforward to show that M = M1 ⊕M2 ⊕ · · · ⊕Mk is a module over R.
This module is called the external direct sum of the modules M1, M2, ,
Mk. If we let M∗i be those elements of M of the form (0, 0, , mi, 0, 0 ,
, 0), where mi is in the ith place, then M∗i is a submodule, and as in the

case of vector spaces, every element of M can be written uniquely in the form
m∗1 + m∗2 + · · · +m∗k with m

∗
i ∈ M∗i . When we have such a situation, namely

when M has submodules N1, N2, , Nk such that every element in M can
be written uniquely in the form n1 + n2 + · · · + nk with ni ∈ Ni, we say that
the module M is the internal direct sum of these submodules. We also write
M = N1⊕N2⊕· · ·⊕Nk whenM is the internal direct sum of the submodules N1,



4.6. MODULES 151

N2, , Nk. We have seen that with an external direct sumM1⊕M2⊕· · ·⊕Mk,
there corresponds an internal direct sum M∗1 ⊕M∗2 ⊕ · · · ⊕M∗k . In practice,
we can pretend that all direct sums are internal ones. Thus when we write
M = M1 ⊕M2 ⊕ · · · ⊕Mk, we have in mind an internal direct sum unless we
specifically say otherwise.
The following are useful. Suppose A and B are submodules of M . Then

M = A⊕B if and only if A ∩B = {0} and M = A+ B. If M = A⊕ B, these
conditions certainly hold. But if A∩B = {0} andM = A+B, then a+b = a′+b′

with a and a′ in A, and b and b′ ∈ B implies that a − a′ = b′ − b ∈ A ∩ B,
whence a = a′, b = b′, and M = A⊕B.

If A is a summand of M , that is if M = A ⊕ B for some submodule B of
M , then the map ϕ : M →M : a+ b→ a is an endomorphism of M such that
ϕ2 = ϕ, Ker ϕ = B, and Im ϕ = A. Now suppose that ϕ is any endomorphism
of M such that ϕ2 = ϕ. Such an endomorphism is called idempotent. We
assert that M = Ker ϕ⊕ Im ϕ. We must show that

(Ker ϕ)
⋂

(Im ϕ) = 0

and
M = Ker ϕ+ Im ϕ.

Let m ∈ (Ker ϕ) ∩ (Im ϕ). Then m = ϕ(m′) for some m′ ∈ M , and ϕ(m) =
ϕ2(m′) = ϕ(m′) = m = 0 since m ∈ Ker ϕ and ϕ2 = ϕ. Let m ∈ M .
Then m = (m − ϕ(m)) + ϕ(m). Clearly ϕ(m) ∈ Im ϕ. Also ϕ(m − ϕ(m)) =
ϕ(m) − ϕ2(m) = ϕ(m) − ϕ(m) = 0. Thus m − ϕ(m) is in Ker ϕ. We have
proved the following theorem.

Theorem 4.6.5 If ϕ is an idempotent endomorphism of a module M , then
M = (Ker ϕ)⊕ (Im ϕ).

Good theorems about modules are ones that say that certain modules are
direct sums of simpler ones. We have two examples already. Every finite Abelian
group, that is, every finite module over the ring Z, is a direct sum of cyclic
modules (2.2.7). Every finitely generated module over a field is a direct sum of
cyclic modules (3.3.12). In the next section (4.7.13) we will prove that a finitely
generated module over a PID is a direct sum of cyclic modules, of which both
the examples above are special cases.
We pause here to look at a simple example illustrating some of our results

so far. Let R be the ring of all 2×2 matrices over the field Q. Let M be the set
of all 2×3 matrices over Q. NowM is an Abelian group under matrix addition,
and matrix multiplication makes M into a left module over R. Let Mi be the
matrices in M with zeroes off the ith column. That is,

Mi = {(ajk) ∈M : ajk = 0 if k 6= i}.

Then Mi is a submodule of M . Furthermore, the mapping that replaces the
entries off the ith column by zeroes is an idempotent endomorphism of M with
image Mi. The kernel of this endomorphism consists of those matrices all of
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whose entries in the ith column are zero. Therefore, Mi is a direct summand of
M by 4.6.5. However, it should be clear directly from the definition of internal
direct sum that

M = M1 ⊕M2 ⊕M3.

Further, Mi is isomorphic to the module C of 2× 1 matrices over Q, and M is
isomorphic to the (external) direct sum of three copies of C.
Let

m1 =

(
1 0 0
0 0 0

)
, m2 =

(
0 1 0
0 0 0

)
, m3 =

(
0 0 1
0 0 0

)
.

Then Mi = Rmi, so that the Mi are cyclic. The left ideal 0 : mi consists of
those matrices in R with first column all zeroes. By 4.6.4, R/0 : mi ≈ Mi,
and it follows that the Mi are isomorphic to one another. Using the fact that
Q is a field, it can be shown that Mi has no submodules other than 0 and Mi

itself. Thus, Mi = Rm for any non-zero element m of Mi. Therefore R/0 : m
is isomorphic to Mj for any m in Mi, i, j = 1, 2, 3. The 0 : m are not all the
same. For example, if

m =

(
0 0 0
0 1 0

)
,

then 0 : m consists of those matrices of R whose second column have only zero
entries. Still, R/0 : m ≈ R/0 : mi for any i.
Consider the R-module R. It has a special element in it, namely 1. Since

R = R · 1, R is cyclic. Furthermore, if r · 1 = s · 1, then r = s. Thus every
element r ∈ R can be written in exactly one way as an element of R times 1,
namely r · 1. Suppose that M is a cyclic R-module with a generator m such
that rm = sm only if r = s. Then

R→M : r → rm

is clearly an isomorphism. More generally, suppose thatM is an R-module, and
that {m1, m2, , mk} is a family of elements of M such that for every element
m ∈M there exists a unique family {r1, r2, , rk} of elements of R such that

m = Σki=1rimi.

Then {m1, m2, , mk} is called a basis of M . Clearly

M = Rm1 ⊕Rm2 ⊕ · · · ⊕Rmk,

and R ≈ Rmi for each i. Therefore M is isomorphic to a direct sum of copies
of the R-module R. Such a module is called a free module of finite rank.
We proved that every finitely generated vector space was free (3.3.12). If M =
M1⊕M2⊕· · ·⊕Mk with eachMi ≈ R, thenM has a basis. In fact, ifMi = Rmi,
then {m1, m2, , mk} is a basis. Therefore, M is free of finite rank if and only
if it has a basis. Free modules play a key role in the theory of modules. The
next three theorems detail some of their properties, and will be needed in 4.7.
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Theorem 4.6.6 Let M be a free R-module with basis {m1, m2, , mk}. Let
N be an R-module, and let {n1, n2, , nk} be any family of elements of N .
Then there exists exactly one homomorphism f : M → N such that f(mi) = ni
for all i.

Proof. Let m ∈ M . Then m = Σ rimi with the ri unique. Therefore
f(m) = Σ rini defines a map f : M → N . It is easy to check that f is an
R-module homomorphism such that f(mi) = ni. If g : M → N is another
homomorphism such that g(mi) = ni for all i, then

g
(∑

rimi

)
=
∑

g(rimi) =
∑

rig(mi)

=
∑

rini =
∑

rif(mi) = f
(∑

rimi

)
.

Therefore, f = g.

Theorem 4.6.7 Let M be an R-module, and let N be a submodule of M such
that M/N is free of finite rank. Then N is a summand of M . That is, M =
N ⊕ F for some submodule F of M .

Proof. Let {mi +N , m2 +N , , mk +N} be a basis for M/N . By 4.6.6,
there is a homomorphism M/N →M given by mi+N → mi. The composition
M → M/N → M is an endomorphism ϕ of M such that ϕ2 = ϕ, and Ker
ϕ = N . Apply 4.6.5.

Theorem 4.6.8 Let M be any finitely generated R-module. Then there exists
an epimorphism F →M with F a free R-module.

Proof. Let {m1, m2, , mk} generate M . Let F be the direct sum of k
copies of the R-module R. Then F is free and has a basis {a1, a2, , ak}. By
4.6.6, there exists a homomorphism f : F → M such that f(ai) = mi for all i.
But Im f = M since mi ∈ Im f for all i and {m1, m2, , mk} generates M .
We have discussed only free modules of finite rank. The notion can be

generalized to free modules of any rank, and the three theorems above hold
with their finiteness assumptions dropped.
Let I be an ideal of R, and suppose that M is a module over the ring R/I.

Then
rm = (r + I)m

makes M into an R-module. That is, every R/I-module is, in a natural way,
an R-module. If i ∈ I and m ∈ M , then im = (i+ I)m = 0m = 0, so that the
submodule

IM = {i1m1 + i2m2 + · · ·+ ikmk : ij ∈ I, mj ∈M , k > 0}

is zero. Now any R-module N such that IN = 0 is, in a natural way, an
R/I-module. Just define

(r + I)n = rn.
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This is well defined since r+ I = s+ I implies that r−s ∈ I, which implies that
(r − s)n = 0. Thus rn = sn. It is trivial to check that this makes N into an
R/I-module. Therefore, an R/I-module A is an R-module such that IA = 0,
and an R-module A with IA = 0 is an R/I-module.

Theorem 4.6.9 Let I be an ideal of R, and letM and N be R/I-modules. Then
a map f : M → N is an R/I-module homomorphism if and only if it is an R-
module homomorphism. Furthermore, a subgroup S of M is an R-submodule if
and only if it is an R/I-submodule.

Proof. Suppose f : M → N is a homomorphism with M and N considered
as R-modules. Then f((r+ I)m) = f(rm) = r(f(m)) = (r+ I)f(m), whence f
is an R/I-homomorphism. Similarly, if f is an R/I-homomorphism, then f is
an R-homomorphism.
Since (r + I)s = rs, a subgroup S of M is an R-submodule if and only if it

is an R/I-submodule.
One can say more than is in 4.6.9. For example, M is finitely generated as

an R-module if and only if it is finitely generated as an R/I-module. Also, S
is a summand of M as an R-module if and only if it is a summand of M as an
R/I-module. These are readily verified.
What good is all this? Suppose that I is a maximal ideal in the commutative

ring R, and suppose that M is an R-module such that IM = 0. Then M is
an R/I-module via (r + I)m = rm. But R/I is a field. Thus M is a vector
space over the field R/I, and we know a few things about vector spaces. For
example, ifM is finitely generated as an R-module, then it is a finite dimensional
vector space over R/I, and hence is a direct sum of copies of R/I. But such
a decomposition is also an R-module decomposition. Thus the R-module M is
a direct sum of copies of the R-module R/I. Furthermore, this situation can
come about readily. In fact, let R be any commutative ring, and let M be any
R-module. For any maximal ideal I of R,

I(M/IM) = 0,

so that M/IM is a vector space over the field R/I. If M is a finitely generated
R-module, then M/IM is a finite dimensional vector space over R/I. We will
use all this in the next section.

PROBLEMS

1. Let S be a subring of the ring R. Prove that an R-module is an S-module.
In particular, R is an S-module.

2. Let ϕ : S → R be a ring homomorphism with ϕ(1) = 1. Let M be an
R-module. Prove that scalar multiplication defined by s ·m = ϕ(s)m also
makes M into an S-module.

3. In Problem 2, let R = S, and let ϕ be an automorphism of the ring
R. Thus M is a module over R in two ways. Are these two modules
isomorphic?
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4. In Problem 2, let R = S = M , and let ϕ be an automorphism of the
ring R. Thus R is a module over R in two ways. Are these two modules
isomorphic?

5. Prove that there is only one way to make an Abelian group into a module
over Z.

6. Prove that there is at most one way to make an Abelian group into a
module over Q.

7. Prove that every finite module over Q is {0}.

8. Prove that the additive group of Z cannot be made into a module over Q.

9. Prove that R[x] is an R-module. Prove that

{p(x) ∈ R[x] : deg(p(x)) < n}

is a submodule.

10. Let N be a submodule of M . Prove that if M is finitely generated, then
M/N is finitely generated. Prove that M is finitely generated if N and
M/N are finitely generated.

11. Show that a submodule of a finitely generated module is not necessarily
finitely generated.

12. Prove that if M = A⊕ B, and that if C is a submodule of M containing
A, then C = A⊕ (C ∩B).

13. Let M be a module over R. Let 0 : M = {r ∈ R : rM = {0}}. Prove that
0 : M is a (two-sided) ideal of R, and that M is a module over the ring
R/0 : M .

14. Let M be an R-module, and let EndZ(M) be the ring of all group endo-
morphisms of M . For r ∈ R, define ϕr by

ϕr : M → N : m→ rm.

Prove that ϕr ∈ EndZ(M), and that

R→ EndZ(M) : r → ϕr

is a ring homomorphism.

15. Let R be a ring, and let r ∈ R. Let ϕr : R → R : s → sr. Prove that ϕr
is an endomorphism of the R-module R. Prove that every endomorphism
of the module R is of this form. Prove that f : R → EndR(R) : r → ϕr
is a ring anti-isomorphism. That is, f is one-to-one and onto, preserves
addition, and reverses multiplication.
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16. Let HomR(M,N) be the set of all homomorphisms from the R-module M
into the R-module N . Prove that

(f + g)(m) = f(m) + g(m)

makes HomR(M,N) into an Abelian group.

17. Prove that HomR(R,M) is a left R module if scalar multiplication is
defined by (rf)(s) = f(sr). Prove that M ≈ HomR(R,M)

18. Let M be a (left) R-module. For f ∈ HomR(M,R) and r ∈ R, let
(fr)(m) = f(m)r. Prove that this makes HomR(M,R) into a right R-
module.

19. Let S be any ring, and let R be the ring of all n× n matrices over S. Let
M be the set of all n×m matrices over S.

(a) Prove that M is a left module over R under matrix addition in M
and with multiplication of elements of R by those of M given by
matrix multiplication.

(b) Let
Mk = {(aij) ∈ R : aij = 0 if j 6= k}.

Prove that Mk is a submodule, and that M ≈M1 ⊕M2 ⊕ · · · ⊕Mm.

(c) Let C be the left R module of all n× 1 matrices over S. Prove that
C ≈M1 ≈M2 ≈ · · · ≈Mm.

(d) Let mij be that element ofMi whose (j, i) entry is 1 and all of whose
other entries are 0. Prove that Mi = Rmij .

(e) Find 0 : mij .

(f) Prove that the R/0 : mij are all isomorphic.

(g) Prove that 0 : Mi = {0}.
(h) Prove that if S is a field, then the modules Mi are simple, that is,

have so submodules except Mi and {0}.

20. For I a left ideal of R and r ∈ R, let

I : r = {x ∈ R : xr ∈ I}.

Prove that I : r is a left ideal of R. Prove that the submodule R(r+ I) of
R/I is isomorphic to R/(I : r).

21. Let I and J be left ideals of the ring R. Prove that the R-modules R/I
and R/J are isomorphic if and only if I = J : s for some generator s+ J
of R/J .

22. Prove that a cyclic module may have different kinds of generators. That
is, prove that there exists a cyclic R-module M with generators x and y,
such that no automorphism of M takes x onto y.
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4.7 Modules over Principal Ideal Domains

The purpose of this section is to prove that a finitely generated module over
a PID is a direct sum of cyclic modules, and to get a nice, simple, complete
invariant for such modules. This theorem generalizes both the Fundamental
Theorem of Finite Abelian Groups (Theorem 2.7.7) and the fact that a
finitely generated vector space is a direct sum of subspaces of dimension one
(Theorem 3.3.12). It will be our principal tool in analyzing linear transforma-
tions in Chapter 5.

Definition 4.7.1 Definition. Let R be a PID, and let M be an R-module. An
element m in M is a torsion element if 0 : m 6= {0}, and is a torsion-free
element if 0 : m = {0}. The module M is a torsion module if every element
in it is a torsion element, and M is a torsion-free module if 0 is the only
torsion element in it.

Let m and n be torsion elements of M . Let r ∈ 0 : m and s ∈ 0 : n. with
r and s non-zero. Then rs ∈ 0 : (m+ n), and rs 6= 0. Thus m+ n is a torsion
element. For any t ∈ R, r ∈ 0 : tm. Hence tm is a torsion element. We have
proved the following.

Theorem 4.7.2 Let R be a PID, and letM be an R-module. The setMt of tor-
sion elements of M is a submodule of M . (It is called the torsion submodule
of M .)

Observe that M/Mt is torsion-free. In fact, if r is in 0 : (m + Mt), then
rm ∈ Mt, whence srm = 0 for some s 6= 0. If r 6= 0, then sr 6= 0, so that
0 6= sr ∈ 0 : m, and hence m ∈Mt. Therefore, if m+Mt 6= 0, then r = 0.

We will proceed as follows. We will prove that finitely generated torsion-
free modules over PID’s are direct sums of cyclic modules, and that finitely
generated torsion modules over PID’s are direct sums of cyclic modules. From
these two facts, we will conclude that arbitrary finitely generated modules over
PID’s are direct sums of cyclic modules by showing that any finitely generated
module over a PID is a direct sum of its torsion submodule and a torsion free
module.
Notice that any submodule of R is torsion-free. Also, any non-zero submod-

ule of R is isomorphic to R. If I is a non-zero submodule of R, then I = Ra for
some a ∈ R since R is a PID. The map R → Ra : r → ra is an isomorphism.
Thus, submodules of R are cyclic, and non-zero ones are all free, in fact, all
isomorphic to R. Any quotient module R/I with I 6= 0 is torsion since I = Ra
for some a 6= 0, and a ∈ 0 : (r + I) for all r ∈ R. Finally, notice that if F is the
quotient field of R, then F is a torsion-free R-module.

Theorem 4.7.3 A finitely generated torsion-free module M over a PID is free
of finite rank.

Proof. Let M be a finitely generated torsion-free module over the PID R.
IfM is cyclic, thenM = Rm for some m ∈M . If m = 0, we are done. If m 6= 0,
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then the map R → Rm : r → rm is an isomorphism because rm 6= 0 if r 6= 0.
Thus, M ≈ R is free of rank 1. Now induct on the smallest number of elements
required to generate M . If some generating set of M has only one element in it,
we just proved that M is free. Suppose now that M is generated by the k + 1
elements

m1, m2, ,mk+1,

and that any torsion-free module over R generated by k elements is free of rank
≤ k. We may as well suppose that m1 6= 0. Let M1 = {m ∈ M : rm ∈
Rm1 for some non-zero r ∈ R}. That is, M1/Rm1 = (M/Rm1)t. We have
(M/Rm1)/(M1/Rm1) ≈ M/M1 and torsion-free since M1/Rm1 = (M/Rm1)t.
Now M/M1 is generated by the k elements m2 +M1, m3 +M1, , mk+1 +M1.
Therefore, by the induction hypothesis, M/M1 is free of rank ≤ k. By 4.6.7,
M = M1⊕N with N free of rank ≤ k. We needM1 to be free of rank 1; that is,
cyclic. In that case, M would be free. First, note that M1 is finitely generated
since it is a homomorphic image of M . Let m ∈M1. Then rm = sm1 for some
r 6= 0. Suppose that r1m = s1m1 with r1 6= 0. Then rr1m = rs1m1 = r1sm1.
Hence (rs1 − r1s)m1 = 0. Since m1 6= 0 and M1 is torsion-free, rs1 = r1s, and
s/r = s1/r1 is in the quotient field F of R. What this says is that associating
s/r with m ∈M1, where rm = sm1 and r 6= 0, is a mappingM1 → F . Now F is
an R-module, and it is routine to check that this mapping is a monomorphism.

The following lemma, which generalizes Problem 27 of section 2.2, completes
the proof.

Lemma 4.7.4 Let R be a PID, and let F be its quotient field. Then any finitely
generated R-submodule of F is cyclic (and hence free).

Proof. Let S be a finitely generated submodule of the R-module F . Let
S = Rs1 + Rs2 + · · · + Rsn. Write si = ri/ti with ri and ti in R and ti 6= 0.
Let t = πmi=1ti. Then S is contained in R(1/t). But the cyclic R-module R(1/t)
is isomorphic to R via R → R(1/t) : r → r/t. Therefore, S is isomorphic to a
submodule of R. Hence S is cyclic.
Now we come to an important point. We know that if M is a finitely

generated torsion-free module over the PID R, then M = M1⊕M2⊕ · · ·⊕Mk,
with each Mi ≈ R. Is k an invariant of M? That is, if M = N1⊕N2⊕· · ·⊕Nj ,
with each Ni ≈ R, is j = k? We know that the Mi’s do not have to be the
Ni’s. For example, any vector space of dimension 2 is the direct sum of any two
distinct one-dimensional subspaces. However, in the case of vector spaces, that
is, in case R is a field, then j = k. Also notice the following. The R-module
R is directly indecomposable. That is, if R = R1 ⊕ R2, then R1 or R2 is 0.
This is simply because R1 ∩ R2 = 0, and any two non-zero submodules of R
have non-zero intersection. In fact, if 0 6= ri ∈ Ri, then r1r2 6= 0, and r1r2 is in
R1 ∩R2. Suppose that M = A1 ⊕A2 ⊕ · · · ⊕Aq with each Ai indecomposable.
Is Ai ≈ R? Indeed, if M = A ⊕ B, is A free, or is A even a direct sum of
indecomposable modules? What is the situation if S is a submodule of M? We
know the answers to all these questions when R is a field. Any subspace of
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a finite dimensional vector space is of no greater dimension, and hence is the
direct sum of copies of the field. The answers in the case R is a PID are the best
possible, but this is far from obvious. It is not at all obvious that a submodule
of a finitely generated R-module is finitely generated, for example. This is really
the crucial question, along with whether or not j = k above. Let’s get j = k
first. There are several ways to do it. One way is to define linear independence
inM and mimic vector space methods. We choose another which illustrates the
use of our previous results.

Theorem 4.7.5 Let M be a free module over the PID R. If M = M1 ⊕M2 ⊕
· · · ⊕Mj = N1 ⊕ N2 ⊕ · · · ⊕ Nk with each Mi and Ni isomorphic to R, then
j = k.

Proof. If R is a field, then j = k = dim(M). So suppose that R is not
a field. Then there is a prime p in R. The ideal Rp of R is maximal (4.4.4),
whence R/Rp is a field. Furthermore, pM is a submodule of M and M/pM is
a vector space over R/Rp via (r +Rp)(m+ pM) = rm+ pM . Now

pM = p(M1 ⊕M2 ⊕ · · · ⊕Mj) = pM1 ⊕ pM2 ⊕ · · · ⊕ pMj .

Therefore

M/pM = (M1 ⊕M2 ⊕ · · · ⊕Mj)/(pM1 ⊕ pM2 ⊕ · · · ⊕ pMj)

≈M1/pM1 ⊕M2/pM2 ⊕ · · · ⊕Mj/pMj .

This last isomorphism is a vector space isomorphism. Since Mi ≈ R, then
Mi/pMi ≈ R/Rp, so that the vector space Mi/pMi has dimension 1. That is,
dim(M/pM) = j. Therefore, j = k.
If M is a finitely generated torsion-free module, it is free, and completely

determined up to isomorphism by the number of summands in any decompo-
sition of M into a direct sum of submodules isomorphic to R. If R is a field,
that number is dim(M). If R is not a field, that number is dim(M/pM) for any
prime p in R. This number is called the rank of M , denoted by r(M). The
rank of the finitely generated torsion-free module M is j if and only if M is the
direct sum of j copies of R. We have

Theorem 4.7.6 Two finitely generated torsion-free modules over a PID are
isomorphic if and only if they have the same rank.

Let’s clarify the situation with submodules of finitely generated R-modules.
The key is this. If R is a PID, then any submodule of R is cyclic. That is the
definition of PID, in fact.

Theorem 4.7.7 Let M be a free module of rank n over a PID R. Then any
submodule of M is free and of rank ≤ n.

Proof. Induct on n. If n = 1, then M ≈ R, and any non-zero submodule
of R is free of rank 1 since R is a PID. Let M = M1 ⊕M2 ⊕ · · · ⊕Mn with
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Mi ≈ R, and let S be a submodule of M . Project S into Mn. The image X of
this projection is free of rank ≤ 1. Its kernel is K = S∩(M1⊕M2⊕· · ·⊕Mn−1),
which is free of rank ≤ n−1. By 4.6.7, S = K⊕X, and the theorem follows.

Theorem 4.7.8 Let M be a module over the PID R. If M is generated by n
elements, then any submodule of M is generated by ≤ n elements.

Proof. LetM = Rm1+Rm2+· · ·+Rmn. Let X be a free R-module of rank
n with basis {x1, x2, , xn}. Then by 4.6.6, f : X → M : xi → mi defines an
epimorphism. Let S be a submodule of M . Then f−1(S) = {x ∈ X : f(x) ∈ S}
is a submodule of X, It is free of rank ≤ n by 4.7.7. In particular, it is generated
by ≤ n elements. Hence, S is generated by ≤ n elements.

Corollary 4.7.9 A submodule of a cyclic module over a PID is cyclic.

Now let’s turn to the case of finitely generated torsion R-modules. Sup-
pose that M is such a module, and suppose that {m1, m2, , mk} generates
M . Since M is torsion, there exist non-zero ri’s such that rimi = 0. Then
(r1r2 · · · rk)mi = 0 for all i. If m ∈M , then m = s1m1 + s2m2 + · · ·+ skmk for
some si ∈ R, and it follows that (r1r2 · · · rk)m = 0. That is, (r1r2 · · · rk)M = 0.
But r1r2 · · · rk 6= 0. We have that

0 : M = {r ∈ R : rM = 0} 6= {0}.

This ideal is called the annihilator of M . Thus a finitely generated torsion
module M has non-zero annihilator. For finite Abelian groups, this simply says
that there is a positive integer n such that nx = 0 for all x in that group.

Lemma 4.7.10 Let M be a module over a PID R.

a. Let x ∈ M and 0 : x = Ra. If b ∈ R and d is a greatest common divisor
of a and b, then 0 : bx = Rc where a = dc.

b. An element x ∈M has annihilator 0 : x = R(Πn
i=1ri) with the ri relatively

prime in pairs if and only if there are elements x1, x2, , xn in M with
x = x1 + x2 + · · ·+ xn and 0 : xi = Rri.

Proof. For (a), clearly Rc ⊂ 0 : bx. If q ∈ 0 : bx, then qb ∈ 0 : x = Ra, so
qb = ra for some r ∈ R. Write d = sa+ tb. Then qd = saq + tbq = saq + tra =
cd(sq + tr), so q = c(sq + tr) ∈ Rc.
For (b), let qi = Πn

j 6=irj . Then the collection {q1, q2, , qn} has greatest
common divisor equal to 1, so there is a linear combination Σ siqi = 1. Now ri
and siqi are relatively prime, and r = qiri, so by part (a), 0 : siqi = Rri. Let
xi = siqix.
For the converse of (b), we will induct on n. If n = 1, the Lemma obviously

holds. The crucial case is for n = 2, and we do that case now. Let x and y be
elements with 0 : x = Rr and 0 : y = Rs, with r and s relatively prime. There
are elements a and b in R with ar+bs = 1. Hence ar(x+y) = ary = (1−bs)y =
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y, and bs(x + y) = x. Suppose that t(x + y) = 0. Then art(x + y) = 0 = ty,
so that t ∈ 0 : y = Rs. Thus s divides t. Similarly, r divides t, and since r
and s are relatively prime, rs divides t. It follows that 0 : (x+ y) = Rrs. Now
for n > 2, letting y = Σn−1

i=1 xi, we have 0 : (Σni=1xi) = 0 : (y + xn). By the
induction hypothesis, 0 : (y) = R(Πn−1

i=1 ri). Since the ri are relatively prime in
pairs, Πn−1

i=1 ri is relatively prime to rn, and so 0 : (y + x) = R(Πn
i=1ri).

Lemma 4.7.11 If M is a finitely generated torsion module over a PID, then
0 : M = 0 : m for some m ∈M .

Proof. Since M is finitely generated and torsion, 0 : M 6= {0}. Let

0 : M = Rpn11 pn22 · · · p
nt
t ,

with the pi’s non-associate primes. Let

r = pn11 pn22 · · · p
nt
t ,

and let qi = r/pi. There is an element mi ∈M such that qimi 6= 0. Let

xi = (r/pnii )mi.

Since
pni−1
i xi = (r/pi)mi 6= 0,

and
pnii xi = rmi = 0,

then 0 : xi = Rpnii . By 4.7.10,

0 : (x1 + x2 + · · ·+ xt) = Rpn11 pn22 · · · p
nt
t ,

and the lemma is proved.
If G is a finite Abelian group, then there is then an element x in G whose

order m is a multiple of the order of every other element of G. That is, my = 0
for every y in G.

Theorem 4.7.12 Every finitely generated torsion module over a PID is a direct
sum C1⊕C2⊕· · ·⊕Ct of cyclic modules such that 0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Ct.

Proof. Let M be a finitely generated torsion module over the PID R. By
4.7.11, 0 : M = Rr, with r = pn11 pn22 · · · p

nt
t . Let {m1, m2, , mk} generate

M . We proceed by induction on k. If k = 1, there is nothing to do. So suppose
k > 1 and that the theorem is true for every R-module generated by fewer than
k elements. Each 0 : mi = Rri, where

ri = pni11 pni22 · · · pnitt

with nij ≤ nj . For each j, some nij = nj . Thus

0 : (ri/p
nij
j )mi = Rp

nj
j .
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Hence for each nj there is a multiple xj of some mi such that

0 : xj = Rp
nj
j .

Renumber the pi’s so that n11 = n1, n12 = n2, , n1q = nq, and n1i < ni if
i > q. Now by 4.7.10, m1 = m11 +m12 where

0 : m11 = Rpn11 pn22 · · · pnqq

and
0 : m12 = Rp

n1,q+1
q+1 p

n2,q+2
q+2 · · · pn1tt ,

with n1i < ni for i > q. Thus by Problem 9,

0 : (m12 + xq+1 + · · ·+ xt) = Rp
nq+1
q+1 · · · p

nt
t .

Let m = m1 + xq+1 + · · · + . Then 0 : m = Rr, and clearly {m, m2, , mk}
generates M . Now

M/Rm = (M1/Rm)⊕ (M2/Rm)⊕ · · · ⊕ (Mv/Rm)

with Mi/Rm cyclic and 0 : (M1/Rm) ⊂ 0 : (M2/Rm) ⊂ · · · ⊂ 0 : (Mv/Rm).
Let Mi/Rm = R(wi +Rm), and let 0 : (wi +Rm) = Rsi. Then siwi = uim for
some ui ∈ R. Also si divides r. We have siti = r, sitiwi = tiuim = 0, so that
tiui = rri, and sitiui = sirri = rui. Hence siri = ui. We have siwi = uim =
sirim, so si(wi−rim) = 0. Let wi−rim = yi. ThenMi = Ryi+Rm and Ryi∩
Rm = {0}. therefore, Mi = Ryi ⊕Rm, and hence M = Rm⊕Ry1 ⊕ · · · ⊕Ryv.
Since Ryi ≈ Mi/Rm, then 0 : Rm ⊂ 0 : Ry1 ⊂ 0 : Ry2 ⊂ · · · ⊂ Ryv, and the
theorem is proved.

Theorem 4.7.13 A finitely generated module over a PID is a direct sum C1⊕
C2 ⊕ · · · ⊕ Cn of cyclic modules such that 0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Cn. If

C1 ⊕ C2 ⊕ · · · ⊕ Cn = D1 ⊕D2 ⊕ · · · ⊕Dm

with Ci and Di non-zero cyclic and 0 : D1 ⊂ 0 : D2 ⊂ · · · ⊂ 0 : Dm, then
m = n, 0 : Ci = 0 : Di, and Ci ≈ Di for all i.

Proof. Let M be a finitely generated module over the PID R, and let Mt

be the torsion submodule of R. then M/Mt is a torsion-free finitely generated
module. Hence, by 4.6.7, M = F ⊕Mt with F free of finite rank. Now Mt is
finitely generated since it is a homomorphic image of M . Since F = C1 ⊕C2 ⊕
· · · ⊕ Ck with Ci ≈ R, then 0 : Ci = 0, and 4.7.12 yields

M = C1 ⊕ C2 ⊕ · · · ⊕ Cn

with 0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Cn. Now suppose that

M = D1 ⊕D2 ⊕ · · · ⊕Dm
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with 0 : D1 ⊂ 0 : D2 ⊂ · · · ⊂ 0 : Dm, and all Ci and Di are non-zero. We need
m = n and Ci ≈ Di for all i. The number of Ci with 0 : Ci = 0 is the rank of
M/Mt, and hence is the number of Di with 0 : Di = 0. Thus, we may as well
assume that M is torsion. Let 0 : Ci = Rri, and let 0 : Di = Rsi. First we get
m = n. Let p be a prime, and let r ∈ R. If p divides r, then pR ⊃ Rr. Hence
(R/Rr)/p(R/Rr) = (R/Rr)/(Rp/Rr) ≈ R/Rp, which has dimension one as a
vector space over R/Rp. If (p, r) = 1, then (R/Rr)/p(R/Rr) = (R/Rr)/((Rp+
Rr)/Rr) = (R/Rr)/(R/Rr) = 0. Suppose now that n ≥ m. Let p be a prime
dividing rn. There is one since Cn 6= 0. Then p divides ri for all i since
Rr1 ⊂ Rr2 ⊂ · · · ⊂ Rrn. Therefore (R/Rri)/(Rp/Rri) ≈ R/Rp ≈ Ci/pCi has
dimension one as a vector space over R/Rp. Hence

dim(M/pM) = dim((C1 ⊕ C2 ⊕ · · · ⊕ Cn)/p(C1 ⊕ C2 ⊕ · · · ⊕ Cn))

= dim((C1/pC1)⊕ (C2pC2)⊕ · · · ⊕ (Cn/pCn)) = n.

It follows that m = n. We want Cj ≈ Dj for each j. Letting 0 : Cj = Rrj as
above, we have

rjM = rjC1 ⊕ rjC2 ⊕ · · · ⊕ rjCj−1 = rjD1 ⊕ rjD2 ⊕ . . ⊕ rjDn.

The rjCi and rjDi are cyclic with

0 : rjC1 ⊂ 0 : rjC2 ⊂ · · · ⊂ 0 : rjCj−1

and 0 : rjD1 ⊂ 0 : rjD2 ⊂ · · · ⊂ 0 : rjDn. Therefore rjDj = 0 by the first
part of the proof, whence sj divides rj . Similarly, rj divides sj . Therefore
0 : Cj = 0 : Dj , and so Cj ≈ Dj . This concludes the proof.

For any commutative ring R and ideals I and J of R, the cyclic R-modules
R/I and R/J are isomorphic if and only if I = J (PROBLEM 10). Therefore,
cyclic R-modules are, up to isomorphism, in one-to-one correspondence with
ideals of R. What 4.7.13 asserts is that if R is a PID, then the non-zero finitely
generated R-modules are, up to isomorphism, in one-to-one correspondence with
finite increasing chains I1 ⊂ I2 ⊂ · · · ⊂ In of ideals of R, where each Ij 6= R. In
fact, 4.7.13 gives such a chain for each such module. Since Ci ≈ R/(0 : Ci), the
module can readily be retrieved, up to isomorphism, from the chain of ideals.
It is

R/(0 : C1)⊕R/(0 : C2)⊕ · · · ⊕R/(0 : Cn).

Of course, any finite increasing chain I1 ⊂ I2 ⊂ · · · ⊂ In gives a finitely gener-
ated R-module, namely R/I1 ⊕R/I2 ⊕ · · · ⊕R/In.

Corollary 4.7.14 Non-zero finitely generated modules over a PID R are, up to
isomorphism, in one-to-one correspondence with finite increasing chains I1 ⊂
I2 ⊂ · · · ⊂ In of ideals of R such that each Ij 6= R. Such a chain corresponds
to the module

R/I1 ⊕R/I2 ⊕ · · · ⊕R/In.
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If M is torsion and non-zero, then the chain of ideals

0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Cn

in 4.7.13 is called the chain of invariant factors of M . Letting the invariant
factor of the zero module be R and rephrasing, we have

Theorem 4.7.15 Two finitely generated torsion modules over a PID are iso-
morphic if and only if they have the same invariant factors.

How does one calculate the invariant factors of a finitely generated torsion
module without actually decomposing that module as in 4.7.13? In the no-
tation of 4.7.13, if 0 : Ci = Rri, and if p is a prime, then it is easy to see
that dim(ptCi/p

t+1Ci) = 1 or 0, depending on whether pt does or does not
divide ri. In fact, we did something similar in the proof of 4.7.13. There-
fore, dim(ptM/pt+1M) is the number of ri which pt divides. Therefore, the ri,
and hence the invariant factors, are computable directly from M , without first
writing M as a direct sum of cyclics.
Again, in the notation of 4.7.13, let 0 : Ci = Rri. Knowing ri gives 0 : Ci,

but 0 : Ci gives ri only up to a unit. That is, associates of ri will work just
as well. That is why we use the ideal 0 : Ci as an invariant rather than the ri.
However, for some PID’s, every associate class has a canonical representative.
For example, in the ring of integers, every associate class not {0} has exactly
one positive element. If F is a field, then every associate class not {0} in F [x]
has exactly one monic element. In these situations, one usually chooses to
use families {r1, r2, , rn} with ri+1 dividing ri rather than chains of ideals
as invariants. Such families are also called invariant factors. The following
illustrates this. Its proof is immediate from 4.7.14.

Theorem 4.7.16 Let F be a field. The finitely generated non-zero torsion F [x]
modules are, up to isomorphism, in one-to-one correspondence with the finite
families

{f1(x), f2(x), , fn(x)}
of non-constant monic polynomials such that fi+1(x) divides fi(x) for all i < n.
Such a family corresponds to the module F [x]/(f1(x)) ⊕ F [x]/(f2(x)) ⊕ · · · ⊕
F [x]/(fn(x)).

One should compare 4.7.16 with the situation for Abelian groups. See the
discussion preceding 2.7.8, for example.
We have given a “canonical” decomposition of a finitely generated torsion

module over a PID. Such a non-zero module can be written M = C1 ⊕ C2 ⊕
· · · ⊕ Cn with Ci non-zero cyclic and 0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Cn. The Ci
are unique up to isomorphism. There is another “standard”decomposition of
M into a direct sum of cyclics. We need some preliminaries.

Definition 4.7.17 LetM be a module over a PID R. If p is a prime in R, then
Mp = {m ∈ M : 0 : m = Rpn for some n}. Mp is called the p-component of
M . If M = Mp, then M is a p-module, or a p-primary module. A primary
module is one that is p-primary for some p.
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Note that if p and q are associates, then Mp = Mq. Also, if p and q are
any primes and Mp = Mq 6= 0, then p and q are associates. One should note
that Mp is a submodule, and that (M/Mp)p = 0. Also, submodules, quotient
modules, and direct sums of p-modules are p-modules.

Theorem 4.7.18 Every finitely generated torsion module over a PID is a direct
sum of primary modules.

Proof. It suffi ces to prove the theorem for cyclic modules. So let M = Rm,
0 : m = Rr, and

r = pn11 pn22 · · · p
nk
k ,

where the pi are non-associates. Let qi = r/pnii . Then

0 : qim = Rpnii ,

so that Rqim is a pi-module. We claim that

M = Rq1m⊕Rq2m⊕ · · · ⊕Rqkm.

Since the q′is are relatively prime, there exist ri ∈ R such that Σ riqi = 1. Hence
m = Σ riqim, so that

M = Rq1m+Rq2m+ · · ·+Rqkm.

Suppose that Σ siqim = 0. Then

0 : s1q1m = 0 : Σki=2siqim.

From 4.7.10, it follows that each siqim = 0. Our theorem is proved.
Suppose that M is a finitely generated torsion module over a PID, and that

0 : M = Rr. Write r as a product of powers of non-associate primes p1, p2, ,
pk. Writing

M = C1 ⊕ C2 ⊕ .. . ⊕ Cn
with 0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Cn, and in turn writing each Ci as a direct sum
of primary modules as in the proof of 4.7.18, we see that

M = Mp1 ⊕Mp2 ⊕ · · · ⊕Mpk .

Corollary 4.7.19 Let M be a finitely generated torsion module over a PID R.
If 0 : M = Rr, and

r = pn11 pn22 · · · p
nk
k

where the pi are non-associate primes, then

M = Mp1 ⊕Mp2 ⊕ · · · ⊕Mpk .

If M = P1 ⊕ P2 ⊕ · · · ⊕ Pt where the Pi are non-zero primary modules for non-
associate primes, then k = t, and after suitable renumbering, Pi = Mpi for all
i.
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Proof. Only the last assertion needs verifying, and it should be obvious at
this point.

Corollary 4.7.20 Two finitely generated torsion modulesM and N over a PID
R are isomorphic if and only if Mp ≈ Np for all primes p ∈ R.

The invariant factors of the variousMp are called the elementary divisors
of M .

Corollary 4.7.21 Corollary. Two finitely generated torsion modules over a
PID are isomorphic if and only if they have the same elementary divisors.

PROBLEMS

1. Prove that a finitely generated torsion module over Z is finite.

2. Prove that a finitely generated torsion module over a PID is not necessarily
finite.

3. Prove that quotient modules of torsion modules are torsion modules.

4. Prove that direct sums of torsion modules are torsion modules.

5. Prove that direct sums of torsion-free modules are torsion-free modules.

6. Prove that if M is a free module (of finite rank) over a PID and if S is
a submodule of M , then S is contained in a summand of M having the
same rank as S.

7. Let R be a ring such that every left ideal is finitely generated as an R-
module. Prove that submodules of finitely generated R-modules are fi-
nitely generated.

8. Let R be a PID, and let p be a prime in R. Prove that if R/Rpi ≈ R/Rpj ,
then i = j.

9. If M is a module over a PID R, and x and y are in M with 0 : x =
Rpm1

1 pm2
2 · · · pmt

t , 0 : y = Rpn11 pn22 · · · p
nt
t , and 0 ≤ mi < ni for all i, then

0 : (x+ y) = 0 : (y).

10. Prove that if R is a commutative ring with identity, I and J are ideals of
R, and the R-modules R/I and R/J are isomorphic, then I = J .

11. Let S be a submodule or a quotient module of the direct sum C1⊕C2⊕· · ·⊕
Cn of cyclic modules Ci over a PID, where 0 : C1 ⊂ 0 : C2 ⊂ · · · ⊂ 0 : Cn.
Prove that if

S = S1 ⊕ S2 ⊕ · · · ⊕ Sm
with each Si non-zero cyclic and 0 : S1 ⊂ 0 : S2 ⊂ · · · ⊂ 0 : Sm, then
m ≤ n and 0 : Ci ⊂ 0 : Si for all i ≤ m.
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12. Let M be a finitely generated torsion module over a PID. Let m ∈ M
with 0 : m = 0 : M . Prove that Rm is a summand of M . Prove that Rm
is not necessarily a summand if M is not torsion.

13. How does one tell from the invariant factors of two finitely generated
torsion modules whether or not one is isomorphic to a summand of the
other? to a submodule of the other?

14. Let C be a cyclic module over the PID R. Let M and N be finitely
generated R-modules. Prove that if C⊕M ≈ C⊕N , then M ≈ N . (This
is true for arbitrary R-modules M and N .)

15. Let p be a prime in a PID R, and let M be an R-module. Prove that Mp

is a submodule of M , and that (M/Mp)p = 0.

16. Prove that submodules, quotient modules, and direct sums of p-modules
are p-modules.

17. Let M be a finitely generated torsion module over a PID R. Let 0 : M =
Rr and

r = pn11 pn22 · · · p
nk
k ,

with the pi non-associate primes. Prove that

Mpi = (r/pnii )M.

18. Let p be a prime in the PID R, and let C be a cyclic p-module over R.
Prove that C ≈ R/Rpn for some n.

19. Let C be a cyclic p-primary module with 0 : C = Rpn. Prove that the
submodules of C are exactly the submodules in the chain

C ⊃ pC ⊃ · · · ⊃ pnC = 0.

20. Let M be a module over the PID R, and let p be a prime in R. Let
M [p] = {m ∈ M : pm = 0}. Prove that M [p] is a submodule of M , and
hence a vector space over the field R/pR.

21. Let M be a finitely generated module over a PID R. Prove that for any
non-zero prime p in R,

r(M) = dim(M/pM)− dim(M [p]).

22. Let p be a prime in the PID R, and let C be a cyclic p-module. Prove
that dim(C[p]) = 1. Prove that

dim((pkC)[p]/(pk+1C)[p]) = 1 or 0

depending on whether or not C ≈ R/pk+1R.
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23. Let M be a finitely generated p-primary module over the PID R. Prove
that

dim((pkM)[p]/(pk+1M)[p])

is the number of summands which are isomorphic to R/pk+1R in any
decomposition of M into a direct sum of cyclic modules.

24. Let F be the field of integers modulo 2. Use the Euclidean algorithm to
find the greatest common divisor of x2 +1 and x5 +1 in F [x]. Express that
greatest common divisor as a linear combination of the two polynomials.



Chapter 5

Linear Transformations

5.1 Linear Transformations and Matrices

The objects of real interest about vector spaces are linear transformations, espe-
cially linear transformations from a vector space V into itself. We have already
noted in 3.4 that for any vector space V over a field F , the set Hom(V, V ) of
all linear transformations from V into V is again a vector space over F . Ad-
dition and scalar multiplication were given by (α + β)(v) = α(v) + β(v), and
(aα)(v) = a(α(v)), respectively. But the elements of Hom(V, V ) may also be
multiplied in a natural way. These elements are functions from V into V , and
such functions may be composed. Thus linear transformations in Hom(V, V )
are multiplied by the rule (αβ)(v) = α(β(v)). It is easy to verify that αβ is
in Hom(V, V ) whenever α and β are in Hom(V, V ). This addition and multi-
plication of elements of Hom(V, V ) makes Hom(V, V ) into a ring with identity.
Multiplication is associative because it is composition of functions. The left
distributive law holds since

(α(β + γ))(v) = α((β + γ)(v)) = α(β(v) + γ(v))

= α(β(v)) + α(τ(v)) = (αβ)(v) + (ατ)(v) = (αβ + αγ)(v),

where α, β, and γ are in Hom(V, V ) and v is in V . Similarly, the right distrib-
utive law holds. The identity map 1V : V → V is the identity of the ring. For
a ∈ F and v ∈ V ,

((aα)β)(v) = (aα)(β(v)) = a(α(β(v)) = a((αβ)(v)) = (αβ)(av)

= α(β(av)) = α(a(β(v))) = α((aβ)(v)) = (α(aβ))(v).

Summing up, Hom(V, V ) is at the same time a ring and a vector space over
F . The ring addition is the same as the vector space addition. Furthermore,
scalar multiplication and ring multiplication are connected by the relations

a(αβ) = (aα)β = α(aβ).

169
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All this is expressed by saying that Hom(V, V ) is an algebra over F . This
particular algebra is called the algebra of linear transformations of V . It
will be denoted by A(V ). The algebra A(V ) is an algebraic object of great
interest. For example, some of the most beautiful theorems in ring theory center
around “rings of linear transformations.” We will take a hard look at A(V ) as
a ring in Chapter 8. Our concern here is not so much with A(V ) as a ring or as
an algebra, but rather with the elements of A(V ). We won’t forget that A(V )
is an algebra, but we will concentrate on analyzing its elements rather than its
algebraic structure.
First, we will show how linear transformations are synonymous with ma-

trices. This will afford us a concrete representation of linear transformations.
Results about linear transformations will translate into results about matrices,
and vice versa. Throughout, V will be a finite dimensional vector space over a
field F .
Let {v1, v2, . . . , vn} be a basis of V , and let α ∈ A(V ). Then for each vi,

α(vi) is a linear combination

α(vj) =

n∑
i=1

aijvi

of the basis vectors. The effect of α on each vi determines α. The effect of α on
vi is determined by a1i, a2i, . . . , ani. Therefore, the matrix

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann


completely determines α. It depends, of course, on the particular basis {v1, v2,
. . . , vn} chosen.

Definition 5.1.1 Let V be a finite dimensional vector space over the field F .
Let {v1, v2, . . . , vn} be a basis of V , let α be a linear transformation from V
into V , and let α(vj) = Σni=1aijvi. The matrix of α relative to the basis
{v1, v2, . . . , vn} is 

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann


Let Fn denote the set of all such matrices. That is, Fn is the set of all n×n

arrays of elements of F . Elements of Fn are typically denoted (aij). Thus (aij)
is the matrix in Fn whose entry in the ith row and jth column is the element
aij of F . Given any (aij) ∈ Fn, we may define the linear transformation α
by α(vj) = Σ aijvi. This, together with our previous remarks, shows that
the map A(V ) → Fn gotten by associating with α ∈ A(V ) its matrix relative
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to the (fixed) basis {v1, v2, . . . , vn} is a one-to-one correspondence. Again,
this correspondence depends on the basis chosen. Even the order of the basis
vectors matters. A permutation of the basis vectors permutes the columns of
the matrix, for example.
Now Fn is itself a ring. In 4.1.7 (g), it served as such an example. It is

actually an algebra. Here is the definition we need.

Definition 5.1.2 Let R be a commutative ring with an identity. Let Rn denote
the set of all n× n matrices over R. For (rij) and (sij) in Rn and r in R, we
define

a. (rij) + (sij) = (rij + sij),

b. (rij)(sij) = (Σkrikskj), and

c. r(rij) = (rrij).

Thus to add two matrices, just add their corresponding entries. Multipli-
cation is a bit more complicated. Part (c) defines scalar multiplication, that
is, how to multiply an element of R by an element of Rn. That multiplica-
tion is just entry-wise multiplication. It is routine to check that (a) and (b)
make Rn into a ring with identity. Further, (c) makes Rn into a left mod-
ule over R. Thus Rn would be a vector space over R if R were a field. Also
r((rij)(sij)) = (r(rij))(sij) = (rij)(r(sij)), so that Rn is an algebra over R.
Checking these statements is routine.
Let V be a vector space of dimension n over the field F . A basis {v1, v2,

. . . , vn} of V yields a one-to-one correspondence A(V ) → Fn via α → (aij),
where α(vj) = Σ aijvi. This is a vector space isomorphism. For example, if α
corresponds to (aij) and β to (bij) then

(α+ β)(vj) = α(vj) + β(vj) = Σ aijvi + Σ bijvi = Σ(aij + bij)(vi),

so that α + β corresponds to (aij + bij) = (aij) + (bij). Similarly, scalar mul-
tiplication is preserved. To what matrix does αβ correspond? To see, we must
compute (αβ)(vj). But

(αβ)(vj) = α(β(vj)) = α
(∑

bkjvk

)
=
∑

bkjα(vk)

=
∑

bkj

(∑
aikvi

)
=
∑(∑

bkjaik

)
(vi) =

∑(∑
aikbkj

)
(vi).

Thus αβ corresponds to the matrix (aij)(bij). Hence multiplication is preserved
under our correspondence. The one-to-one correspondence we have set up is
therefore an isomorphism of algebras. Summing up, we have

Theorem 5.1.3 Let V be a vector space of dimension n over the field F . Let
A(V ) be the algebra of all linear transformations on V , and let Fn be the algebra
of all n×n matrices over F . Let {v1, v2, . . . , vn} be a basis of V . For α ∈ A(V ),
let α(vj) = Σ aijvi. Then the map

Φ : A(V )→ Fn : α→ (aij)
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is an algebra isomorphism. That is, it is one-to-one and onto, Φ(aα) = aΦ(α),
Φ(α+ β) = Φ(α) + Φ(β), and Φ(αβ) = Φ(α)Φ(β).

The units of a ring are those elements with inverses. For example, α is a
unit in A(V ) if there is an element β in A(V ) with αβ = βα = 1, the identity
map on V . Elements in A(V ) and elements in Fn that are units are called
non-singular. This is special linear algebra terminology.
There are some facts about non-singular linear transformations and matrices

that we need. First, if (aij) is the matrix of α relative to some basis, it should
be clear from 5.1.3 that α is non-singular if and only if (aij) is non-singular.
Indeed, if αβ = βα = 1, then in the notation of 5.1.3,

Φ(αβ) = Φ(βα) = 1 = Φ(α)Φ(β) = Φ(β)Φ(α).

Thus α is a unit in A(V ) if and only if Φ(α) is a unit in Fn. Actually, for α
to be non-singular, it is enough to require that it has a left inverse, or that
it has a right inverse. In fact, suppose that αβ = 1. By 3.3.17, dim(V ) =
dim(Im α) + dim(Ker α). Since αβ = 1, then α is certainly onto, whence
dim(Ker α) = 0, and so α is one-to-one. Thus α has an inverse. If βα = 1, then
α must be one-to-one, and the equation dim(V ) = dim(Im α) + dim(Ker α)
yields dim(Im α) = dim(V ). In other words, α is also onto, and hence is non-
singular. Note further that if β is a right inverse of α, then βα = 1 also. This
is because αβ = 1 implies that α is non-singular, so that there is an element γ
in A(V ) with γα = αγ = 1. Thus γ(αβ) = γ = (γα)β = β. Similarly, any left
inverse of α is the unique inverse of α. Using 5.1.3, we get the non-obvious facts
that if (aij) ∈ Fn has either a left or a right inverse, then it is non-singular, and
any left inverse and any right inverse of (aij) is the (unique) inverse of (aij).
We have proved the following theorem.

Theorem 5.1.4 Let V be a vector space of dimension n over the field F .

a. If (aij) is the matrix of α ∈ A(V ) relative to some basis of V , then (aij)
is non-singular if and only if α is non-singular.

b. For any α ∈ A(V ), the following are equivalent.

i. α is non-singular.

ii. α has a right inverse.

iii. α has a left inverse.

iv. α is onto.

v. α is one-to-one.

c. For any (aij) ∈ Fn, the following are equivalent.

i. (aij) is non-singular.

ii. (aij) has a right inverse.
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iii. (aij) has a left inverse.

Suppose {v1, v2, . . . , vn} and {w1, w2, . . . , wn} are bases of V . For
α ∈ A(V ), how is the matrix of α with respect to {v1, v2, . . . , vn} related to the
matrix of α with respect to {w1, w2, . . . , wn}? To find out, consider the linear
transformation γ defined by γ(vi) = wi. Let α(vj) = Σ aijvi, α(wj) = Σ bijwi,
and γ(vj) = wj = Σ cijvi. We will compute the matrix of αγ relative to the
basis {v1, v2, . . . , vn} in two ways. On one hand, we get

αγ(vj) = α(wj) = α
(∑

ckjvk

)
=

∑
ckjα(vk) =

∑
ckj

(∑
aikvi

)
=
∑(∑

ckjaik

)
vi.

On the other hand,

αγ(vj) = α(wj) =
∑

bkjwk =
∑

bkj

(∑
cikvi

)
=
∑(∑

bkjcik

)
vi.

Therefore (aij)(cij) = (cij)(bij) since each side is the matrix of αγ with
respect to {v1, v2, . . . , vn}. Now γ is non-singular, so therefore (cij) is non-
singular. Hence the relation (aij)(cij) = (cij)(bij) can just as well be expressed
as

(aij) = (cij)(bij)(cij)
−1

This is expressed by saying that (aij) is similar to (bij). Similarity of matrices
is an equivalence relation on Fn. In the same vein, two linear transformations
α and β in A(V ) are called similar if there is a non-singular γ ∈ A(V ) with
α = γβγ−1. Similarity is an equivalence relation on A(V ).

Theorem 5.1.5 Let V be a vector space of dimension n over a field F . Let α
and β be in A(V ), and let (aij) and (bij) be in Fn.

a. α and β are similar if and only if they have the same matrix relative to
appropriate bases.

b. (aij) and (bij) are similar if and only if they are matrices of the same
linear transformation relative to appropriate bases.

Proof. What has been shown already is one half of (b), namely that if (aij)
and (bij) are the matrices of α relative to two bases, then (aij) and (bij) are
similar. To get the other half of (b), suppose that

(aij) = (cij)(bij)(cij)
−1.

Let {v1, v2, . . . , vn} be any basis of V . Let (aij), (bij), and (cij) be the matrices
of α, β, and γ respectively, relative to this basis. Since γ is non-singular,

{γ(v1), γ(v2), . . . , γ(vn)}
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is a basis of V . We have γβγ−1 = α by 5.1.3. Since

α(γ(vj)) = γβγ−1(γ(vj)) = γβ(vj) = γ(Σ bijvi) = Σ bijγ(vi),

(bij) is the matrix of α relative to the basis {γ(v1), γ(v2), . . . , γ(vn)}. This
completes the proof of (b).
The proof of (a) is about the same. Suppose that α = γβγ−1. Let {v1, v2,

. . . , vn} be any basis of V . Then {γ(v1), γ(v2), . . . , γ(vn)} is also a basis of
V . Let β(vj) = Σ bijvi. Then

α(γ(vj)) = (αγ)(vj) = γβ(vj) = γ(Σ bijvi) = Σ bijγ(vi),

whence the matrix of α relative to {γ(v1), γ(v2), . . . , γ(vn)} is the same as the
matrix of β relative to {v1, v2, . . . , vn}

Now suppose that the matrix (aij) of α relative to a basis {v1, v2, . . . , vn} is
also the matrix of β relative to a basis {w1, w2, . . . , wn}. Let γ be the element
of A(V ) defined by γ(wj) = vj . Then

γβγ−1(vj) = γβ(wj) = γ(Σ aijwi) = Σ aij(γwi) = Σ aijvi.

Therefore γβγ−1 = α. The proof is complete.
What does all this really say? Given a basis of V , we have an isomorphism

A(V )→ Fn.

Suppose that we are interested in relating properties of elements of A(V ) with
those of Fn. That is, we are interested in translating properties of linear trans-
formations into properties of matrices, and vice versa, using this isomorphism.
What sort of properties can we expect to so translate? The isomorphism changes
if we change basis. But it doesn’t change drastically. If α corresponds to (aij)
via one basis, it corresponds to a matrix similar to (aij) via any other basis.
Further, if (bij) is similar to (aij), then there is another basis relative to which
α corresponds to (bij). This is the content of 5.1.5 (b). On the other hand,
if α corresponds to (aij) via one basis, and β corresponds to (aij) via another
basis, then α and β are similar, and conversely. This is the content of 5.1.5
(a). This may be viewed in the following way. Pick a basis of V . This gets
an isomorphism A(V ) → Fn. This isomorphism induces a one-to-one corre-
spondence between the similarity classes of A(V ) and those of Fn. Now change
basis. This gets another isomorphism A(V ) → Fn, and induces a one-to-one
correspondence between the similarity classes of A(V ) and those of Fn. The
one-to-one correspondences between these similarity classes in these two cases
are the same. Thus the one-to-one correspondence obtained between the simi-
larity classes of matrices in Fn is independent of the basis chosen. This makes it
eminently plausible to try to characterize matrices in Fn, or equivalently, linear
transformations in A(V ), up to similarity.
What properties must two matrices in Fn share in order to be similar? Are

there some simple invariants of matrices that determine them up to similarity?
In each similarity class of matrices in Fn, is there a special one that really
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displays the features of any linear transformation corresponding to it? For
example, suppose that the matrix (aij) is diagonal. That is, suppose that aij = 0
if i 6= j. If α corresponds to (aij) via the basis {v1, v2, . . . , vn}, then α(vi) =
aiivi. Thus α is just a scalar multiplication on each of the subspaces Fvi, and the
action of α on V becomes transparent. Relative to some other basis, the matrix
of α may not be so simple. If every similarity class of matrices had a diagonal
matrix in it, then given any α, there would be a basis as above. This is too much
to hope for. Linear transformations just are not that simple. Equivalently, not
every matrix in Fn is similar to a diagonal one. This is actually easy to see
geometrically. Rotation of the plane about the origin through 30 degrees, say,
in the counterclockwise direction, is a linear transformation. Clearly no basis
exists relative to which the matrix of that linear transformation is diagonal. In
fact, the action of α on no vector, except 0, is multiplication by a scalar.
We are going to spend a fair amount of effort finding special representatives,

or “canonical forms," of similarity classes of matrices in Fn. The general idea
is to find in each similarity class of matrices one special one that displays the
essential features of any linear transformation corresponding to it. Roughly
speaking, we will look for a representative as “diagonal as possible." There are
several such canonical forms.
Remember, our purpose is to analyze the elements of the algebra A(V ).

The discussion above has centered around characterizing those elements up to
similarity. Can we expect to do any better? To what extent can we expect even
to distinguish between the elements of the algebra A(V )? To what extent do
we wish to do so? Suppose, for instance, that γ : V → W is an isomorphism
between the finite dimensional vector spaces V and W . Then

Φ : A(V )→ A(W ) : α→ γαγ−1

is an isomorphism between the algebras A(V ) and A(W ). Surely α acts on V
in “the same way” as γαγ−1 acts on W . Surely, we do not care about any
properties of α not shared by γαγ−1. As linear transformations, they must be
just alike. A remarkable fact is that if Φ : A(V ) → A(W ) is any isomorphism
between the algebras A(V ) and A(W ), then it is induced in the way indicated
above by an isomorphism γ : V → W . This is the Noether-Skolem Theorem,
which we will not prove. In particular, if V = W , then any automorphism ϕ
of the algebra A(V ) is induced by an automorphism γ : V → V . This means
that Φ(α) = γαγ−1 for all α in A(V ). Therefore, if Φ is any automorphism
of A(V ), then the image of any α in A(V ) under ϕ is similar to α. In short,
characterizing the elements of A(V ) up to similarity is exactly what we should
do. We can’t expect to do any better.

PROBLEMS

1. Prove that α(a + bi) = a − bi is a linear transformation of the complex
numbers regarded as a vector space over the field of real numbers. Find
the matrix of α relative to the basis {1, i}.
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2. Let R be the field of real numbers. Let α be the linear transformation
on R2 that rotates the plane about the origin through an angle θ in
the counter-clockwise direction. Find the matrix of α relative to {(1, 0),
(0, 1)}.

3. Let (aij) be in F2. Prove that

(aij)
2 − (a11 + a22)(aij) + (a11a22 − a12a21) · 1 = 0.

4. Let V be of dimension 2 over the field F , and let α be an element of A(V ).
Prove that there is a polynomial f(x) in F [x] of degree 2 with f(α) = 0.

5. Let F be a field, and let f(x) in F [x] have degree n. Regard F [x]/(f(x))
as a vector space over F . Prove that

{1 + (f(x)), x+ (f(x)), x2 + (f(x)), . . . , xn−1 + (f(x))}

is a basis of F [x]/(f(x)). Let α be the linear transformation defined by
α(xi + (f(x))) = xi+1 + (f(x)). Find the matrix of α relative to the basis
above.

6. Prove that the ring A(V ) is non-commutative if dim(V ) ≥ 2.

7. Let V be a vector space over F , and suppose that V 6= 0. Prove that F is
the center of A(V ). That is, prove that αβ = βα for all β in A(V ) if and
only if there is an element a in F such that α(v) = av for all v in V .

8. Prove that (aij) is in the center of Fn if and only if (aij) is of the form
a 0 . . . 0
0 a . . . 0
...

...
...

0 0 . . . a


,

that is, if and only if (aij) is a scalar matrix.

9. Let (aij) be a nilpotent element of Fn, that is, let (aij)
m = 0 for some

positive integer m. Prove that (aij)
n = 0.

10. Prove that if α is nilpotent, then 1 + α is non-singular.

11. Prove that if α is nilpotent and a0, a1, . . . , am are elements of F with
a0 6= 0, then a0 + a1α+ · · · +amα

m is non-singular.

12. Prove that a matrix in Fn with exactly one 1 in each row and column
and 0 elsewhere is non-singular. (These matrices are called permutation
matrices.)

13. Suppose that (aij) is upper triangular. That is, suppose that aij = 0 if
j < i. Prove that (aij) is non-singular if and only if no aii = 0.
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14. Suppose that α is in A(V ) and that α is idempotent, that is, that α2 = α.
Prove that V = V1 ⊕ V2 with α(v) = v for all v ∈ V1 and α(V2) = 0.

15. Suppose that (aij) is idempotent. Prove that (aij) is similar to a matrix
of the form 

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
...

...
...

0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 0 · · · 0
...

...
...

0 0 0 · · · 0 0 · · · 0


16. Prove that if α and β are idempotent elements of A(V ), then α and β

are similar if and only if they have the same rank. (The rank of α is
dim(Im(α)).)

17. Let R be the field of real numbers. Prove that the n× n matrix of all 1’s
is similar to the n× n matrix (aij) with a11 = n and all other entries 0.

5.2 The Rational Canonical Form for Matrices

Let V be a finite dimensional vector space over the field F . The principal tool
we will use in studying elements of A(V ) is 4.7.15– a finitely generated module
over a principal ideal domain is determined up to isomorphism by its invariant
factors. The special case 4.7.16 of 4.7.15 is what we will actually use.

Definition 5.2.1 Let V be a vector space over the field F , and let α be in A(V ).
For f(x) in F [x] and v in V , let f(x) ·v = f(α)(v). This makes V into a module
over F [x], called the module of the linear transformation α, and denoted
V α.

Throughout, V will be finite dimensional. It is straightforward to verify that
f(x) · v = f(α)(v) really makes V into a module over F [x]. We write V α for
this module to distinguish it from the vector space V . As a set, V = V α.
Suppose that S is a submodule of V α. Then certainly S is a subspace of V ,

but also x · S = α(S) ⊂ S. Therefore, S is a subspace of V that is invariant
under, that is, taken into itself by α. Conversely, if α(S) ⊂ S and S is a
subspace of V , then S is a submodule of V α. Thus the submodules of V α are
the subspaces of V invariant under α. In particular, a direct sum decomposition
V α = V1 ⊕ V2 is the same thing as a decomposition V = V1 ⊕ V2 of the vector
space V into the direct sum of subspaces V1 and V2 which are invariant under α.
Since V is finitely generated as an F -module, it is certainly finitely generated
as an F [x]-module. Any basis of V generates the module V α, for example.

Theorem 5.2.2 Let V be a finite dimensional vector space over the field F ,
and let α be in A(V ). Then V α is a finitely generated torsion F [x]-module.
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Proof. We already observed that V α is finitely generated. There are several
ways to get it torsion. Here is one way that utilizes the fact that V α is a direct
sum of cyclic modules. Write V α = V1 ⊕ V2 ⊕ · · · ⊕Vk with each Vi a cyclic
F [x]-module. Each Vi is either torsion or isomorphic to F [x] as an F [x]-module.
But F [x] is an infinite dimensional vector space over F . Thus if Vi ≈ F [x], then
Vi is infinite dimensional as a vector space over F . Thus each Vi is torsion, and
hence V α is torsion.
Another way to get V α torsion is this. The vector space A(V ) has dimension

(dim(V ))2 = m over F . Thus {1, α, α2, . . . , αm} is dependent. Hence there
are elements a0, a1, . . . , am in F , not all 0, such that Σ aiα

i = 0. It follows
that for any v in V , (Σ aix

i) · v = (Σ aiα
i)(v) = 0. But Σ aix

i 6= 0. Thus V α

is torsion.
By 4.7.16, V α is determined up to isomorphism by its family {f1(x), f2(x),

. . . , fk(x)} of invariant factors. These are monic polynomials in F [x] such
that fi+1(x) divides fi(x) for i < k. Further, V α ≈ F [x]/(f1(x)) ⊕ · · · ⊕
F [x]/(fk(x)). Let’s examine this decomposition briefly. First, let f(x) be any
monic polynomial in F [x]. Then F [x]/(f(x)) is a cyclic F [x]-module, but it is
also a vector space over F . We need a bit of information about the vector space
F [x]/(f(x)).

Lemma 5.2.3 Let f(x) be in F [x], and let deg(f(x)) = n. Then as a vector
space over F , F [x]/(f(x)) is of dimension n. In fact, {1 + (f(x)), x + (f(x)),
. . . , xn−1 + (f(x))} is a basis.

Proof. If Σn−1
i=0 ai(x

i + (f(x))) = 0, then Σn−1
i=0 aix

i is in (f(x)). But (f(x))
contains no non-zero polynomials of degree less than n. Hence B = {1 + (f(x)),
x+ (f(x)), . . . , xn−1 + (f(x))} is independent. If g(x) is in F [x], then g(x) =
f(x)k(x) + r(x), with deg(r(x)) < n. Hence g(x) + (f(x)) = r(x) + (f(x)). Now
it is clear that B generates F [x]/(f(x)), and hence is a basis.

Corollary 5.2.4 Let W be a cyclic submodule of V α, and let dim(W ) = m. If
w generates the module W , then

{w, α(w), α2(w), . . . , αm−1(w)}

is a basis of the subspace W .

Proof. The epimorphism given by F [x]→W : 1→ w yields an isomorphism
F [x]/(f(x))→W , where (f(x)) = 0 : w. This F [x]-isomorphism is also a vector
space isomorphism. Since dim(W ) = m, then by 5.2.3, deg(f(x)) = m, and
{1 + (f(x)), x+ (f(x)), . . . , xm−1 + (f(x))} is a basis of F [x]/(f(x)). Its image
in W is

{w, x · w, . . . , xm−1 · w} = {w, α(w), . . . , αm−1(w)}.

Corollary 5.2.5 Let α be in A(V ), and let

{f1(x), f2(x) , . . . , fk(x)}
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be the invariant factors of V α. Then

dim(V ) = deg(f1(x)) + · · ·+ deg(fk(x)).

Proof. V α ≈ F [x]/(f1(x))⊕ · · · ⊕F [x]/(fk(x)). Apply 5.2.3.
Consider again the decomposition

V α ≈ F [x]/(f1(x))⊕ · · · ⊕ F [x]/(fk(x)),

where {f1(x), . . . , fk(x)} are the invariant factors of V α. Since f1(x) is a multi-
ple of each fi(x), it follows that f1(x)(F [x]/(fi(x))) = 0. Therefore, f1(x)V α =
0. What does this mean? It means that for each v in V α, f1(x) · v = 0. But
f1(x) · v = f1(α)(v) = 0. Therefore, f1(α) = 0. The polynomials g(x) in F [x]
such that g(α) = 0 form an ideal. This ideal is non-zero. Any non-zero ideal of
F [x] is generated by a unique monic polynomial. Clearly, no monic polynomial
g(x) of degree smaller than deg(f1(x)) can satisfy g(α) = 0. If it did, then
g(x)V α = 0 = g(x)(F [x]/(f1(x))), which is impossible. Therefore, f1(x) is the
monic generator of the ideal of polynomials g(x) such that g(α) = 0. In other
words, f1(x) is the monic polynomial of least degree such that f1(α) = 0. But
what is the degree of f1(x)? By 5.2.3, or 5.2.5, deg(f1(x)) ≤ dim(V ). Using our
isomorphism A(V )→ Fn, we have

Theorem 5.2.6 Every linear transformation on a vector space of dimension n
over a field F satisfies a monic polynomial in F [x] of degree ≤ n. Every matrix
in Fn satisfies a monic polynomial in F [x] of degree ≤ n.

Definition 5.2.7 Let α be in A(V ). Theminimum polynomial of α, denoted
mα(x), is the monic polynomial of least degree such that mα(α) = 0. Let A be in
Fn. The minimum polynomial of A, denoted mA(x), is the monic polynomial
of least degree such that mA(A) = 0.

Note that 5.2.6 just says that these minimum polynomials are of degree
≤ dim(V ).

Corollary 5.2.8 Let α be in A(V ), and let

{f1(x), f2(x), . . . , fk(x)}

be the invariant factors of V α. Then mα(x) = f1(x).

Therefore, the first member of the family of invariant factors of V α is the
minimum polynomial of α. There is a pressing question at hand.

Theorem 5.2.9 Let V be a finite dimensional vector space over a field F , and
let α and β be in A(V ). Then the F [x]-modules V α and V β are isomorphic if
and only if α and β are similar.
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Proof. Suppose that α = γ−1βγ. Then γ is an F -isomorphism from V α to
V β . It would be an F [x]-isomorphism if γ(f(x) · v) = f(x) · γ(v) for all f(x) in
F [x] and v in V α. This is true, however, if γ(x · v) = x · γ(v) for all v in V α.
But γ(x · v) = γ(α(v)) = (γα)(v) = (βγ)(v) = β(γ(v)) = x · γ(v). Therefore
V α ≈ V β . Now suppose that γ : V α → V β is an F [x]-isomorphism. Then
γ certainly is an F -isomorphism. That is, γ is non-singular. For v in V , we
have γ(x · v) = x · (γ(v)), whence γ(α(v)) = β(γ(v)). Therefore, γα = βγ, or
α = γ−1βγ. This concludes the proof.
Thus, isomorphism invariants for V α are similarity invariants for α. Hence

the invariant factors of V α are complete similarity invariants for α.

Definition 5.2.10 Let V be a finite dimensional vector space over the field F ,
and let α be in A(V ). The invariant factors, and the elementary divisors, of the
module V α are called the invariant factors, and the elementary divisors,
respectively, of the linear transformation α.

Corollary 5.2.11 Let α and β be in A(V ). Then α and β are similar if and
only if they have the same invariant factors, or the same elementary divisors.

Therefore each α in A(V ) is associated with a unique family {f1(x), . . . ,
fk(x)} of monic polynomials with each a multiple of the next, namely the in-
variant factors of α. The linear transformations α and β correspond to the same
family precisely when they are similar. For any vector space V of dimension
n, similarity classes of elements of A(V ) are in a natural one-to-one correspon-
dence with similarity classes of elements of Fn. The correspondence is induced
by sending α in A(V ) to the matrix of α relative to any basis. Therefore, the
following definition of invariant factors and elementary divisors of matrices is
legitimate; it is independent of V .

Definition 5.2.12 Let (aij) be in Fn, and let α be any element of A(V ) whose
matrix relative to some basis of V is (aij). The invariant factors, and ele-
mentary divisors of (aij) are the invariant factors, and elementary divisors,
respectively, of α.

Corollary 5.2.13 Two matrices in Fn are similar if and only if they have the
same invariant factors, or the same elementary divisors.

Corollary 5.2.14 Let α be in A(V ), with dim(V ) = n. Then α and (aij) have
the same invariant factors, or the same elementary divisors, if and only if (aij)
is the matrix of α relative to some basis of V .

Corollary 5.2.15 Similar linear transformations, and similar matrices, have
the same minimum polynomial.

How does one tell whether or not two matrices in Fn have the same invariant
factors? This is the same as asking how one tells whether or not two matrices in
Fn are similar. It turns out that there is a matrix in each similarity class that
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puts on display its invariant factors. This particular canonical form (that is, this
special matrix in each similarity class) is called the rational canonical form.
We will get at it through V α. Now V α is a direct sum of cyclic modules. Let’s
examine the cyclic case first. So suppose that V α is cyclic. This is expressed
by saying that α is cyclic. So a linear transformation α on a vector space V is
cyclic if the associated module V α is a cyclic module. Suppose that α is cyclic.
Then V α ≈ F [x]/(mα(x)), where mα(x) is the minimum polynomial of α. Let
v generate V α. By 5.2.4,

B = {v, α(v), . . . , αn−1(v)}

is a basis of V , where dim(V ) = n. What is the matrix of α relative to this
basis? We need to write each α(αi(v)) as a linear combination of elements of
B. Let

mα(x) = xn + an−1x
n−1 + · · ·+ a0.

Then
αn = − (a0 + a1α+ · · ·+ an−1α

n−1)

since mα(α) = 0. Thus

αn(v) = − (a0v + a1(α(v)) + · · ·+ an−1(αn−1(v))).

For i < n− 1, α(αi(v)) = αi+1(v) is certainly a linear combination of elements
of B. Therefore the matrix of α relative to the basis B is

0 0 0 · · · 0 0 −a0

1 0 0 · · · 0 0 −a1

0 1 0 · · · 0 0 −a2

...
...

...
0 0 0 · · · 1 0 −an−2

0 0 0 · · · 0 1 −an−1


This matrix is, of course, uniquely determined by the polynomial mα(x), and
one can read offmα(x) from it.

Definition 5.2.16 Let f(x) be a monic polynomial in F [x]. If f(x) = xn +
an−1x

n−1 + · · · +a0, then the matrix

0 0 0 · · · 0 0 −a0

1 0 0 · · · 0 0 −a1

0 1 0 · · · 0 0 −a2

...
...

...
0 0 0 · · · 1 0 −an−2

0 0 0 · · · 0 1 −an−1


is called the companion matrix of f(x), and is denoted C(f(x)).
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Thus one matrix of a cyclic linear transformation is the companion matrix
of its minimum polynomial.

Corollary 5.2.17 The minimum polynomial of the companion matrix C(f(x))
of the monic polynomial f(x) is f(x). That is, mC(f(x))(x) = f(x).

Proof. Let deg(f(x)) = n. Multiplication by x is a linear transformation
on the vector space F [x]/(f(x)). The matrix of this linear transformation rel-
ative to the basis {1 + (f(x)), x + (f(x)), . . . , xn−1 + (f(x))} is C(f(x)). A
matrix of a linear transformation satisfies the minimum polynomial of that lin-
ear transformation. The minimum polynomial of the linear transformation in
question is f(x) since f(x) is the monic polynomial of least degree such that
f(x)(F [x]/(f(x))) = 0.
Suppose that α is in A(V ) and that V α = V1 ⊕ V2. Let {v1, v2, . . . , vm}

be a basis of V1, and let {vm+1, vm+2, . . . , vn} be a basis of V2. Since Vi is
invariant under α, the matrix of α relative to {v1, v2, . . . , vn} has the form

a11 . . . a1m 0 . . . 0
...

am1 . . . amm 0 . . . 0
0 . . . 0 am+1 m+1 . . . am+1 n

...
...

0 . . . 0 an m+1 . . . ann


.

In short, writing V α as a direct sum V1 ⊕ V2 ⊕ · · · ⊕Vk of submodules and
stringing together bases of V1, V2, . . . , and Vk yields a basis such that the
matrix of α relative to it has the form

M1

M2 0
M3

0
. . .

Mk


where each Mi is a dim(Vi)× dim(Vi) array. This is a principal tool in finding
special matrices for linear transformations.

Theorem 5.2.18 Let V be a vector space of dimension n over the field F . Let
α be a linear transformation on V , and let {f1(x), f2(x), . . . , fk(x)} be the
invariant factors of α. Then V has a basis such that the matrix of α relative to
it is

R (α) =


C(f1(x))

C(f2(x)) 0

0
. . .

C(fk(x))


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Proof. V α ≈ F [x]/(f1(x))⊕· · · ⊕F [x]/(fk(x)), whence V α = V1⊕· · · ⊕Vk
with Vi ≈ F [x]/(fi(x)). Let vi generate Vi. Then by 5.2.4,

{vi, α(vi), . . . , αni−1(vi)}

is a basis of Vi, where ni is the degree of fi(x). Therefore

{v1, α(v1), . . . , αn1−1(v1), v2, α(v2), . . . ,αn1−1(v2), . . . , vk, α(vk), . . . , αnk−1(vk)}

is a basis of V . The matrix of α relative to it is R(α).

Definition 5.2.19 The matrix R(α) in 5.2.18 is called the rational canonical
matrix of α. Any matrix in Fn in the form R(α), where fi+1(x) divides fi(x)
for i < k, is said to be in rational canonical form. Such a matrix is denoted
(C(fi(x))).

Theorem 5.2.20 Every matrix in Fn is similar to exactly one matrix in Fn in
rational canonical form.

Proof. Let (aij) be in Fn. Then (aij) is the matrix of some α in A(V )
with dim(V ) = n. The matrix (aij) is similar to the rational canonical form of
α. Suppose that (aij) is also similar to another matrix (C(gi(x))) in rational
canonical form. Then this matrix is the matrix of the linear transformation α
relative to some basis. But V α ≈ V1 ⊕ V2 ⊕ · · · ⊕Vk with Vi ≈ F [x]/(gi(x)).
Therefore {g1(x), g2(x), . . . , gk(x)} is the family of invariant factors of α. The
theorem follows.

There is an important point in connection with 5.2.19 and 5.2.20. Let (aij)
be in Fn. Complete similarity invariants for (aij) are the invariant factors of
(aij). That is, two matrices in Fn are similar if and only if they have the same
invariant factors. This is the same as having the same rational canonical form
in Fn. Now suppose that K is a field containing F . Then any (aij) in Fn is also
in Kn. For example, if F is the field Q of rational numbers, then any matrix in
Fn is also an n×n real matrix. As an element of Fn, (aij) has invariant factors
in F [x] and has a rational canonical form in Fn. But as an element of Kn, (aij)
has invariant factors in K[x] and a canonical form in Kn. By 5.2.19, a matrix
in Fn in rational canonical form is in rational canonical form as a matrix in Kn.
Thus 5.2.20 yields the following theorem.

Theorem 5.2.21 Let F be a subfield of the field K. The invariant factors and
the rational canonical form of a matrix in Fn are the same as the invariant
factors and the rational canonical form of that matrix as an element of Kn.

In particular, a matrix in Fn has the same minimum polynomial as an el-
ement of Fn as it does as an element of Kn. Further, two matrices in Fn are
similar in Fn if and only if they are similar in Kn.
The analogue of 5.2.21 for other canonical forms is not necessarily true. In

fact, 5.2.21 does not hold for elementary divisors. For example, the matrix(
0 1
−1 0

)
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as a real matrix has invariant factors just the polynomial x2+1. The polynomial
x2 + 1 is also, of course, its only invariant factor as a complex matrix. But its
elementary divisors as a complex matrix are x + i and x − i, while it has only
the single elementary divisor x2 +1 as a real matrix. Its rational canonical form
both as a real and as a complex matrix is the matrix itself. In the next section,
we will get a canonical form that will display the elementary divisors. That
canonical form of a matrix might change if the field is enlarged, because the
elementary divisors might change.

PROBLEMS

1. Find the minimum polynomial of an idempotent linear transformation.

2. Find the minimum polynomial of a nilpotent linear transformation.

3. Find the minimum polynomial of the 3× 3 matrix whose ij-entry is i · δij .

4. Find the rational canonical form of the matrix
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


.

5. Find all possible rational canonical matrices of α in A(V ) when mα(x) =
(x2 + 1)(x+ 1)2 and dim(V ) = 7.

6. Find the invariant factors and the rational canonical form of the matrix
1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


7. Let F be the field of complex numbers, and let a1, a2, . . . , an be the n
distinct nth roots of 1. Prove that in Fn the matrix C(xn − 1) is similar
to the diagonal matrix (aij) with aij = ai · δij .

8. Prove that the matrix 
0 0 0 0 1
1 0 0 0 −5
0 1 0 0 10
0 0 1 0 −10
0 0 0 1 5


is not similar to a diagonal matrix.
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9. Let α be in A(V ), and suppose that α is nilpotent. That is, αm = 0 for
some m > 0. Prove that α has a matrix of the form

N1

N2 0
N3

0
. . .

Nk

 ,

where Ni is an ni × ni matrix of the form
0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
...

...
0 0 1 · · · 1 0 0
0 0 0 · · · 0 1 0


and n1 ≥ n2 ≥ · · · ≥ nk.

10. Prove that the set of similarity classes of nilpotent matrices in Fn is in
one-to-one correspondence with the set of partitions n1 +n2 + · · ·+nk = n
of n into the sum of positive integers with n1 ≥ n2 ≥ · · · ≥ nk.

11. Prove that if the matrices Mi are non-singular in Fni , then the matrix
M1

M2 0
M3

0
. . .

Mk


is non-singular in Fn1+n2+···+nk .

12. Prove that ifMi is similar to Ni in Fni , then (Mi) in Problem 11 is similar
to (Ni) in Fn1+n2+···+nk .

13. Let {v1, v2, . . . , vn} be a basis of V , and let α be defined by α(v1) = v2,
α(v2) = v3, . . . , α(vn−1) = vn, and α(vn) = −a0v1− a1v2− . . .− an−1vn.
Compute the matrix of α relative to the basis

{vn + Σn−1
i=1 aivi, vn−1 + Σn−2

i=1 ai+1vi, . . . , v2 + an−1v1, v1}.

14. Prove that a matrix in Fn is similar to its transpose.

15. Let {f1(x), f2(x), . . . , fk(x)} be the family of invariant factors of α in
A(V ). Let V α = V1⊕V2⊕ · · · ⊕Vk with Vi ≈ F [x]/(fi(x)). Let αi be the
restriction of α to Vi. Prove that the minimum polynomial of αi is fi(x),
and that αi is cyclic.
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16. Let γ : V → W be an isomorphism between the vector spaces V and W .
Let α be in A(V ). Prove that the invariant factors of α in A(V ) and
γαγ−1 in A(W ) are the same.

17. Let K be a field containing the field F . Prove that the similarity classes
of Fn are the intersections of the similarity classes of Kn with Fn.

18. Let α be in A(V ). Call α irreducible if V α is simple, that is, if V α has no
non-trivial submodules. Prove that α is irreducible if and only if mα(x)
is prime and of degree dim(V ).

19. Let α be in A(V ). Call α indecomposable if V α is indecomposable.
Prove that α is indecomposable if and only if for every pair V1 and V2 of
submodules of V α, either V1 ⊂ V2 or V2 ⊂ V1.

20. Let α be in A(V ). Prove that α is indecomposable if and only if α is cyclic
and mα(x) is a power of a prime.

21. Let α be in A(V ). Call α completely reducible if V α is a direct sum
of simple submodules. Prove that α is completely reducible if and only if
mα(x) is a product of distinct primes.

22. Let α and β be in A(V ) with α non-singular. Prove that α + aβ is non-
singular for all but finitely many a in F .

23. Let α and β be in A(V ). Prove that β is an endomorphism of the module
V α if and only if αβ = βα.

24. Suppose that α in A(V ) is cyclic. Prove that the only linear transforma-
tions that commute with α are the polynomials in α with coeffi cients in
F .

25. Let α be in A(V ), and let

V α = F [x]v1 ⊕ F [x]v2 ⊕ · · · ⊕ F [x]vk

with 0 : vi = (fi(x)), and with fi+1(x) dividing fi(x). Let γj(Σ
k
i=1gi(x)vi) =

g1(x)vj , and let πj(Σki=1gi(x)vi) = gj(x)vj , j = 1, 2, . . . , k. Prove that
γj and πj are endomorphisms of V

α. That is, prove that γj and πj are
linear transformations of V which commute with α.

26. Let α be in A(V ). Prove that every β in A(V ) which commutes with every
γ in A(V ) which commutes with α is a polynomial in α with coeffi cients
in F .

27. Let V be a vector space over the field F , with V 6= 0. Prove that the
endomorphism ring of V considered as a module over A(V ) is F .

28. Let V 6= 0. Let R be a subring of A(V ) such that 1 is in R and such that
no subspace except 0 and V is invariant under every element of R. Prove
that the endomorphism ring of V considered as an R-module is a division
ring.
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5.3 Eigenvectors and Eigenvalues; the Jordan
Canonical Form[Eigenvectors and Eigenval-
ues]

Let α be a linear transformation on a vector space V of dimension n over a field
F . In the similarity class of matrices in Fn corresponding to α is the rational
canonical form R(α) of α. The matrix R(α) exhibits the invariant factors of α.
The linear transformation α may, however, have a matrix that is diagonal, that
is, of the form (aij) with aij = 0 unless i = j. Such a matrix of α is particularly
revealing. There is a basis {v1, v2, . . . , vn} of V such that α(vi) = aivi.
Equivalently, V = V1 ⊕ V2 ⊕ · · · ⊕Vn with Vi of dimension 1, and the action of
α on Vi is just multiplication by the fixed scalar ai. Now R(α) is never diagonal
unless dim(Vi) = 1 for all i. There is, however, a canonical form J(α) for α
such that J(α) is diagonal if there is a diagonal matrix corresponding to α. In
some sense, J(α) is as diagonal as possible. The matrix J(α) has the further
property of putting on display the elementary divisors of α. The matrix J(α)
is called the Jordan canonical form of α. This section is mainly concerned
with this particular canonical form.
The first item of business is to find out just when there are bases {v1, v2, . . .

, vn} of V such that α(vi) = aivi. In particular, we need to know when non-zero
vectors v exist such that α(v) = av for some a in F . Some terminology is in
order.

Definition 5.3.1 Let α be in A(V ). A non-zero v in V is called an eigenvec-
tor of α if α(v) = av for some a in F . The scalar a is called an eigenvalue of
α, and v is an eigenvector of α belonging to the eigenvalue a.

Thus, the scalar a in F is an eigenvalue of α if there is a non-zero v in V
such that α(v) = av. Equivalently, a is an eigenvalue of α if α − a is singular.
Eigenvalues are also called proper values and characteristic values. Simi-
larly, eigenvectors are also called proper vectors and characteristic vectors.
The following theorem is basic.

Theorem 5.3.2 Let V be a finite dimensional vector space over the field F . Let
α be a linear transformation on V , and let mα(x) be the minimum polynomial
of α. Then the scalar a is an eigenvalue of α if and only if x− a divides mα(x)
in F [x].

Proof. Suppose that x−a dividesmα(x) in F [x]. Thenmα(x) = (x−a)f(x),
with f(x) in F [x]. Since deg(f(x)) < deg(mα(x)), there is a vector v in V such
that f(α)(v) 6= 0. But mα(α)(v) = 0 = (α − a)f(α)(v). Thus α(f(α)(v)) =
a(f(α)(v)). Therefore f(α)(v) is an eigenvector corresponding to a.
Now suppose that a is an eigenvalue of α. Write mα(x) = (x − a)f(x) + b,

with f(x) in F [x] and b in F . There is a non-zero v in V such that α(v) = av.
Hence

mα(α)(v) = 0 = (α− a)f(α)(v) + bv = f(α)(α(v)− av) + bv.
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Since α(v) = av, it follows that bv = 0. Hence b = 0, and x− a divides mα(x)
in F [x].

Corollary 5.3.3 Let α be in A(V ). Then α has at most dim(V ) eigenvalues.

Proof. The degree of mα(x) is at most dim(V ), and hence mα(x) has at
most dim(V ) distinct roots.

Corollary 5.3.4 Similar linear transformations on a vector space have the
same eigenvalues.

Proof. Similar linear transformations on a vector space have the same
minimum polynomial.
Note that 5.3.4 does not say that similar linear transformations on a vector

space have the same eigenvectors. That is not true.
There is a short direct proof of 5.3.4. Suppose that α = γ−1βγ, and that

a is an eigenvalue of α. Then there is a non-zero v in V such that α(v) = av.
Now β(γ(v)) = γα(v) = γ(av) = aγ(v), whence a is an eigenvalue of β. Note
that γ(v) 6= 0 since v 6= 0 and γ is non-singular.
Suppose that v is an eigenvector of α belonging to a. Then any non-zero

scalar multiple of v is also an eigenvector of α. Indeed, for a non-zero b in
F , α(bv) = bα(v) = b(av) = ab(v) = a(bv). Since b 6= 0, bv 6= 0, and bv is
an eigenvector of α belonging to a. We would like, if possible, to get a basis
of eigenvectors. How does one get independent eigenvectors? The following
theorem helps.

Theorem 5.3.5 If v1, v2, . . . , vk are eigenvectors of α belonging to distinct
eigenvalues, then {v1, v2, . . . , vk} is independent.

Proof. Suppose that a1, a2, . . . , ak are distinct, with vi belonging to ai. If
Σ bivi = 0, then α(Σ bivi) = 0 = Σ aibivi, and a1Σ bivi = Σ aibivi. Therefore,
Σki=2(a1bi− aibi)vi = 0. Inducting on k, we get that aibi = a1bi for i = 2, 3, . . .
, k. If bi 6= 0, then ai = a1. Thus bi = 0 for i ≥ 2. It follows that b1 = 0 also,
and hence {v1, v2, . . . , vk} is independent.

Corollary 5.3.6 Let α be in A(V ). If α has dim(V ) distinct eigenvalues, then
V has a basis of eigenvectors of α, and there is a matrix of α which is diagonal.

Suppose that α has a diagonal matrix. By permuting the basis if necessary,
α then has a matrix of the form

S1

S2

. . .
Sk


,
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where Si is an ni × ni scalar matrix
ai

ai
. . .

ai


and ai = aj only if i = j. The basis involved then has the form

{v11, v12, . . . , v1n1 , v21, v22, . . . , v2n2 , . . . ,vk1, vk2, . .. , vknk}

with α(vij) = aivij . The numbers n1, n2, . . . , nk are invariants of α. Indeed,
the elementary divisors of α are

{x− a1, . . . , x− a1, x− a2, . . . , x− a2, . . . , x− ak}

with each x − ai appearing ni times. The number ni is also the dimension of
the subspace Vi generated by

{vij : j = 1, 2, . . . , ni}.

The subspace Vi is just Ker(α− ai). We need some definitions.

Definition 5.3.7 Let V be a vector space over F , and let α be in A(V ). Suppose
that a is an eigenvalue of α. Then E(a) = Ker(α− a) is the eigenspace of a.
The number dim(E(a)) is the geometric multiplicity of a.

For a transformation with a diagonal matrix, as above, the multiplicity of
ai is the number of x − ai appearing in the family of elementary divisors of α.
Thus if we multiply the elementary divisors together, then the multiplicity of ai
is also its multiplicity as a root of that product.

Definition 5.3.8 Let V be a vector space over F , and let α be in A(V ). The
product of the elementary divisors (or equivalently, the product of the invariant
factors) of α is the characteristic polynomial of α, denoted cα(x).

Note that deg(cα(x)) = dim(V ). Also, similar linear transformations have
the same characteristic polynomial. Thus we define the characteristic poly-
nomial of a matrix in Fn to be the characteristic polynomial of any α in V
corresponding to it. (In 5.4, we will see how to compute the characteristic poly-
nomial of a matrix directly from that matrix.) Finally, note that if α is in A(V )
and a is in F , then a is an eigenvalue of α if and only if a is a root of cα(x).
The multiplicity of a as a root of cα(x) is called its algebraic multiplicity.
How do the two multiplicities of an eigenvalue compare?

Theorem 5.3.9 Let a be an eigenvalue of α in A(V ). Then the geometric
multiplicity of a is the number of elementary divisors of α which are a power
of x − a. In particular, the geometric multiplicity of a is no greater that the
algebraic multiplicity of a.
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Proof. Let Vx−a be the primary part of V α corresponding to the prime
x− a. (See 4.7.18 and 4.7.19.)

Vx−a = {v ∈ V : (x− a)m · v = 0 for some m}.

Now, Ker(α − a) ⊂ Vx−a, and Vx−a = W1 ⊕W2 ⊕ · · · ⊕Wk with the Wi cyclic
modules. Further,

Wi ≈ F [x]/((x− a)ni).

The kernel of α − a on Wi is (α − a)ni−1Wi, which is isomorphic to (x −
a)ni−1F [x]/((x− a)ni). This vector space has dimension 1 since it is cyclic and
is annihilated by x− a, whence is isomorphic to F [x]/(x− a).

Theorem 5.3.10 Let V be a vector space over F and let α be in A(V ). Then
α has a diagonal matrix if and only if the minimum polynomial of α is a product
of distinct linear factors in F [x].

Proof. Suppose that α has a diagonal matrix. That is, suppose that V has
a basis {v1, v2, . . . , vn} consisting of eigenvectors of α. Let f(x) = Π(x− aj),
where aj ranges over the distinct eigenvalues of α. Then f(α)(vi) = 0 for all
basis vectors vi, and so f(α)(v) = 0 for all v in V . Thus mα(x) divides f(x), so
mα(x) is the product of distinct linear factors in F [x]. (Actually,mα(x) = f(x).)
Now suppose that the minimum polynomial of α is a product of distinct

linear factor in F [x]. The module V α is a direct sum V1⊕V2⊕· · · ⊕Vk of cyclic
modules, and if each Vi has a basis such that the matrix of the restriction of α to
Vi is diagonal, then union of these bases will be a basis of V such that the matrix
of α with respect to it is diagonal. Therefore, we may assume that V α is cyclic,
so that V α ≈ F [x]/(mα(x)). Let mα(x) be the product Π(x − ai) of distinct
linear factors, and let fi(x) = mα(x)/(x − ai). Then the fi(x) are relatively
prime and there are polynomials gi(x) in F [x] such that Σ gi(x)fi(x) = 1.
Therefore, Σ F [x]fi(x) = F [x]. Observe that F [x]fi(x)/(mα(x)) is a submodule
of F [x]/(mα(x)), is cyclic, is annihilated by x− ai, and hence is isomorphic to
F [x]/(x− ai). These are primary modules for distinct primes x− ai. It follows
that V α is a direct sum of one dimensional subspaces, and that V has a basis
of eigenvectors.

Recalling that the minimum polynomial of a linear transformation restricted
to an invariant subspace is a factor of the original minimum polynomial, we get
the following result.

Corollary 5.3.11 Suppose that α has a diagonal matrix. Let W be any sub-
module of V α. Then W is a direct sum of submodules of dimension 1.

Expressing Theorem 5.3.10 in terms of elementary divisors yields

Corollary 5.3.12 Let α be in A(V ). Then α has a diagonal matrix if and only
if all the elementary divisors of α are linear.

Corollary 5.3.13 Let (aij) be in Fn. Then (aij) is similar in Fn to a diagonal
matrix in Fn if and only if the elementary divisors of (aij) in F [x] are all linear.
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One has to be a little careful with 5.3.13. If F is a subfield of a field K,
then (aij) is in Kn, and the elementary divisors of (aij) as an element of Kn

are not necessarily the same as the elementary divisors of (aij) as an element of
Fn. The matrix (

0 −1
1 0

)
as a matrix over the reals and as a matrix over the complex numbers is a case
in point.
It is easy to write down matrices that are not diagonalizable. For example, let

C be the field of complex numbers. Multiplication by x is a linear transformation
α on the vector space V = C[x]/((x− 1)2). But V α is cyclic and (x− 1)2 is its
only elementary divisor. By 5.3.12, no matrix of α is diagonal. One matrix of
α is, of course the companion matrix(

0 −1
1 2

)
of (x− 1)2.
If α does have a diagonal matrix diag(ai), then V α = V1 ⊕ V2 ⊕ · · · ⊕Vn

with Vi ≈ F [x]/(x − ai). Thus the elementary divisors of α are the members
of the family {x − a1, x − a2, . . . , x − an}. The point is that if α does have
a diagonal matrix, that matrix displays the elementary divisors of α. Now for
any α in A(V ), we are going to get a canonical matrix of α that displays the
elementary divisors of α and which is diagonal if α has a diagonal matrix.

Let α be in A(V ). Then V α = V1 ⊕ V2 ⊕ · · · ⊕Vk, where Vi is the pi(x)-
component of V α. Each

Vi = Vi1 ⊕ Vi2 ⊕ · · · ⊕ Viki

with Vij cyclic. We want a special basis of Vij . To simplify notation, suppose
that V α is cyclic primary. Thus V α has a single elementary divisor p(x)q,
where p(x) is a prime polynomial in F [x]. Of course, p(x)q is also the minimal
polynomial as well as the invariant factor of α in this case. First we will do the
special case when p(x) is linear. This is an important special case. For example,
if the field F is the field of complex numbers, then every prime polynomial is
linear. Also, working through this case may illuminate the general case. So
suppose that p(x) = x – a. Let v be a generator of the module V α. Consider
the family of vectors

v1 = (α− a)q−1(v), v2 = (α− a)q−2(v), . . . , vq = (α− a)q−q(v).

First, note that {v1, v2, . . . , vq} is a basis of V . It is linearly independent
since Σqi=1ai(α − a)q−i(v) = 0 yields (Σqi=1ai(x − a)q−i)V = 0, whence mα(x)
divides Σqi=1ai(x − a)q−i. But the degree of the latter polynomial is too small
for that unless each ai = 0. Thus {v1, v2, . . . , vq} is independent. Since
dim(V ) = q, it is a basis. Now we will compute the matrix of α relative to this
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basis.

α(v1) = α(α− a)q−1(v) = (α− (α− a))(α− a)q−1(v)

= a(α− a)q−1(v) = av1;

α(v2) = α(α− a)q−2(v) = (α− (α− a))(α− a)q−2(v) +

(α− a)q−1(v) = a(α− a)q−2(v) + (α− a)q−1(v) = v1 + av2; . . . ;

α(vq−1) = α(α− a)(v) = (α− (α− a))(α− a)(v) + (α− a)2(v)

= a(α− a)(v) + (α− a)2(v) = vq−2 + avq−1;

α(vq) = α(v) = (α− (α− a))(v) + (α− a)(v)

= av + (α− a)(v) = vq−1 + avq.

Therefore the matrix of α has the form
a 1 0 0 · · · 0 0
0 a 1 0 · · · 0 0
...

...
0 0 0 0 · · · a 1
0 0 0 0 · · · 0 a


.

We have the following theorem.

Theorem 5.3.14 Let V be a vector space over the field F , and let α be in A(V ).
Suppose that the minimum polynomial factors into linear factors in F [x]. Then
V has a basis such that the matrix of α relative to it has the form

J1

J2

. . .
Jk


where each Ji has the form

ai 1 0 0 · · · 0 0
0 ai 1 0 · · · 0 0
...

...
0 0 0 0 · · · ai 1
0 0 0 0 · · · 0 ai


.

with the ai eigenvalues of α.

Definition 5.3.15 J(α) is the Jordan canonical form for α. A matrix in
the form of J(α) is said to be in Jordan canonical form.

Note that it is not really proper to say the Jordan canonical form for α.
There is no particular way in which to order the Ji. However, apart from
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changing the order of the Ji, the form is unique. If Ji is ni × ni, then the
elementary divisors are just

(x− ai)ni , i = 1, 2, . . . , k.

The ai are not necessarily distinct. However, J(α) does display the ele-
mentary divisors of α.

Corollary 5.3.16 Let (aij) be in Fn, and suppose that the minimum polynomial
of (aij) factors into linear factors in F [x]. Then (aij) is similar to a matrix in
Jordan canonical form.

We will extend the definition of Jordan canonical form shortly. Consider
again the case where V α is cyclic primary. Then α has elementary divisor
p(x)q. Let p(x) = a0 + a1x + · · · +ar−1x

r−1 + xr, and let v be a generator of
the module V α. Consider the family of vectors

v1 = p(α)q−1(v), v2 = αp(α)q−1(v), . . . , vr = αr−1p(α)q−1(v),

vr+1 = p(α)q−2(v), vr+2 = αp(α)q−2(v), . . . , v2r = αr−1p(α)q−2(v),

v(q−1)r+1 = v, v(q−1)r+2 = α(v), . . . , vqr = αr−1(v).

Each vi is of the form fi(x) · v. Distinct fi(x) have distinct degrees, and
deg(fi(x)) < qr. No fi(x) = 0. Since

{v, x · v, . . . , xqr−1 · v} = {v, α(v), . . . , αqr−1(v)}

is a basis, it follows that {v1, v2, . . . , vqr} is a basis of V . Now we compute the
matrix of α relative to this basis. We get

α(v1) = v2, α(v2) = v3, . . . , α(vr−1) = vr,

α(vr) = αr(p(α)q−1(v)) = (αr − p(α))p(α)q−1(v)

= −a0v1 − a1v2 − . . .− ar−1vr;

α(vr+1) = vr+2, α(vr+2) = vr+3, . . . , α(v2r−1) = v2r,

α(v2r) = αr(p(α)q−2)(v) = (αr − p(α))(p(α)q−2)(v) + p(α)q−1(v)

= −a0vr+1 − a1vr+2 − . . .− ar−1v2r + v1;

...

α(v(q−1)r+1) = v(q−1)r+2, α(v(q−1)+2) = v(q−1)+3, . . . ,α(vqr−1) = vqr,

α(vqr) = αr(v) = (αr − p(α))(v) + p(α)(v)

= −a0v(q−1)r+1 − a1v(q−1)r+2 − . . .− ar−1vqr + v(q−2)r+1.

Thus the matrix of α relative to the basis {v1, v2, . . . , vqr} is

J(p(x)q) =


C (p (x)) D

C (p (x)) D
. . . D

C (p (x))





194 CHAPTER 5. LINEAR TRANSFORMATIONS

where C(p(x)) is the companion matrix of p(x) and D is the r × r matrix with
1 in the upper right hand corner and 0 elsewhere. We call J(p(x)q) the Jordan
matrix of the prime power polynomial p(x)q.
In general, let α be in A(V ), and write

V α = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

where Vi are cyclic primary modules with elementary divisor qi(x). Pick a basis
of Vi as above. Putting these bases of the Vi together, we get a matrix of α of
a certain form.

Theorem 5.3.17 Let α be in A(V ), and let

q1(x), q2(x), . . . , qk(x)

be the elementary divisors of α. Then V has a basis such that the matrix of α
relative to it has the form

J(α) =


J(q1(x))

J(q2(x))
. . .

J(qk(x))


,

where J(qi(x)) is the Jordan matrix of qi(x).

Again, there is no particular order into which to put the J(qi(x)), and they
may of course not all be distinct. But up to such orderings, J(α) is unique.

Definition 5.3.18 J(α) is called the Jordan canonical form for α. A matrix
in the form J(α) is said to be in Jordan canonical form.

Conjecture 5.3.19 Corollary 5.3.20 Let (aij) be in Fn. Then (aij) is sim-
ilar to a matrix in Jordan canonical form.

Note that the matrix in 5.3.17 is the matrix in 5.3.14 in case all the ele-
mentary divisors are powers of a linear polynomial. Further, if the elementary
divisors are linear, then J(α) is indeed diagonal. Thus J(α) is diagonal if α has
a diagonal matrix at all.
A matrix (aij) is upper triangular if aij = 0 whenever j < i. Lower

triangular is defined analogously. When we say simply triangular, we mean
upper triangular. In case mα(x) factors into linear factors in F [x], then J(α)
is triangular. Therefore every matrix in Fn whose minimum polynomial is a
product of linear factors in F [x] is similar in Fn to a triangular matrix. This
special fact is easy to prove directly. It does not require information about the
modules V α, for example. Furthermore, the converse holds. That is, a matrix in
Fn is similar in Fn to a triangular matrix if and only if its minimal polynomial
is a product of linear factors in F [x]. The pertinent theorem follows.
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Theorem 5.3.21 Let V be an n-dimensional vector space over the field F .
Let α be in A(V ). Then α has a triangular matrix if and only if its minimal
polynomial is a product of linear factors in F [x].

Proof. Let α be in A(V ), and suppose that mα(x) is a product of linear
factors in F [x]. Then α has a triangular matrix by 5.3.17, but as indicated, we
will give a direct proof of this fact. Let α∗ : V ∗ → V ∗ be the dual of α. Note that
mα(α∗)(v∗) = v∗mα(α) = 0 for all v∗ in V ∗, so that the minimum polynomial of
α∗ divides that of α. (They are actually equal.) Thus the minimum polynomial
of α∗ is also a product of linear factors, and α∗ has an eigenvector v∗ in V ∗.
The one dimensional subspace Fv∗ is invariant under α∗, whence the n − 1
dimensional subspace W = {v ∈ V : v∗(v) = 0} is invariant under α. Indeed,
v∗(α(w)) = (α∗(v∗))(w) = (av∗)(w) = 0, so that α(w) is in W for all w in W .
By induction on dim(V ) = n, W has a basis

{w2, w3, . . . , wn}

such that the matrix of the restriction of α to W is triangular. If v is not in W ,
then {v, w2, w3, . . . , wn} is a basis of V such that the matrix of α relative to
it is triangular.
Conversely, if α has a triangular matrix (aij) with respect to the basis {v1,

v2, . . . vn}, then

(α− akk)(Fv1 + Fv2 + · · · + Fvk) ⊂ Fv1 + Fv2 + · · · + Fvk−1,

so that Πn
i=1(α−aii) annihilates V . Thus the minimum polynomial of α divides

Πn
i=1(x− aii), so factors into linear factors.

PROBLEMS

1. Suppose that dim(V ) = n and that α ∈ A(V ) has n distinct eigenvalues.
Prove that α is cyclic.

2. Prove that if a ∈ F is an eigenvalue of α, then for f(x) ∈ F [x], f(a) is an
eigenvalue for f(α).

3. Suppose that a is an eigenvalue of the cyclic linear transformation α. Let
mα(x) = (x− a)kf(x), where x− a does not divide f(x). Prove that the
eigenvectors of α belonging to a are precisely the non-zero elements of
(α− a)k−1f(α)(V ).

4. Prove that if α is cyclic and a is an eigenvalue of α, then dim(Ker(α−a)) =
1.

5. Let a be an eigenvalue of α, and let

{f1(x), f2(x), . . . , fk(x)}

be the family of invariant factors of α. Prove that dim(Ker(α− a)) is the
number of the fi(x) divisible by x− a.
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6. Let V be a vector space over F and let α be in A(V ). Prove that α has a
diagonal matrix if and only if the characteristic polynomial cα(x) of α is
a product of linear factors in F [x] and the geometric multiplicity of each
eigenvalue a of α is equal to its algebraic multiplicity.

7. Suppose that V α = V1 ⊕ V2 and that α has a diagonal matrix relative to
some basis. Prove that V has a basis

{v1, v2, . . . , vr, w1, w2, . . . , ws}

with vi ∈ V1, wi ∈ V2, and such that the matrix of α relative to this basis
is diagonal.

8. Let α ∈ A(V ), and suppose that W is a subspace of V invariant under α.
Suppose that α has a diagonal matrix. Prove that the restriction of α to
W has a diagonal matrix. Prove that the linear transformation on V/W
induced by α has a diagonal matrix.

9. Let V be a vector space over F , and let α ∈ A(V ). Let fi(x), i = 1, 2, . . . ,
k, be monic polynomials in F [x] of distinct degrees less than deg(mα(x)).
Prove that

{fi(α)(v) : i = 1, 2, . . . , k}

is independent for any v such that 0 : v = (mα(x)).

10. Prove that α is nilpotent if and only if mα(x) = xk for some k.

11. Prove that a triangular matrix (aij) with aii = 0 for all i is nilpotent.

12. Prove that if α is nilpotent, then any triangular matrix of α has all its
main diagonal entries 0.

13. Prove that if α is nilpotent, then it has a matrix of the form

0 a2

0 a3

0
. . .

an
0


with each ai either 0 or 1.

14. Suppose that α is non-singular on the vector space V over the field F ,
and that the minimum polynomial is a product of linear factors in F [x].
Prove that the eigenvalues of α−1 are the inverses of those of α with the
same multiplicities.

15. Find all possible Jordan canonical forms for the 6×6 matrices inQ6 whose
minimal polynomial is
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(a) (x− 1)(x− 2)2(x+ 4)3;

(b) (x+ 1)(x4 + x3 + x2 + x+ 1);

(c) (x2 + 1)(x);

(d) x2 + 1;

(e) (x2 + x+ 1)(x2 + 5x+ 7).

16. Suppose that α ∈ A(V ) and that W is a submodule of V α. Prove that if
the linear transformations on W and V/W induced by α have triangular
matrices, then so does α.

17. Call a subset L of A(V ) triangulable if there is a basis of V relative to
which the matrix of each α ∈ L is triangular. Suppose that L ⊂ A(V )
and suppose that if α and β are in L, then αβ = βα. Suppose that the
subspace W of V is invariant under each α ∈ L. Let L1 be the set of
linear transformations on W induced by the elements of L, and let L2 be
the set of linear transformations on V/W induced by the elements of L.
Prove that if L1 and L2 are triangulable, then so is L.

18. Suppose that α and β are in A(V ), αβ = βα, and α and β have diagonal
matrices relative to appropriate bases. Prove that αβ has a diagonal
matrix relative to some basis.

19. Let L ⊂ A(V ), and suppose that if α and β are in L, then αβ = βα.

(a) Suppose that each α ∈ L has a triangular matrix. Prove that L is
triangulable.

(b) Suppose that each α ∈ L has a diagonal matrix. Prove that L is
diagonalizable.

20. Suppose that α, β, and γ are in A(V ) and all have triangulable matrices.
Suppose that αβ = βα, βγ = γβ, and αγ − γα = β. Prove that there is a
basis of V relative to which the matrices of α, β, and γ are triangular.

21. Let α ∈ A(V ). Define fα on A(V ) by fα(β) = αβ − βα. Prove that fα
is a linear transformation on the vector space A(V ) and that fα has a
diagonal matrix if and only if α does.

5.4 Determinants

In this section, we present an introduction to the theory of determinants. This
theory evolved in the eighteenth century, actually preceding the theory of ma-
trices. The reader is likely to be somewhat familiar with determinants, for
example, with their use in solving systems of linear equations (Cramer’s Rule,
5.4.9). Determinants also provide a means to compute the characteristic poly-
nomial of a matrix and hence of a linear transformation on a vector space (the
Cayley-Hamilton Theorem, 5.4.14).
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There are essentially two ways to define determinant– the classical way, and
via alternating forms. We choose the first, but do characterize them in terms of
alternating forms.
We shall consider determinants of square matrices with entries from an ar-

bitrary commutative ring with identity. There is a reason for this generality. It
will be necessary in any case to consider determinants of matrices with entries
from F [x], where F is a field. Once this is done, we may as well let the entries
come from any commutative ring with identity.
Let Sn denote the symmetric group on {1, 2, . . . , n}. Recall that an element

σ in Sn is even if it is the product of an even number of transpositions, and
is odd otherwise. Let (−1)σ be 1 if σ is even and −1 if σ is odd. Note that
(−1)σ(−1)τ = (−1)στ and (−1)σ = (−1)τ if σ−1 = τ . Here is the definition of
determinant.

Definition 5.4.1 Let R be a commutative ring with identity, and let (aij) be
an n× n matrix with entries from R. Then the determinant of (aij), denoted
det(aij), is the element ∑

σ

(−1)σa1σ(1)a2σ(2)· · · anσ(n)

of R, where the summation is over all σ in Sn.

As usual, let Rn denote the set of all n× n matrices over R. Then det is a
function from Rn to R. This function has a number of fundamental properties
that we will now proceed to derive. We have two principal goals in mind– to
compute the characteristic polynomial of a matrix directly from that matrix,
and to derive Cramer’s Rule.
If (aij) is in Rn, then det(aij) is the sum of n! terms, each term of which is

(neglecting sign) the product of n elements of (aij) no two of which are from
the same row or column. For example,

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
a11a22a33 − a11a23a32 + a12a23a31

−a12a21a33 + a13a21a32 − a13a22a31.

If any row of (aij) consists of all zeroes, then det(aij) = 0. This follows from the
fact that each term of det(aij) contains a factor from each row, and hence each
term is zero. A similar argument shows that if a column consists of all zeroes,
then det(aij) = 0. The following theorem eliminates the need for making such
similar arguments.

Theorem 5.4.2 The determinant of a matrix is the same as the determinant
of its transpose.

Proof. Let (bij) = (aij)
′, the transpose of (aij). That is, bij = aji for all i

and j. From the definition of determinant,

det(aij) =
∑
σ

(−1)σa1σ(1)a2σ(2)· · · anσ(n).
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Each σ permutes {1, 2, . . . , n}. Thus as i ranges through this set, so does σ(i).
Let τ = σ−1. Rearranging the terms of the product Πiaiσ(i) = Πiaτ(σ(i))σ(i) in
order of increasing σ(i) gives Πiaiσ(i) = Πiaτ(i)i. Therefore

det(aij) =
∑
σ

(−1)σaτ(1)1aτ(2)2· · · aτ(n)n.

But as σ ranges through Sn, so does τ . Since (−1)σ = (−1)τ , we get

det(aij) =
∑
τ

(−1)τaτ(1)1aτ(2)2· · · aτ(n)n.

Since aτ(i)i = biτ(i), it follows that det(aij) = det(bij).
In the proof above, the commutativity of R was used. This special property

of the ring R will be used many times without particular reference.

Lemma 5.4.3 Interchanging two rows or two columns of a matrix changes the
sign of the determinant of that matrix.

Proof. The language of 5.4.3 is a little loose. The determinant of a matrix is
an element of a commutative ring and does not have a “sign”, that is, is neither
“positive” nor “negative”. What is meant is that if (bij) is a matrix gotten
from (aij) by interchanging two rows or two columns of (aij), then det(aij) =
−det(bij). By 5.4.2, it suffi ces to prove this for rows. Interchange the qth and
rth rows of (aij). Let τ be the transposition (qr). The determinant of the
resulting matrix is∑

σ(−1)σa1σ(1)· · · a(q−1)σ(q−1)arσ(q)a(q+1)σ(q+1)· · ·
· · · a(r−1)σ(r−1)aqσ(r)a(r+1)σ(r+1) · · · anσ(n)

=
∑
σ(−1)σ

∏
i aiστ(i) = −

∑
σ(−1)στ

∏
i aiστ(i)

= −det(aij).

The interchange of two rows of a matrix is an odd permutation of the rows of
that matrix. Further, any permutation of the rows of a matrix is a product
of successive interchanges of two rows. This is just another way of saying that
a permutation is a product of transpositions. Thus we see that permuting the
rows of a matrix (aij) by a permutation σ results in a matrix whose determinant
is (−1)σ det(aij). By 5.4.2, this holds for columns also.

Lemma 5.4.4 If two rows or two columns of a matrix are equal, then the de-
terminant of that matrix is zero.

Proof. Note that 5.4.4 is not implied by 5.4.3. That lemma just says that
if two rows of (aij) are equal. then det(aij) = −det(aij), which does not imply
that det(aij) = 0. For example, in the field of integers modulo 2, −1 = 1 6= 0.
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Suppose that the qth and rth columns of (aij) are the same. Let τ = (qr).
Then for each i, aiσ(i) = aiστ(i), and

det(aij) =
∑
σ even

(−1)σ
∏
i

aiσ(i) +
∑
σ odd

(−1)σ
∏
i

aiσ(i)

=
∑
σ even

(−1)σ
∏
i

aiσ(i) −
∑
σ odd

(−1)στ
∏
i

aiστ(i)

=
∑
σ even

(−1)σ
∏
i

aiσ(i) −
∑
σ even

(−1)σ
∏
i

aiσ(i) = 0

An application of 5.4.2 gets the result for rows.

Theorem 5.4.5 det((aij)(bij)) = det(aij) det(bij).

Proof.

det((aij)(bij)) = det

(∑
k

aikbkj

)
=
∑
σ

(−1)σ
∏
i

(∑
k

aikbkσ(i)

)
,

and

det(aij) det(bij) =

(∑
σ

(−1)σ
∏
i

aiσ(i)

)(∑
σ

(−1)σ
∏
i

biσ(i)

)
.

This last expression may be rewritten as

∑
σ,τ

(−1)στ

(∏
i

aiσ(i)biτ(i)

)
.

The expression for det((aij)(bij)) may be rewritten as

∑
σ

(−1)σ
∑
τ

(∏
i

aiτ(i)bτ(i)σ(i)

)
.

To see this, observe that

∑
σ

(−1)σ
∏
i

(∑
k

aikbkσ(i)

)
=
∑
σ

(−1)σ
∑
f

(∏
i

aif(i)bf(i)σ(i)

)

where f ranges over all the functions from the set {1, 2, ..., n} to itself, not just
the permutations. Given one of the functions f which is not a permutation,
there must be a pair of integers 1 ≤ s < t ≤ n with f(s) = f(t). Let τ be the
transposition (st). Then στ(i) = σ(i) if i 6= s, t and στ(s) = σ(t), στ(t) = σ(s).
Moreover, (−1)στ = −(−1)σ. Thus

(−1)σ
∏
i

aif(i)bf(i)σ(i) + (−1)στ
∏
i

aif(i)bf(i)στ(i) = 0.
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To see this, note that all the factors in each product are the same except possibly
when i = s, t. But

[asf(s)bf(s)σ(s)][atf(t)bf(t)σ(t)] = [asf(s)bf(s)στ(s)][atf(t)bf(t)στ(t)],

since f(s) = f(t), στ(s) = σ(t), and στ(t) = σ(s). Thus the terms involving
functions f that are not permutations cancel out in pairs, so that

∑
σ

(−1)σ
∑
f

(∏
i

aif(i)bf(i)σ(i)

)
=
∑
σ

(−1)σ
∑
τ

(∏
i

aiτ(i)bτ(i)σ(i)

)
,

where τ ranges over all permutations of {1, 2, . . . , n}. Let γ = τ−1. Then
Πiaiτ(i)bτ(i)σ(i) = Πiaiτ(i)biσγ(i), just noting that the bjk in Πiaiτ(i)bτ(i)σ(i) are
exactly those such that σγ(j) = k. Thus

det((aij)(bij)) =
∑
σ,τ

(−1)σ
∏
i

aiτ(i)biσγ(i).

Replacing σγ by σ and holding τ fixed gives

det((aij)(bij)) =
∑
σ,τ

(−1)στ
∏
i

aiτ(i)biσ(i),

which concludes the proof.
We now note several consequences of this theorem. Let A and B be in Rn,

and let In be the identity of Rn . If A is a unit in Rn, then det(AA−1) =
det(In) = 1 = (detA)(detA−1), so that detA−1 = (detA)−1. Further,

det(A−1BA) = (detA)−1 (detB) (detA) = detB

Thus conjugates have the same determinant. Therefore we could define det(α)
for α any linear transformation on a finite dimensional vector space V by letting
it be the determinant of any matrix of α. We will return to determinants of
linear transformations later. Finally, note that

det(AB) = (detA)(detB) = (detB)(detA) = det(BA).

Now we come to a result which is useful in the actual computation of deter-
minants. There is a method of such computation known as “expanding along a
row (or column),”and we will have need for it presently.
Let (aij) be in Rn. Let Aij be the matrix gotten from (aij) by deleting the

ith row and the jth column of (aij). Thus Aij is an (n − 1) × (n − 1) matrix.
The matrix Aij is the minor of the element aij . For reasons evident below, the
quantities αij = (−1)i+j detAij are important. The αij are the cofactors of
the matrix (aij), and αij is the cofactor of the entry aij . We assume n > 1.

Theorem 5.4.6 det(aij) =
∑
j

aijαij =
∑
i

aijαij.
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Proof.

det(aij) =
∑
σ

(−1)σ
∏
i

aiσ(i) =
∑
j

∑
σ(1)=j

(−1)σ
∏
i

aiσ(i)

=
∑
j

a1j

∑
σ(1)=j

(−1)σ
∏
i>1

aiσ(i)

Let τ = (1j). Now∑
σ(1)=j

(−1)σ
∏
i>1

aiσ(i) =
∑
σ(1)=j

(−1)σajσ(j)

∏
16=i 6=j

aiσ(i)

= −
∑
σ(1)=j

(−1)στajστ(j)

∏
16=i 6=j

aiστ(i).

As σ runs through Sn with σ(1) = j, στ runs through all the permutations of
{1, 2, . . . , j − 1, j + 1, . . . , n}. Thus Σσ(1)=j(−1)στajστ(1)Π16=i 6=jaiστ(i) is the
determinant of the matrix gotten from A1j by moving its jth row to its first
row. That moving changes the sign of det(Aij) j − 2 times. Therefore

det(aij) =

n∑
j=1

(−1)j+1a1j det A1j .

For the general result, change (aij) by moving its ith row to its first row, getting
a matrix (bij). Then

det(aij) = (−1)i−1 det(bij) = (−1)i−1
n∑
j=1

(−1)j+1b1j det B1j

=

n∑
j=1

(−1)i+jaij det Aij =

n∑
j=1

aijαij .

An application of 5.4.2 completes the proof.

Corollary 5.4.7
∑n
j=1 aijαkj = 0 if i 6= k, and Σni=1aijαik = 0 if j 6= k.

Proof.
∑n
j=1(−1)i+jaij detAkj is the determinant of the matrix gotten

from (aij) by replacing its kth row by its ith row. That matrix has the same
ith and kth rows, and hence has determinant zero. The rest follows from 5.4.2.

Note that 5.4.6 and 5.4.7 can be combined. They assert that δjk det(aij) =
Σni=1aijαik = Σni=1ajiαki for all j and k, where δik is the Kronecker δ.

If 5.4.6 is looked at properly, it not only gives a method for calculating
det(aij), but it also gives a method for calculating the inverse of the matrix
(aij), if it exists. Furthermore, it tells us exactly when (aij) does have an
inverse.
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Let adj(aij), called the adjoint of (aij), be the matrix whose (i, j) entry is
αji. Then 5.4.6 yields

det(aij)In = (aij) adj(aij) = (adj(aij))(aij).

Thus, if det(aij) is a unit in R, we get

In = (aij)[adj(aij)/ det(aij)] = [adj(aij)/ det(aij)](aij).

In other words, adj(aij)/ det(aij) is the inverse of (aij) in case det(aij) is a unit
in R. We noted earlier that det(aij) is a unit if (aij) is a unit. Therefore we
have

Corollary 5.4.8 Let (aij) be in Rn. Then (aij) is a unit in Rn if and only if
det(aij) is a unit in R. Furthermore, if det(aij) is a unit in R, then (aij)

−1 =
adj(aij)/ det(aij).

This corollary tells us a little more. Suppose that a matrix (aij) in Rn has
a right inverse. Then there is a matrix (bij) in Rn with (aij)(bij) = In. Hence
det((aij)(bij)) = 1 = det(aij) det(bij). Since R is commutative, det(aij) is a
unit in R. Hence (aij) is a unit in Rn. Similarly, if (aij) has a left inverse, it is
a unit.
From 5.4.6 and 5.4.7, we can also get Cramer’s Rule. Suppose that

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

is a system of n equations in the n unknowns x1, x2, . . . , xn, with aij and bi in
R. The matrix (aij) is called the matrix of coeffi cients, and det(aij) is called
the determinant of the system. Cramer’s Rule gives a suffi cient condition for
such a system to have a unique solution.

Theorem 5.4.9 (Cramer’s Rule) Let

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

be a system of linear equations with coeffi cients aij and bi in the commutative
ring R with identity. If the matrix of coeffi cients (or equivalently, the deter-
minant) of the system is a unit, then the system has a unique solution given
by

xk =

n∑
i=1

biαik/ det(aij),

where αij is the cofactor of aij.
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Proof. If R were a field, then we know from vector space considerations
that the system has a unique solution if (aij) is non-singular. Just view (aij)
as a linear transformation acting on the space of n-tuples of elements of the
field. The question is whether there is a vector (x1, x2, . . . , xn) whose image
is (b1, b2, . . . , bn). Since (aij) is non-singular, there is exactly one such vector.
However, our system here is over a commutative ring, but Cramer’s Rule tells
how to compute the desired vector. We compute. Σnj=1aijxj = bi implies that
Σnj=1aijαikxj = biαik, and hence

n∑
i=1

biαik =

n∑
j=1

n∑
i=1

aijαikxj =

n∑
i=1

aikαikxk = det(aij)xk.

Thus if det(aij) is a unit in R, we get xk = Σni=1biαik/det(aij). Thus there is
at most one solution. But

n∑
k=1

ajk

n∑
i=1

biαik =

n∑
i=1

bi

n∑
k=1

ajkαik = bj det(aij),

and the theorem follows.
The numerator Σni=1biαik is the determinant of the matrix gotten by replac-

ing the kth column of (aij) by b1, b2, . . . , bn. If R is a field, then det(aij) is a
unit if it is not 0. Therefore, such a system over a field has a unique solution if
its determinant is not 0.

Lemma 5.4.10 Let A1, A2, . . . , An be square matrices with entries from R.
Then

det


A1 0 · · · 0
∗ A2 0
...

. . .
...

∗ ∗ · · · An

 = det


A1 ∗ · · · ∗
0 A2 ∗
...

. . .
...

0 0 · · · An


= det(A1) det(A2) · · · det(An).

Proof. Let

(aij) =

(
A1 ∗
0 A2

)
It suffi ces to show that det(aij) = det(A1) det(A2). Let A1 be r×r, A2 be s×s,
and S be the symmetric group Sr+s. Then

det(aij) =
∑
σ∈S

(−1)σ
r+s∏
i=1

aiσ(i).

If for some k > r, σ(k) ≤ r, then Πr+s
i=1aiσ(i) = 0. Thus only those Πr+s

i=1aiσ(i)

for which σ permutes {r + 1, r + 2, . . . , r + s}, and hence also permutes {1, 2,
. . . , r}, are non-zero. Every such permutation is uniquely a product στ , where
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σ and τ are in S, σ fixes {r + 1, r + 2, . . . , r + s} elementwise, and τ fixes {1,
2, . . . , s} elementwise. It follows that

det(aij) =
∑
σ,τ

(−1)στ
r∏
i=1

aiσ(i)

r+s∏
i=r+1

aiτ(i)

=
∑
σ

(−1)σ
r∏
i=1

aiσ(i)

∑
τ

(−1)τ
r+s∏
i=r+1

aiτ(i)

= det(A1) det(A2)

where σ runs through the permutations with σ(i) = i for i > r, and τ runs
through those with τ(i) = i for i ≤ r.

Corollary 5.4.11 The determinant of a triangular matrix is the product of the
diagonal entries.

Let f(x) = a0 + a1x + · · · + an−1x
n−1 + xn be in R[x]. As in the case for

fields, the companion matrix C(f(x)) is the matrix

0 0 0 · · · 0 −a0

1 0 0 0 −a1

0 1 0 0 −a2

...
. . .

...
0 0 0 0 −an−2

0 0 0 · · · 1 −an−1


.

In case R is a field, we have proved (5.2.17) that the characteristic polynomial
of C(f(x)) is f(x).

Lemma 5.4.12 Let f(x) be a monic polynomial in R[x] of degree n. Then
det(xIn − C(f(x))) = f(x).

Proof. Let f(x) = a0 + a1x+ · · · +an−1x
n−1 + xn. Then

xIn − C(f(x)) =



x 0 0 · · · 0 a0

−1 x 0 0 a1

0 −1 x 0 a2

...
. . .

...
0 0 0 x an−2

0 0 0 · · · −1 x+ an−1


.

Computing its determinant by expanding along the first row, inducting on n,
and using 5.4.11, yields det(xIn − C(f(x))) = x(a1 + a2x+ · · · +an−1x

n−2) +
(−1)n−1a0(−1)n−1 = f(x).

Now we are in a position to prove the Cayley-Hamilton theorem. It is a
consequence of the following theorem which gives an explicit way to compute
the characteristic polynomial of a matrix.



206 CHAPTER 5. LINEAR TRANSFORMATIONS

Theorem 5.4.13 Let (aij) be an n× n matrix over a field F . Then the char-
acteristic polynomial of (aij) is det(xIn − (aij)).

Proof. The matrix (aij) is similar to its rational canonical form

(cij) =


C1

C2

. . .
Ck


,

where the Ci are the companion matrices of the invariant factors fi(x) of (aij).
Thus for suitable (bij), (cij) = (bij)

−1(aij)(bij). We have

det(xIn − (aij)) = det((bij)
−1) det(xIn − (aij)) det((bij)

= det((bij)
−1xIn(bij)− (bij)

−1(aij)(bij))

= det(xIn − (cij)) = Π fi(x),

which is the characteristic polynomial of (aij).
An immediate corollary of this theorem and 5.4.11 is that if (aij) is any

matrix of a linear transformation α which is triangular, then cα(x) = Π(x−aii).
In this connection, see 5.3.21.
We now have an effective way to compute the characteristic polynomial

of a matrix (aij). Just compute det(xIn − (aij)). We have as an immediate
consequence that every n × n matrix A over a field satisfies the polynomial
det(xIn − A). However, this fact holds for matrices over a commutative ring,
and follows from the identity det(A)In = A(adj(A)). Let A be in Rn,

c(x) = det(xIn −A) = xn + an−1x
n−1 + · · · + a1x+ a0,

and Q(x) = adj(xIn−A). Then we have c(x)In = (xIn−A)Q(x), and c(x)In−
c(A) = Σni=1ai(x

iIn − Ai), where an = 1. Write xiIn − Ai = (xIn − A)Qi(x).
Then c(x)In−c(A) = (xIn−A)Σni=0aiQi(x) = (xIn−A)P (x) = (xIn−A)Q(x)−
c(A). Hence (xIn − A)(Q(x) − P (x)) = c(A). If Q(x) − P (x) 6= 0, then the
matrix xIn(Q(x) − P (x)) has an entry which is a polynomial in x of higher
degree than any entry in A(Q(x) − P (x)). It follows that c(A) = 0. We have
proved the following theorem.

Theorem 5.4.14 (Cayley-Hamilton) Let A be an n×n matrix over a com-
mutative ring R with identity. Then A satisfies the polynomial det(xIn −A).

For any matrix A in Rn, we define its characteristic polynomial to be
the polynomial det(xIn −A).
There are two additional important points about determinants that we wish

to make. We have seen that if α is a linear transformation on a vector space
V , then we can define det(α) to be det(aij) for any matrix (aij) of α. There
is a way to define det(α) directly, that is, without going through the process of
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picking a basis of V and then taking the determinant of the matrix α relative
to that basis. We will present this “coordinate free”definition of det(α). That
is the first important point. The second is this. We want to characterize det as
a function

det : Rn −→ R

A number of its properties have been derived, and we will show that det is the
only function Rn → R satisfying certain conditions. In fact, we take up this
point first.
For our commutative ring R, let Rn be the module of n-tuples of elements

of R, but view an element of Rn as a column
r1

r2

...
rn


rather than as a row. Then an element of Rn, that is, an n× n matrix over R,
can be thought of as an element of the Cartesian product Rn ×Rn · · · ×Rn of
Rn with itself n times. Thus

det : Rn ×Rn · · · ×Rn −→ R

and we want to look at how det behaves with respect to the individual columns.
We know already that if two columns of (aij) are equal then det(aij) = 0, and
that if any column of (aij) is 0, then det(aij) = 0. We need two more facts that
follow from the definition. We can add elements of Rn, and we can multiply
them by scalars. This is done coordinate-wise, by definition. Let (aij) be in Rn,
and let

ci =


a1i

a2i

...
ani


.

Then (aij) = (c1, c2, . . . , cn). Let c be in R. It should be clear from the
definition of det that for any i,

det(c1, c2, . . . , ci−1, cci, ci+1, . . . , cn) = c · det(c1, c2, . . . , cn).

Further, if di is in Rn, then

det(c1, c2, . . . , ci−1, ci + di, ci+1, . . . , cn)
= det(c1, . . . , ci, . . . , cn) + det(c1, . . . , di, . . . , cn).

These two properties are expressed by saying that det is linear in each variable
ci. Here is a more general definition.
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Definition 5.4.15 Let C1, C2, . . . , Cn, and D be modules over R. A function

f : C1 × C2 × · · · Cn → D

is n-multilinear if for i = 1, 2, . . . , n, and for each r in R,

f(c1, . . . , ci−1, ci + di, ci+1, . . . , cn)
= f(c1, . . . , ci−1, ci, ci+1, . . . , cn) + f(c1, . . . , ci−1, di, ci+1, . . . , cn),

and

f(c1, . . . , ci−1, rci, ci+1, . . . , cn) = r · f(c1, . . . , ci−1, ci, ci+1, . . . , cn).

If D = R, then f is an n-multilinear form. If

C = C1 = C2 = · · · = Cn,

and f(c1, c2, . . . , cn) = 0 whenever ci = cj for some i 6= j, then f is called
alternating.

Thus f is n-multilinear if f is linear as a function of each variable ci when the
others are held fixed. If C1 = C2 = · · · = Cn and f vanishes when two coordi-
nates are equal, then f is alternating. Thus det is an n-multilinear alternating
form. We need one more fact. If C and D are R-modules, an n-multilinear
function f : C × C × · · · ×C → D is skew-symmetric if for i < j,

f(c1, c2, . . . , ci, . . . , cj , . . . , cn)
= −f(c1, . . . , ci−1, cj , ci+1, . . . , cj−1, ci, cj+1, . . . , cn).

Thus, switching two coordinates of (c1, c2, . . . , cn) changes the sign of its
value under f . An important fact is that if f is alternating, then it is skew-
symmetric. Moreover, if f is skew-symmetric and σ is in Sn, then f(cσ(1), . . .
, cσ(n)) = (−1)σf(c1, . . . , cn). Just note that if f is alternating, then (only
writing the i and j coordinates) we get f(ci, cj) = −f(cj , ci) from the equation

0 = f(ci + cj , ci + cj) = f(ci, ci) + f(ci, cj) + f(cj , ci) + f(cj , cj)

= f(ci, cj) + f(cj , ci).

This says that f(cσ(1), . . . , cσ(n)) = (−1)σf(c1, . . . , cn) for transpositions
σ. Since every σ in Sn is a product of transpositions, the equality holds for
arbitrary σ.

Theorem 5.4.16 Let r be in R. Then there is exactly one n-multilinear alter-
nating form

detr : Rn ×Rn × · · · ×Rn → R

such that detr(In) = r.
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Proof. There is at least one such form. Let detr = r · det. It is completely
routine to check that detr is an n-multilinear alternating form with detr(In) = r.
Now let dr be any such form. Let ui be the ith column of In. Then (u1, u2, . . .
, un) = In, so dr(u1, u2, . . . , un) = r. Now we compute

dr(c1, c2, . . . , cn).

Let (aij) = (c1, c2, . . . , cn). Then ci = Σnj=1ajiuj , and we have dr(c1, c2,
. . . , cn) = dr(Σ

n
j=1aj1uj , . . . , Σnj=1ajnuj). We can expand this last expression

by multilinearity, leaving only ui’s inside. But terms in this expansion will
be non-zero only if the ui’s inside are distinct. In short, this last expression
becomes

∑
σ

(
n∏
i=1

aσ(i)i

)
dr(uσ(1), . . . , uσ(n)) =

(∑
σ

(−1)σ
n∏
i=1

aσ(i)i

)
dr(u1, . . . , un)

= r · det(aij)
′ = r · det(aij)

= r · det(c1, . . . , cn).

There is a nice way to view 5.4.16. It is routine to check that the alternating
forms on Rn × · · · ×Rn form an R-module under the operation (f + g)(X) =
f(X) + g(X), and (rf)(X) = r(f(X)), where X is in Rn × · · · ×Rn and r is in
R. Our theorem then says that the module of n-multilinear alternating forms
on Rn × · · · ×Rn = Rn is free of rank 1, and in fact det is a generator. To
generalize a bit, the R-module Rn is free of rank n. LetM be any free R-module
of rank n. Then certainly the R-module of n-multilinear alternating forms on
Mn, the Cartesian product ofM with itself n times, is free of rank 1. The proof
is the same as above. Just choose {u1, u2, . . . , un} to be a basis ofM . Then for
any n-multilinear alternating form f , f(Σ ai1ui, . . . , Σ ainui) = det(aij) · f(u1,
. . . , un). Hence f is determined by f(u1, . . . , un). Defining

d

(∑
i

ai1ui, . . . ,
∑
i

ainui

)
= det(aij)

yields an n-multilinear alternating form with d(u1, . . . , un) = 1. Thus f = f(u1,
. . . , un) · d, or {d} is a basis of the module of such forms.
Now suppose that α is any endomorphism of the free R-module M of rank

n. Let Altn(M) denote the R-module of n-multilinear forms on M . For f in
Altn(M), let

(ᾱ(f))(m1, . . . , mn) = f(α(m1), . . . , α(mn)).

Then ᾱ is an endomorphism of the R-module Altn(M). But Altn(M) is free
of rank 1. That is, ᾱ is just multiplication by some scalar rα in R. Thus
ᾱ(f) = rα · f . With each endomorphism α of M we have associated a scalar
rα in R. We define rα = det(α). When M is a vector space, is this consistent
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with defining det(α) to be the determinant of any matrix of α? Let {u1, . . .
, un} be a basis of the free module M of rank n. Let d be the n-multilinear
alternating form with d(u1, . . . , un) = 1. Then, as in the case for vector spaces,
an endomorphism α of M is determined uniquely by the matrix (aij) given by

α(uj) =

n∑
i=1

aijui.

But

ᾱ(d)(u1, . . . , un) = d(α(u1), . . . , α(un))

= d(

n∑
i=1

ai1ui, . . . , Σni=1ainui) = det(aij)d(u1, . . ., un)

= (det(α)) · d(u1, . . . , un) = det(aij) = det(α).

PROBLEMS

1. How many additions and multiplications are necessary in order to calculate
the determinant of a 5× 5 matrix? a 10× 10?

2. Calculate the determinant of the following matrices.
6 −5 4 8
1 1 3 2
7 9 −4 5
2 1 2 1




3 7 2 4
−3 6 0 5

0 5 4 3
3 1 0 8




75 63 −18 39
−61 45/2 −119 67
76 83 109/7 31
25 52 −6 13




1 4 9 16
4 9 16 25
9 16 25 36

16 25 36 49


3. Are the vectors (1, 0, 3, 2, 1), (1, 1, 4, 3, 2), (2, 0, 0, 1, 1), (3, 4, 5, 0, 1),

(0, 1, 1, 1, 1) independent?

4. Prove that the determinant of

A =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 xn−1

2
...

. . .
...

1 xn x2
n · · · xn−1

n


is Πi<j(xj − xi). (The matrix A is Vandermonde’s matrix.)

5. Prove that every monic polynomial in R[x] is the characteristic polynomial
of some matrix over R.

6. Prove that AB and BA have the same characteristic polynomial.
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7. Prove that the eigenvalues of a triangular matrix are the diagonal entries
of that matrix.

8. Let K be a subfield of the field F , and let A be a matrix in Kn. Prove
that A is invertible in Kn if and only if it is invertible in Fn.

9. Use Cramer’s rule to solve the system

x− y + z = 2

2x+ y = 5

3x+ 7y − 2z = 6

10. Solve the same system as in Problem 9 where the coeffi cients are taken
modulo 11.

11. Let V be a finite dimensional vector space over a field F , and let A(V )
be the vector space of all linear transformations on V . Let α be in A(V ),
and let fα : A(V )→ A(V ) be defined by fα(β) = αβ−βα. Prove that fα
is linear and that det(fα) = 0.

12. Let A(V ) be the vector space of all linear transformations on the finite
dimensional vector space V . Let α be in A(V ). Let fα(β) = αβ for β in
A(V ). Prove that fα is a linear transformation on the vector space A(V ),
and find det(fα) in terms of det(α).

13. Let S be a commutative subring of the ring of all n× n matrices over the
commutative ring R. Let A be an m ×m matrix over S. View A as an
(nm) × (nm) matrix over R. As such a matrix, its determinant detR(A)
is an element of R. As a matrix over S, its determinant detS(A) is an
element of S. Prove that detR(A) = det(detS(A)).

14. Prove that any 2× 2 real matrix whose determinant is negative is similar
over the real numbers to a diagonal matrix.

15. Let n be any positive integer. Prove that over the complex numbers the
n× n matrix 

0 0 0 · · · 0 −1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 1 0


is similar to a diagonal matrix.

16. Let (aij) be an n×n matrix over the field F . Prove that there are at most
n elements a in F such that det(aIn − (aij)) = 0.
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17. Let V be a vector space of dimension n over F , and let α and β be linear
transformations on V . Suppose that α is non-singular. Prove that there
are at most n scalars a in F such that aα+ β is singular.

18. Let A be an invertible matrix. Find the characteristic polynomial of A−1

in terms of that of A.

19. Prove that the constant term of the characteristic polynomial of an n× n
matrix A is (−1)n det(A).

20. Prove that A is a unit if and only if adj(A) is a unit.

21. Prove that adj(A′) = (adj(A))′.

22. Prove that for an n × n matrix, det(adj(A)) = (det(A))n−1. What if
n = 1?

23. A matrix A is skew if A′ = −A. Prove that an odd × odd skew matrix
over the complex numbers is singular.

24. Prove that the set of all real matrices of the form
a −b −c −d
b a −d c
c d a −b
d −c b a


is a division ring. Prove that as a vector space over the real numbers, it
is of dimension 4 and has a basis {1, i, j, k} such that i2 = j2 = k2 = −1,
ij = −ji = k, jk = −kj = i, and ki = −ki = j.

25. If R is any commutative ring, the group of units of Rn is denoted GLn(R).
Let S be any subgroup of the group of units R∗ of R. Prove that N =
{A ∈ GLn(R) : det(A) ∈ S} is normal in GLn(R), and that GLn(R)/N ≈
R∗/S.

26. Prove that if the n × n matrix A over the field F has rank m, then A
has an m × m non-singular “submatrix” and has no larger non-singular
submatrix.

5.5 Equivalence of Matrices

We obtained similarity invariants for matrices over a field F by associating
with a matrix a finitely generated module over F [x], and showing that two
matrices were similar if and only if the corresponding modules were isomorphic
(Theorem 5.2.9). Having a complete set of invariants for finitely generated F [x]-
modules yielded complete sets of invariants for similarity classes of matrices
over F (5.2.13). One way to find these invariants of a given matrix is to find
(somehow) its rational canonical form (Theorem 5.2.18). There is another quite
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different way. We have observed that the characteristic polynomial of a matrix
(aij) in Fn can be gotten quite easily: just pass to the matrix xIn − (aij)
and take its determinant. More generally, the invariant factors of (aij) may
be gotten directly from the matrix xIn − (aij). One purpose of this section is
to see how this is done. To facilitate matters, we need to discuss matrices of
homomorphisms between free modules over commutative rings. This will be a
generalization of some of the material in Section 5.1.
Throughout, R will be a commutative ring with identity. If a free R-module

has a basis of n elements, it is said to be free of rank n (4.6, page 146). Let
X and Y be free R-modules with bases {x1, x2, . . . , xn} and {y1, y2, . . . , ym},
respectively. A homomorphism α : X → Y is determined by its action on the
basis {x1, x2, . . . , xn}. Furthermore, if w1, w2, . . . , wn are in Y , then there
is exactly one homomorphism α : X → Y such that α(xj) = wj . Therefore,
if α(xj) = Σmi=1aijyi, j = 1, 2, . . . , n, then α is uniquely determined by the
m × n matrix (aij). The association α → (aij) is a one-to-one correspondence
between the set Hom(X, Y ) of homomorphisms from X into Y and the set of
m×n matrices over R. The matrix (aij) is called the matrix of α relative to
the bases {x1, x2, . . . , xn} and {y1, y2, . . . , ym}. If X = Y and xi = yi for
all i, then the square matrix (aij) in Rn is the matrix of α relative to {x1,
x2, . . . , xn}. This is the situation discussed in 5.1 in the case R is a field.
We need to find out what happens to (aij) if the bases are changed. So

let {v1, v2, . . . , vn} be a basis of X and let {w1, w2, . . . , wm} be a basis
of Y . If α(vj) = Σmi=1bijwi, what is the relation between (aij) and (bij)? Let
vj = Σni=1cijxi, and let wj = Σmi=1dijyi. Then

α(vj) =
∑
i

bijwi =
∑
i

bij
∑
k

dkiyk =
∑
k

(∑
i

bijdki

)
yk = α

(∑
i

cijxi

)

=
∑
i

cijα(xi) =
∑
i

cij
∑
k

akiyk =
∑
k

(∑
i

cijaki

)
yk.

Therefore
(dij)(bij) = (aij)(cij).

Note that (cij) and (dij) are invertible. Indeed, if xi = Σkekivk, then vj =
Σicijxi = ΣicijΣkekivk = Σk(Σicijeki)vk. Thus Σiekicij = δik. In other words,
(eij)(cij) = In. Similarly, (cij)(eij) = In, and so (cij)

−1 = (eij). Similarly, (dij)
is also invertible. We have

(dij)(bij) = (aij)(cij).

with (cij) and (dij) invertible matrices. There is terminology for matrices so
related.

Definition 5.5.1 Let A and B bem×n matrices over R. Then A is equivalent
to B if there are an invertible m×m matrix P over R and an invertible n× n
matrix Q over R such that B = PAQ.
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Equivalent is an equivalence relation, and we have seen that matrices of the
same homomorphism α : X → Y are equivalent. The converse holds also.

Theorem 5.5.2 Let A and B be m×n matrices over R. Then A is equivalent
to B if and only if they are matrices of the same homomorphism from a free
R-module X of rank n into a free R-module Y of rank m relative to appropriate
pairs of bases.

Proof. Suppose that A is equivalent to B. Let X and Y be free of ranks
n and m, and with bases {x1, x2, . . . , xn} and {y1, y2, . . . , ym}, respectively.
There are invertible matrices P and Q such that B = PAQ. Let P = (pij),
Q = (qij), and vj = Σiqijxi. We need {v1, v2, . . . , vn} to be a basis. Let
(cij) = (qij)

−1. If Σni=1aivi = 0, then

0 = ΣiaiΣjqjixj = Σj(Σiaiqji)xj ,

whence Σiaiqji = 0 for all i. Thus

0 = Σj(Σiaiqji)ckj = ΣiaiΣjqjickj = ak.

Furthermore, xj = Σicijvi, and it follows that {v1, v2, . . . , vn} is a basis of X.
Similarly, if P−1 = (cij) and wj = Σicijyi, then {w1, w2, . . . , wm} is a basis of
Y . Define α : X → Y by α(xj) = Σiaijyi. We have

α(vj) = α(Σiqijxi) = ΣiqijΣkakiyk = ΣiqijΣkakiΣspskws

Σs(ΣkΣipskakiqij)ws = Σibijwi,

since B = PAQ. Therefore A and B are both matrices of α, and the proof is
complete.

Note that if m = n, X = Y , and xi = yi, then Q = P−1, so that B =
PAP−1. Hence, as in the vector space case, two square matrices are similar if
and only if they are matrices of the same endomorphism α : X → X relative to
appropriate (single) bases of X.
There are two fundamental ways to associate a module with a matrix. There

is the one for square matrices over a field in 5.2. That procedure can be gen-
eralized. Let Rn be the free R-module of rank n, that is, the direct sum of n
copies of the module R. As in 5.4, think of Rn as columns (ri) of elements of
R. If (aij) is in Rn, then Rn → Rn : (ri) → (Σjaijrj) is an endomorphism of
Rn. It is just the endomorphism whose matrix with respect to the canonical
basis {e1, e2, . . . , en}, where ei is the column with 1 in the ith position and
zeroes elsewhere, is (aij). The action of (aij) on (ri) is just matrix multiplica-
tion. Thus with a matrix A in Rn, we have an endomorphism of Rn, which we
also denote by A. This enables us to make Rn into an R[x]-module by defining
f(x)v = f(A)(v) for v in Rn. Denote this R[x]-module by M1(A). Thus with
an n×n matrix A over R we have associated an R[x]-moduleM1(A). For fields,
this is the construction carried out in 5.2. (M1(A) corresponds to V α). If A
and B are in Rn, then M1(A) ≈ M1(B) if and only if A is similar to B. The
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proof is exactly the same as for the vector space case. Although M1(A) is a
finitely generated R[x]-module, R[x] is not necessarily a principal ideal domain,
and so we have no nice complete set of invariants for M1(A) as we had in the
case when R was a field.
The other module associated with A is Rn/A(Rn). However, we want to

be a little more general here. Let A be an m × n matrix over R. Then the
homomorphism Rn → Rm whose matrix with respect to the canonical bases of
Rn and Rm is A is given by matrix multiplication, and is also denoted by A.
Thus

(ri)→

 n∑
j=1

aijrj

 = A(ri),

where A = (aij). Let M2(A) be the module Rm/A(Rn). Now M2(A) is an
R-module, while (in the case A is a square matrix) M1(A) is an R[x]-module.
Here are the essential facts we are after. If R is a PID, and A and B arem×n

matrices over R, then A is equivalent to B if and only ifM2(A) ≈M2(B). In this
case, M2(A) is finitely generated over a PID, so is determined by its invariant
factors. We would like to get the invariant factors of M2(A) directly from A. It
turns out that there is a canonical form for A, that is, a matrix equivalent to
A, which displays explicitly those invariant factors. Now let A be in Rn. Then
both M1(A) and M2(xIn −A) = R[x]n/(xIn −A)R[x]n are modules over R[x].
These modules are isomorphic. If R is a field, then R[x] is a PID. Therefore
xIn − A is equivalent to xIn − B if and only if A is similar to B. The rest of
this section is devoted to establishing these facts.

Theorem 5.5.3 Let R be a commutative ring with identity. If A and B are
equivalent m× n matrices over R, then M2(A) ≈M2(B). That is,

Rm/A(Rn) ≈ Rm/B(Rn).

Proof. The proof is a consequence of a more general fact, which in turn is
almost a formality. Suppose that αi : Mi → Ni, i = 1, 2, are homomorphisms
between the R-modulesMi and Ni. Suppose that β1 : M1 →M2 and β2 : N1 →
N2 are isomorphisms such that α1 = β−1

2 α2β1. Then

N1/α1(M1)→ N2/α2(M2) : n1 + α1(M1)→ β2(n1) + α2(M2)

is an isomorphism. The verification of this is routine in all aspects. Here is a
picture.

M2 N2
-

α2

M1 N1
-α1

?

β1

?

β2
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The relevant picture for our theorem is

Rm Rn-
B

Rm Rn-A

?

Q

?

p−1

where A = PBQ with P and Q appropriate non-singular matrices.
Such pictures as above are called diagrams, and the condition β2α1 = α2β1

is expressed by saying that the first diagram commutes.
The converse of 5.5.3 holds when R is a PID. That is, if R is a PID, if A

and B are m × n matrices over R, and if M2(A) ≈ M2(B), then A and B are
equivalent. In order to prove this, we need a theorem about submodules of free
modules of finite rank. This theorem implies that finitely generated modules
over a PID are direct sums of cyclic modules. We could actually derive it from
our results in 4.7, but we prefer to give an alternate (direct) proof. This theorem
will also give a nice canonical form for equivalence classes of equivalent matrices
over PID’s. Here is the theorem.

Theorem 5.5.4 Let M be a free module of finite rank n over a PID R. Let N
be a submodule of M . Then there are an integer m ≤ n, a basis {e1, e2, . . . ,
en} of M , and elements r1, r2, . . . , rn of R such that {r1e1, r2e2, . . . , rmem}
is a basis of N , r1|r2, r2|r3, . . . , rm−1|rm, and rn+1, . . . , rn = 0. The ri are
unique up to associates.

Proof. Induct on n. If n = 1, the theorem is clear. Suppose that the
theorem is true for all free modules M of rank less than n. If B = {e1, e2, . . . ,
en} is a basis of M , then M = Re1⊕Re2⊕ · · · ⊕Ren. Let Bi be the projection
of M into Rei followed by the natural map Rei → R. The set Bi(N) is an
ideal of R. It follows readily from 4.4.6 that this set of ideals, determined by
all different bases of M , has a maximal element. Therefore there is a basis {e1,
e2, . . . , en} = B of M such that B1(N) is not properly contained in any Ci(N)
for any basis C of M . Let B1(N) = Ra1. Then a1e1 + a2e2 + · · · + anen is in
N for some a2, . . . , an in R. We want to show that a1 divides a2. Let d be a
greatest common divisor of a1 and a2. Write dbi = ai, and s1b1 + s2b2 = 1. Let
y1 = b1e1+b2e2 and y2 = s2e1−s1e2. Then s1y1+b2y2 = e1 and s2y1−b1y2 = e2.
It follows that {y1, y2, e3, . . . , en} is a basis of M . Since

dy1 + a3e3 + · · · + anen = a1e1 + a2e2 + · · · + anen

is in N , the ideal associated with y1 in this basis contains Rd which contains
Ra1, hence is equal to Ra1. Therefore d is in the ideal generated by a1, and so
a1 divides a2. Thus a1 divides ai for all i.
Let ai = a1ci. Let x1 = e1 +c2e2 + · · · +cnen. Then {x1, e2, e3, . . . , en} is a

basis ofM and a1x1 = a1e1+a2e2+· · · +anen is in N . Thus with respect to the
basis {x1, e2, e3, . . . , en}, the image of the projection of N into Rx1 is Ra1x1,
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which is the intersection N ∩Rx1. We have N = (N ∩Rx1)⊕ (N ∩ (Re2 ⊕ · · ·
⊕Ren)). If this second intersection is 0, the basis {x1, e2, . . . , en} together with
the elements r1 = a1, r2 = · · · = rn = 0 satisfy our requirements. Otherwise,
by the induction hypothesis, there are an integer m with 2 ≤ m ≤ n, a basis
{x2, . . . , xn} of Re2⊕· · · ⊕Ren, and elements r2, . . . , rn in R such that {r2x2,
. . . , rmxm} is a basis of N ∩ (Re2 ⊕ · · · ⊕Ren), and such that

r2|r3, r3|r4, . . . , rm−1|rm, rm+1 = · · · = rn = 0 (if m < n).

We need only that a1|r2. But we already showed that if {e1, e2, . . . , en} is any
basis and a1e1 + a2e2 + · · · +anen is in N , then a1|a2. Now a1x1 + r2x2 is in
N , whence a1|r2. Setting a1 = r1 gets the required ri’s.
For the uniqueness of the ri’s, we appeal to 4.7.15; those not zero or a unit

are just the invariant factors of M/N.

An immediate consequence is the fact that a finitely generated module X
over a PID is a direct sum of cyclic modules. Let {x1, x2, . . . , xn} be a set of
generators of X. Let M be free of rank n with basis {e1, e2, . . . , en}. Sending
ei to xi induces an epimorphism α : M → X. Now there are a basis {y1, y2, . . .
, yn} and elements r1, r2, . . . , rm (m ≤ n) of R such that {r1y1, . . . , rmym}
is a basis of Ker(α). Hence X ≈ M/Ker(α) ≈ Ry1/Rr1y1 ⊕ · · · ⊕Ryn/Rrnyn
(where rm+1 = · · · = rn = 0), which is a direct sum of cyclic modules.

Corollary 5.5.5 Let R be a PID, and let A and B be m × n matrices over
R. Then A and B are equivalent if and only if the modules Rm/A(Rn) and
Rm/B(Rn) are isomorphic.

Proof. By 5.5.3, we need only show that if Rm/A(Rn) ≈ Rm/B(Rn), then
A and B are equivalent. By 5.5.4, there is a basis {x1, x2, . . . , xm} of Rm and
there are elements r1, r2, . . . , rm of R such that {r1x1, r2x2, . . . , rkxk} is a
basis of A(Rn), and such that r1|r2, r2|r3, . . . , rk−1|rk, rk+1 = · · · = rm = 0
(if k < m). The invariant factors of the module Rm/A(Rn) are the non-units
among r1, r2, . . . , rm. Since Rm/A(Rn) ≈ Rm/B(Rn), there is a basis {y1,
y2, . . . , ym} of Rm such that the non-zero elements of {r1y1, r1y2, . . . , rmym}
are a basis of B(Rn). Since A(Rn) is free, Rn = Ker(A) ⊕ S, and A induces
an isomorphism S → A(Rn). Similarly, Rn = Ker(B) ⊕ T , and B induces
an isomorphism T → B(Rn). Thus Ker(A) ≈ Ker(B) by 4.7.5. The map
Rm → Rm : xi → yi induces an isomorphism β : A(Rn) → B(Rn). This gives
an isomorphism α : S → T such that the diagram

T B(Rn)-

S A(Rn)-

?

α

?

β

commutes. Extend α to an isomorphism Ker(A)⊕S = Rn → Rn = Ker(B)⊕T
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by sending Ker(A) isomorphically onto Ker(B). Then the diagram

Rn Rm-

Rn Rm-

?

α

?

β

commutes. Let P and Q be the matrices of β and α, relative to the canonical
bases of Rm and Rn, respectively. Then A = QBP−1, whence A and B are
equivalent.
Recall that the rank of a matrix A is the dimension of its row space, or

equivalently, the dimension of its column space (3.4.16). The rank of an m× n
matrix A over a field F is dim(A(Fn)). Since Fm/A(Fn) ≈ Fm/B(Fn) if and
only if A(Fn) and B(Fn) have the same dimension, we see that A and B are
equivalent if and only if they have the same rank.
A matrix (aij), not necessarily square, is called diagonal if aij = 0 whenever

i 6= j. Now we apply 5.5.5 to get a canonical form for equivalent matrices over
PID’s.

Theorem 5.5.6 Every m× n matrix A over a PID is equivalent to a diagonal
matrix with diagonal entries

d1, d2, . . . , dr, 0 , . . . , 0

where d1|d2, . . . , dr−1|dr. The di are unique up to associates.

Proof. Let A be an m × n matrix. Pick a basis {x1, x2, . . . , xm} of Rm
and elements d1, d2, . . . , dm of R such that {d1x1, d2x2, . . . , dmxm} generates
A(Rn), and such that d1|d2, d2|d3, . . . , dr−1|dr, dr+1 = · · · = dm = 0. No more
than n of the di are non-zero. Let B be the m× n matrix (δijdj) with ij-entry
δijdj . Then Rm/B(Rn) ≈ Rm/A(Rn). By 5.5.5, A and B are equivalent. The
di are unique up to associates because those not zero or a unit are the invariant
factors of Rm/A(Rn).

Corollary 5.5.7 Every m×n matrix A over a field is equivalent to a diagonal
matrix with diagonal entries.

1, 1, ..., 1, 0, 0, ..., 0

The number of 1’s in the matrix is the rank of A.

Corollary 5.5.8 Every matrix of integers is equivalent to exactly one diagonal
matrix with diagonal entries

d1, d2, . . . , dr, 0 , 0, . . . , 0

with the di positive and with di dividing di+1.
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Corollary 5.5.9 Every matrix over F [x], where F is a field, is equivalent to
exactly one diagonal matrix with diagonal entries

f1(x), f2(x), . . . , fr(x), 0, . . . , 0 ,

where the fi(x) are monic polynomials with fi(x) dividing fi+1(x).

Now consider an n×n matrix A over a field F . The matrix xIn−A over F [x]
is equivalent to a matrix of the form given in 5.5.9. Those polynomials fi(x)
not 1 are the invariant factors of F [x]n/(xIn − A)F [x]n. The invariant factors
of A are the invariant factors of the F [x]-module Fn with scalar multiplication
given by f(x) ·v = f(A)(v). If we can show that this F [x]-module is isomorphic
to the F [x]-module F [x]n/(xIn−A)F [x]n, that is, that M1(A) ≈M2(xIn−A),
then we will know that two matrices A and B in Fn are similar if and only if
xIn − A and xIn − B are equivalent. Thus one way to calculate the invariant
factors of A is to put xIn−A in the equivalent form in 5.5.9 and read them off.
Something more general is true.

Theorem 5.5.10 Let R be a commutative ring, and let A be an n × n matrix
over R. Then M1(A) ≈M2(xIn −A).

Proof. We need an R[x]-isomorphism

α : R[x]n/(xIn −A)R[x]n → Rn .

Let {e1, e2, . . . , en} be the canonical basis of the free R-module Rn. Then
{e1, e2, . . . , en} is also the canonical basis of the free R[x]-module R[x]n, and
generates Rn as an R[x]-module. Thus there is an R[x]-epimorphism

α : R[x]n → Rn

such that α(ei) = ei for all i. We will show that Ker(α) = (xIn−A)R[x]n. First,
α((xIn−A)(ei)) = α(xei−Aei) = 0. Thus Ker(α) ⊃ (xIn−A)R[x]n. Now sup-
pose that α(Σni=1fi(x)ei) = 0. Write fi(x) = Σnij=0bijx

j . Since α(Σni=1fi(x)ei) =
0, then Σni=1fi(A)ei = 0. Thus

n∑
i=1

fi(x)ei =
n∑
i=1

fi(x)ei −
n∑
i=1

fi(A)ei

=

n∑
i=1

 ni∑
j=1

(bijx
jIn − bijAj)

 ei =

n∑
i=1

 ni∑
j=1

xjIn −Aj
 bijei

is in (xIn − A)R[x]n since (xIn − A)B = xjIn − Aj for the n × n matrix
B = Σj−1

i=0x
j−i−1Ai over R[x]. This completes the proof.

Corollary 5.5.11 Let A and B be n× n matrices over a field F . Then A and
B are similar over F if and only if xIn − A and xIn − B are equivalent over
F [x]. If xIn −A is equivalent to the diagonal matrix with diagonal entries

f1(x), . . . , fr(x), 0, . . . , 0,

where fi(x)|fi+1(x), then the fi(x) not 1 are the invariant factors of A.
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Proof. M1(A) ≈ F [x]/F [x]f1(x)⊕ · · · ⊕F [x]/F [x]fr(x). If fi(x) = 1, then
F [x]/F [x]fi(x) = 0. Thus those not 1 are the invariant factors of M1(A), and
the corollary follows.

Actually, a new proof that a square matrix satisfies its characteristic poly-
nomial is at hand. We need one additional fact.

Lemma 5.5.12 Let R be a commutative ring, and let A be an n × n matrix
over R. Then (det(A))(Rn/A(Rn)) = 0.

Proof. From 5.4, page 197,

det(A)Rn = det(A)In(Rn) = A adj(A)(Rn),

which is contained in A(Rn). The lemma follows.

Corollary 5.5.13 (Cayley-Hamilton Theorem) An n×n matrix A over a
commutative ring R satisfies its characteristic polynomial det(xIn −A).

Proof. By 5.5.12, det(xIn−A)(R[x]n/(xIn−A)R[x]n) = 0. Thus by 5.5.10,
det(xIn −A)Rn = 0. Let det(xIn −A) = f(x). Then f(x)Rn = f(A)Rn. Thus
f(A) is the 0 matrix since its product with any element of Rn is 0.

Let F be a field. In view of 5.5.11, the invariant factors of a matrix A in Fn
are exhibited by the canonical form of xI−A. There is an algorithm for finding
that canonical form, or equivalently, for computing these invariant factors. More
generally, there is an algorithm for finding the di in 5.5.6. We proceed now to
describe this algorithm.
Let R be any commutative ring, and let A be an m× n matrix over R. The

elementary row operations on A are the following.

1. Interchange two rows of A.

2. Multiply a row of A by a unit of R.

3. Add a multiple of a row of A to another row of A.

The elementary column operations on a matrix are defined similarly.
Each of these operations on A can be effected by multiplying A by suitable
non-singular square matrices. In fact, if one of the row operations is applied to
the m×m identity matrix Im, yielding the matrix E, then the effect of applying
that row operation to A is the matrix EA. This is easy to verify, and analogous
statements hold for column operations. Notice that if an elementary (row or
column) operation is applied to In, the resulting matrix is non-singular.

A secondary matrix over R is a square matrix of the form

S =


a b 0 0 · · · 0
c d 0 0 · · · 0
0 0 1 0 0
...

...
0 0 · · · 0 1


,
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with ad− bc = 1.
A secondary matrix is of course invertible since its determinant is 1. Multi-

plying A on the left by S is a secondary row operation on A, and multiplying
A on the right by S is a secondary column operation on A.
Recall that a matrix (aij) is in diagonal form if aij = 0 whenever i is not

j. The important fact is that any m × n matrix over a PID can be put into a
canonical diagonal form with diagonal entries d1, d2, . . . , dr, 0, 0, . . . , 0 with di
dividing di+1 by applying a succession of elementary and secondary operations
to it. This gives an effective way to compute invariant factors. Here is how it is
done. Let A = (aij) be an m× n matrix over a PID. We may interchange two
rows or two columns by multiplying A by suitable elementary matrices. Hence
we can get a11 6= 0 if A 6= 0. (If A = 0, there is nothing to do.) Let d be
a greatest common divisor of a11 and a12. Write a11 = a1d, a12 = a2d, and
sa11 + ta12 = d. Then sa1 + ta2 = 1. Now

(aij) ·


s −a2 0 0 · · · 0
t a1 0 0 · · · 0
0 0 1 0 0
...

...
0 0 · · · 0 1

 =


d 0 a13 · · · a1n

a′21 a′22 a23 · · · a2n

a′31 a′32 a33 · · · a3n

...
...

a′m1 a′m2 am3 · · · amn


Interchanging the second and third columns and repeating the process above
yields an equivalent matrix with the (1,2) and (1,3) entries zero. Proceeding
in this manner, we get a matrix with first row of the form (d, 0, 0, . . . , 0),
and, in fact, with d a greatest common divisor of the original a11, a12, . . . , a1n.
Now proceed in an analogous way to get a matrix with first column having only
the (1, 1) entry non-zero. This process, however, disturbs the first row, and the
matrix has the form 

e f2 f3 · · · fn
0
...
0

 .
If e divides each f , then subtracting suitable multiples of the first column from
the other columns brings the matrix into the form

B =


e 0 0 · · · 0
0
...
0

 .
If e does not divide some fi, then proceed as in the very first step. This yields
a matrix of the form 

e1 0 0 · · · 0
g2

...
gm


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where e1 is the greatest common divisor of e and fi’s. If e1 divides each gi,
then subtracting suitable multiples of the first row from the other rows yields a
matrix of the form B. If e1 does not divide some gi, then the matrix is equivalent
to one of the form 

e2 h2 h3 · · · hn
0
...
0


where e2 is a greatest common divisor of e1 and the gi’s. The ideals generated
by e, e1, e2, . . . are strictly increasing. Thus in a finite number of steps we reach
an ek which divides each element in the first row, and thus a matrix of the form
B. At this point, our new e = ek may not divide every entry of the matrix B.
If e does not divide aij , say, then add the ith row to the first and start over. We
get a new e properly dividing the old e. The ascending chain of ideals generated
by the element in the (1,1) position must stop. Thus we reach a stage where
our matrix has the form B with e dividing every element of B. Setting e = d1,
we have the matrix in the form

d1 0 · · · a1n

0 a22 · · · a2n

...
...

0 am2 · · · amn

 .
Now we can proceed as before without disturbing the first row or column. The
rest should be clear. By induction on n, our procedure brings the matrix into
the diagonal form 

d1

d2

. . .

dr

0
0

. . .


,

with di|di+1.
Observe that the second elementary operation, namely, multiplying a row

or column by a unit, has not been used. If our PID were Z, or F [x], we could
make all the di positive, or monic, respectively, by so doing. In these cases, the
di are unique. However, if the PID is Z or F [x], we do not need the secondary
operations in our algorithm. For instance, suppose our ring is Z. By elementary
operations, we can make a11 > 0. Write a1i = qia11 + ri, with 0 ≤ a11.
Elementary operations then yield a matrix with first row (a11, r2, r3, . . . , rn).
Start all over. Either all the ri are 0 or there is an ri with 0 < ri < a11. Put
ri in the (1, 1) position and repeat the process. This eventually brings us to
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a matrix with first row of the form (e1, 0, 0, . . . , 0). Now work on the first
column of this new matrix. We get a matrix with first column having only its
(1, 1) entry non-zero, but we know nothing about the first row any more. So
start all over. The ei are getting smaller, and are positive. Thus we eventually
bring our matrix to the form with the only non-zero entry in the first row or
first column the (1, 1) entry. The rest should be clear. It is analogous to what
we did in the general PID case. The division algorithm for polynomials (4.5.7)
enables us to follow a similar procedure in the case our ring is F [x], where F is
a field.

PROBLEMS

1. Prove that the matrix  x −1 0
0 x −1
6 5 x+ 2


is equivalent overQ[x] to the diagonal matrix with diagonal entries (1, 1, x3+
2x2 + 5x+ 6).

2. Reduce the following matrices of integers to canonical form.

(
24 12 15

)
,

(
2 8 6
4 −2 10

)
,


11 8 6 3
6 7 5 1
3 −8 1 −4
1 −2 −4 12
4 3 2 10


3. Find the rational canonical form of the matrices of rational numbers

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 ,

(
a b
c d

)
,

 5 6 −6
−1 4 2
3 −6 −4


4. Reduce the following matrices over Q[x] to the canonical diagonal form
with diagonal entries

(f1(x), f2(x), . . . , fr(x), 0, . . . , 0),

with fi(x) monic and with fi(x) dividing fi+1(x).

1− x x 1 + x2

x2 x x2

x −x −x2

x4 + 1 x7 − 4x3 + 1 x4 − 4x3 + 4x− 5
2x4 + 3 2x7 − 2x4 + 4x3 − 2 3x4 + 4x3 + x2 + 10x− 14
x4 + 2 x7 − x4 + 2x3 − 2 3x4 − 6x3 + x2 + 6x− 9
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5. Prove that if the matrix A 6= 0 over a PID has canonical form with diagonal
entries (d1, d2, . . . , dr, 0, . . . , 0), then d1 is the greatest common divisor
of all the entries of A.

6. Prove that any invertible matrix over a PID is a product of elementary
and secondary matrices.

7. Prove that an n × n matrix over a PID is invertible if and only if it is
equivalent to In.

8. Let R be a commutative ring, and let M and N be R-modules. Prove
that the set HomR(M , N) of R-homomorphisms from M into N is an
R-module via (α+ β)(m) = α(m) + β(m) and (rα)(m) = r(α(m)). Prove
that ER(M) = HomR(M , M) is an R-algebra, where multiplication is
composition of maps.

9. Let M and N be free R-modules of finite ranks m and n, respectively.
Pick bases of M and N , and associate with each α in HomR(M , N) its
matrix with respect to this pair of bases. Prove that this association is
an R-module isomorphism. If M = N and the two bases are equal, show
that it is an R-algebra isomorphism.

10. Let M be a module over the commutative ring R, and let α be an endo-
morphism of M . For m in M and f(x) in R[x], let f(x) ·m = f(α)(m).
Prove that this makes M into an R[x]-module. Denote this module by
Mα. Prove that Mα ≈ Mβ if and only if there is an automorphism γ of
the R-module M such that α = γβγ−1.

11. Let M be a module over the commutative ring R. Let M [x] be the set
of all “polynomials” m0 + m1x + · · · +mkx

k in x with coeffi cients in
M . Prove that M [x] is, in a natural way, an R[x]-module. Let α be an
endomorphism of the R-module M , and let

(x− α)
(∑

mix
i
)

=
∑

mix
i+1 −

∑
α(mi)x

i.

Prove that x − α is an R[x]-endomorphism of M [x] and that M [x]/(x −
α)M [x] ≈Mα.

5.6 Euclidean Spaces

Let R be the field of real numbers. In the vector space R2, that is, in the
plane, there are notions of distance, length, angles, and so on. In vector spaces
over arbitrary fields F , these geometric notions are not available. To define
appropriately such concepts in F 2 (or in Fn), F must have special properties.
In our previous discussions of vector spaces, the field itself played no special
role. Our vector spaces were over just any field F . Two fields of special interest
are the field R of real numbers and the field C of complex numbers. In this
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section, we will study vector spaces over R that come equipped with an added
structure that will enable us to define such geometric notions as length and
angle. A parallel development for C will be indicated in the exercises.

Various special properties of the real numbers will be used. For example, R
is ordered. That is, in R there is a notion of an element a being less than
an element b, written a < b, or equivalently, b > a, and this relation satisfies
certain properties. We write a ≤ b if a < b or a = b. Numbers a such that 0 < a
are positive, and positive numbers have unique square roots. If a ≤ b, and if
c is positive, then ac ≤ bc. Such familiar properties of the real numbers will be
used throughout our discussion, and we assume that the reader is acquainted
with them.
How does one define length, and so on, in R2? First, if x = (x1, y1) and

y = (x2, y2) are in R2, then the inner product, or dot product, of x and y
is (x, y) = x1x2 + y1y2. The product (x, y) is also denoted by x · y. The other
geometric notions are defined in terms of this product. For example, the length
of x is (x, x)1/2, and the angle θ between x and y is given by cos(θ) = (x, y)/((x,
x)(y, y))1/2. Analogous definitions are made for Rn. The inner product above
is a map R2 × R2 → R. What we will consider will be vector spaces V over
R that come equipped with a map V × V → R in terms of which the requisite
definitions can be made.

Definition 5.6.1 A Euclidean space is a vector space V over the field R of
real numbers, together with a map V ×V → R, called inner product, such that
if (v, w) denotes the image of the pair (v, w) in V × V , then for all u, v, w in
V and a and b in R,

a. (v, w) = (w, v),

b. (v, v) ≥ 0, and (v, v) = 0 if and only if v = 0, and

c. (a · u+ b · v, w) = a(u, w) + b(v, w).

There are two classical examples. For the vector space Rn of n-tuples of
real numbers, define Rn × Rn → R by (v, w) → Σni=1viwi, where v = (v1, v2,
. . . , vn) and w = (w1, w2, . . . , wn). This makes Rn into an n-dimensional
Euclidean space. When we speak of the Euclidean space Rn, we mean Rn
with this particular inner product. The second example is the vector space
V of all continuous real functions on the closed interval [0, 1] with an inner
product given by (f(x), g(x)) =

∫ 1

0
f(x)g(x)dx. This makes V into an infinite

dimensional Euclidean space. Our concern will be almost wholly with finite
dimensional spaces.

Definition 5.6.2 The length of a vector v in a Euclidean space V is the real
number ‖v‖ = (v, v)1/2. If v and w are in V , then the distance from v to w is
‖v − w‖.

The basic properties of length are given in the following theorem.
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Theorem 5.6.3 Let V be a Euclidean space. Then for all r in R and v and w
in V

a. ‖rv‖ = |r|‖v‖.

b. ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0,

c. |(v, w)| ≤ ‖v‖‖w‖.

d. ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Proof. The equalities ‖rv‖ = (rv, rv)1/2 = (r2(v, v))1/2 = |r|‖v‖ establish
(a).
(b) follows immediately from 5.6.1 (b).
Since

0 ≤ (‖w‖v ± ‖v‖w, ‖w‖v ± ‖v‖w) = 2‖v‖2‖w‖2 ± 2‖v‖‖w‖(v, w),

we have |(v, w)| ≤ ‖v‖‖w‖, and so (c) holds.

‖v + w‖2 = (v + w, v + w) = (v, v) + 2(v, w) + (w, w)

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2 ,

whence
‖v + w‖ ≤ ‖v‖+ ‖w‖,

and we have (d).
Part (c) is Schwarz’s inequality, and part (d) is the triangle inequality.
From 5.6.2, it follows easily that our notion of distance satisfies the usual

properties of ordinary distance, namely that

1. the distance from v to w is ≥ 0, and is 0 if and only if v = w,

2. the distance from v to w is the distance from w to v, and

3. the distance from u to v plus the distance from v to w is not less than the
distance from u to w.

If M is a set with a function d : M ×M → R, and if we call d(x, y) the
distance from x to y, then M is a metric space if (1), (2), and (3) above are
satisfied. Property (2) expresses the symmetry of distance, and property (3) is
the triangle inequality. Our notion of distance in a Euclidean space V makes
V into a metric space.
Part (c) of 5.6.3 asserts that for non-zero vectors v and w,−1 ≤ (v, w)/(‖v‖‖w‖) ≤

1. This makes it possible to define the angle between two non-zero vectors in
a Euclidean space as that angle θ between 0◦ and 180◦ such that

cos(θ) =
(v, w)

‖v‖ ‖w‖ .
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Definition 5.6.4 Two vectors v and w in a Euclidean space V are orthogonal
if (v, w) = 0. A subset S of V is an orthogonal set if any two distinct vectors
of S are orthogonal. The set S is orthonormal if it is orthogonal and ‖s‖ = 1
for all s in S.

Note that the Euclidean space Rn has an orthonormal basis, namely

{(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1)}

If v1, v2, . . . ,vn is an orthonormal basis of a Euclidean space V , and if v =∑n
i=1 aivi and w =

∑n
i=1 bivi, then

(v, w) =

(∑
i

aivi,
∑
i

bivi

)
=
∑
i,j

aibj(vi, vj) =
∑
i

aibi

Furthermore, if {v1, v2, ..., vn} is a basis of any n-dimensional real vector space
V , then defining (

∑n
i=1 aivi,

∑n
i=1 bivi) =

∑
i aibi makes V into a Euclidean

space, and {v1, v2, ..., vn} is an orthonormal basis of that space. Our imme-
diate goal is to show that every finite dimensional Euclidean space so arises.
That is, we want to show that every finite dimensional Euclidean space has an
orthonormal basis.

Theorem 5.6.5 Let {v1, v2, . . . , vn} be an independent subset of the Euclidean
space V . Then there is an orthogonal subset {w1, w2, . . . , wn} of V such that
for i ≤ n,

{v1, v2, . . . , vi} and {w1, w2, . . . , wi}

generate the same subspace of V .

Proof. Let w1 = v1, and proceeding inductively, let wj = vj − Σi<j((vj ,
wi)/(wi, wi))wi. Then for k < j,

(wj , wk) = (vj , wk)− Σi<j((vj , wi)/(wi, wi))(wi, wk)

= (vj , wk)− ((vj , wk)/(wk, wk))(wk, wk) = 0.

Therefore the set {w1, w2, . . . , wj} is orthogonal. By the construction, wj is a
linear combination of {v1, v2, . . . , vj}, and not a linear combination of {v1, v2,
. . . , vj−1}. Thus wj 6= 0, and so the set {w1, w2, . . . , wj} is independent. The
theorem follows.

The construction of the orthogonal set {w1, w2, . . . , wn} is called theGram-
Schmidt orthogonalization process. Note that if {v1, v2, . . . , vi} is orthog-
onal, then vj = wj for j ≤ i.

Theorem 5.6.6 Every finite dimensional Euclidean space has an orthonormal
basis.
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Proof. By 5.6.4, a finite dimensional Euclidean space has an orthogonal
basis {w1, w2, . . . , wn}. The basis

{w1/‖w1‖, . . . , wn/‖wn‖}

is orthonormal.
An immediate consequence is the following.

Theorem 5.6.7 Let V be a finite dimensional Euclidean space. Then V has
a basis {v1, v2, . . . , vn} such that if v = Σiaivi and w = Σibivi, then (v,
w) = Σiaibi.

Two Euclidean spaces V and W are isomorphic if there is a vector space
isomorphism α : V →W which also preserves inner products; that is, that also
satisfies (x, y) = (α(x), α(y)) for all x and y in V . Now 5.6.6 asserts that
every Euclidean space of dimension n is isomorphic to Rn with the usual inner
product. Consequently, any two Euclidean spaces of the same dimension are
isomorphic.
If S is a subset of a Euclidean space V , let S⊥ = {v ∈ V : (s, v) = 0 for all

s ∈ S}. That is, S⊥ is the set of all vectors in V which are orthogonal to every
vector in S. It is easy to verify that S⊥ is a subspace of V .

Theorem 5.6.8 Let V be a finite dimensional Euclidean space, and let S be a
subspace. Then V = S ⊕ S⊥, and S⊥⊥ = S.

Proof. The subspace S of V is a Euclidean space in its own right, so has an
orthogonal basis {w1, w2, . . . , wm}. Let {w1, . . . wm, wm+1, . . . . , wn} be a basis
of V . Applying the Gram-Schmidt process to this basis yields an orthonormal
basis {v1, . . . , vm, vm+1, . . . , vn} of V . Clearly vm+1, . . . , vn are in S⊥. If
w is in S⊥, then w = Σni=1aivi, and for j ≤ m, 0 = (vj , w) = aj , whence w is
in the subspace generated by {vm+1, . . . , vn}. Therefore V = S ⊕ S⊥. That
S = S⊥⊥ follows readily.

The subspace S⊥ of V is called the orthogonal complement of S. As-
sociating S⊥ with S is reminiscent of the duality between the subspaces of V
and those of its dual, or adjoint, V ∗. In fact, the inner product on a Euclidean
space V provides a natural way to identify V with its dual V ∗. The mapping
f : V → V ∗ given by f(v)(w) = (v, w) is an isomorphism, and for a subspace
W of V , f(W⊥) = K(W ). This readily yields that S → S⊥ is a duality on
the subspaces of a Euclidean space, that is, is a one-to-one correspondence that
reverses inclusions (Problem 8).
Since the notion of length is fundamental in Euclidean spaces, those lin-

ear transformations on a Euclidean space which preserve length are of special
interest.

Definition 5.6.9 Let V be a Euclidean space. A linear transformation α on V
is orthogonal if ‖α(v)‖ = ‖v‖ for every v in V .
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Equivalently, α is orthogonal if and only if it preserves inner products. In-
deed, if α is orthogonal, then ‖α(v)‖ = ‖v‖, and so (α(v), α(v))1/2 = (v, v)1/2,
whence (α(v), α(v)) = (v, v). For any v and w in V,

(v + w, v + w) = (v, v) + 2(v, w) + (w,w) = ((α(v + w), α(v + w))

= (α(v), α(v)) + 2(α(v), α(w)) + (α(w), α(w)).

It follows that (v, w) = (α(v), α(w)), and thus that α preserves inner products.
If α preserves inner products, then (α(v), α(v)) = (v, v), and so ‖α(v)‖ = ‖v‖
and α is orthogonal.
In particular, if α is orthogonal then α preserves orthogonality, or (v, w) = 0

if and only if (α(v), α(w)) = 0. Also it is useful to observe that if {v1, v2, . . . ,
vn} is a basis, then α is orthogonal if (vi, vj) = (α(vi), α(vj)) for all i and j.

We now examine the matrix of an orthogonal transformation relative to an
orthonormal basis. Let α be such a linear transformation on V and {v1, v2, . . .
, vn} such a basis of V . If (aij) is the matrix of α relative to this basis, then
α(vj) = Σiaijvi, and

(vi, vj) = (α(vi), α(vj)) = δij =

(∑
k

akivk,
∑
k

akjvk

)
=
∑
k

akiakj .

This means that (aij)
′(aij) = In, the identity n×n real matrix, where (aij)

′

denotes the transpose of the matrix (aij). Thus (aij)
−1 = (aij)

′. Another
way to look at it is that the rows of (aij) form an orthonormal basis of the
Euclidean space Rn. On the other hand, let (aij) be an n× n matrix such that
(aij)

′ = (aij)
−1, and let {v1, v2, . . . , vn} be an orthonormal basis of V . Then

the linear transformation α given by α(vj) = Σiaijvi is orthogonal. Indeed,
(α(vi), α(vj)) = (Σkakivk, Σkakjvk) = Σkakiakj = δij = (vi, vj).

Definition 5.6.10 An n×n real matrix (aij) is orthogonal if its transpose is
its inverse. Thus (aij) is orthogonal if (aij)

′ = (aij)
−1.

We have proved the following theorem.

Theorem 5.6.11 A linear transformation on a Euclidean space is orthogonal if
its matrix relative to some orthonormal basis is an orthogonal matrix. If a linear
transformation is orthogonal, then its matrix relative to every orthonormal basis
is orthogonal.

Note that orthogonal linear transformations and matrices are non-singular,
and that the inverse of an orthogonal transformation or matrix is orthogonal.

Theorem 5.6.12 Theorem 5.6.13 If {v1, v2, . . . , vn} is an orthonormal
basis, then the matrix (aij) is orthogonal if and only if {w1, w2, . . . , wn} given
by wj = Σiaijvi is an orthonormal basis.
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Proof. 5.6.13 is essentially a restatement of 5.6.11. The linear transforma-
tion α given by α(vj) = Σiaijvi = wj is orthogonal if {w1, w2, . . . , wn} is an
orthonormal basis. By 5.6.11, (aij) is orthogonal. If (aij) is orthogonal, then
by 5.6.11, α given by α(vj) = Σiaijvi = wj is orthogonal, whence {w1, w2, . . . ,
wn} is an orthonormal basis.

By 5.5.10, a change of orthonormal bases is effected only by orthogonal
matrices.
We would like to find canonical forms for orthogonal matrices, but we are

equally as interested in symmetric matrices. A matrix (aij) is symmetric if
aij = aji for all i and j. Thus a symmetric matrix is one that is equal to its
transpose. Suppose that α is a linear transformation on a Euclidean space V
and that (α(v), w) = (v, α(w)) for all v and w in V . Then α is called self-
adjoint. In fact, for any linear transformation α on V , there is a unique linear
transformation α∗ on V such that (α(v), w) = (v, α∗(w)) for all v and w in
V . This α∗ is called the adjoint of α. If {v1, v2, . . . , vn} is an orthonormal
basis of V , α∗ defined by α∗(w) = Σi(α(vi), w)vi is the unique such map. Thus
α is self-adjoint if α = α∗. If α is self-adjoint and if {v1, v2, . . . , vn} is an
orthonormal basis, then the matrix (aij) of α relative to this basis is symmetric.
Indeed,

(α(vi), vj) =

(∑
k

akivk, vj

)
= aji = (vi, α(vj)) =

(
vi,

∑
k

akjvk

)
= aij .

Conversely, if (aij) is symmetric, then α defined by α(vj) = Σiaijvi is easily
seen to be self-adjoint. Thus we have the following theorem.

Theorem 5.6.14 A linear transformation α on a Euclidean space is self-adjoint
if its matrix relative to some orthonormal basis is symmetric. If α is self-adjoint,
then its matrix relative to every orthonormal basis is symmetric.

We will now prove that if α is a self-adjoint linear transformation, then
there is an orthonormal basis such that the matrix of α relative to that basis is
diagonal. The following lemma paves the way.

Lemma 5.6.15 Let α be a self-adjoint linear transformation on a Euclidean
space V . Then the minimum polynomial of α is a product of linear factors.

Proof. We are going to have to use some special facts about the real num-
bers. The one we need here is that any polynomial of degree at least one over
the real numbers factors into a product of linear and quadratic factors, and we
assume this fact. Let f(x) be the minimum polynomial of α. Let q(x) be a
quadratic factor of f(x). There is a non-zero vector v in V such that q(α)v = 0.
Then v and α(v) generate a two dimensional subspace W of V that is invariant
under α. NowW is a Euclidean space and so has an orthonormal basis {v1, v2},
and α is a self-adjoint linear transformation on W . Let the matrix of α relative
to {v1, v2} be

A =

(
a b
c d

)
.
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Then A is symmetric, so b = c, and the characteristic polynomial of α on W is
(x− a)(x− d)− b2 = x2 + (−a− d)x− b2 + ad. Since

(−a− d)2 − 4(ad− b2) = a2 + 2ad+ d2 − 4ad+ 4b2

= (a− d)2 + 4b2 ≥ 0,

this polynomial has real roots. Thus f(x) is a product of linear factors.
The name of the following theorem derives from its role in determining the

principal axis of an ellipse. In plane analytic geometry, the standard form of
the equation of an ellipse is x2/a2 + y2/b2 = 1. In this form, the axes of the
ellipse are parallel to the coordinate axes. For certain values of a, b, c, and d,
ax2 + bxy + cy2 = d is the equation of an ellipse, but unless b = 0, the axes
are not parallel to the coordinate axes. The Principal Axis Theorem implies
that by a rotation of the axes, that is, by an orthogonal transformation, the
equation can be put in standard form, from which the lengths of the axes and
other information about the ellipse can be read off. It can also be used to deduce
results about the higher dimensional analogues of conic sections.

Theorem 5.6.16 (The Principal Axis Theorem) Let α be a self-adjoint lin-
ear transformation on the Euclidean space V . Then V has an orthonormal basis
such that the matrix of α relative to that basis is diagonal. The diagonal ele-
ments are the eigenvalues of α, and each appears with its algebraic multiplicity.

Proof. By 5.6.15, α has an eigenvector v, and v/‖v‖ = v1 is an eigenvector
of unit length. Let W = (Rv1)⊥ = {v ∈ V : (v1, v) = 0}. Then since (α(v1),
v) = (av1, v) = 0 = (v1, α(v)) for all v in W , the subspace W is invariant under
α, so α is a self-adjoint linear transformation onW . By induction on dimension,
W has an orthonormal basis {v2, v3, . . . , vn} such that the matrix of α relative
to it is of the desired form. The orthonormal basis {v1, v2, . . . , vn} of V is the
desired basis.

Corollary 5.6.17 Let A be a real symmetric matrix. Then there is an orthog-
onal matrix B such that B−1AB is diagonal. The diagonal elements are the
eigenvalues of A, each appearing with its algebraic multiplicity.

Proof. The matrix A is the matrix relative to an orthonormal basis of a self-
adjoint linear transformation α on a Euclidean space. There is an orthonormal
basis such that the matrix C of α relative to it has the required form. Such a
change of basis is effected only by orthogonal matrices (5.6.10).

Corollary 5.6.18 The characteristic polynomial of a symmetric matrix or of
a self-adjoint linear transformation is a product of linear factors.

Corollary 5.6.19 Two real symmetric matrices are similar if and only if they
have the same characteristic polynomial.

Now we will get a canonical form for orthogonal matrices. The theorem is
this.
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Theorem 5.6.20 Let α be an orthogonal linear transformation on a Euclidean
space V . Then V has an orthonormal basis such that the matrix of α relative
to this basis is of the form

1
1

. . .
1
−1

−1
. . .

cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

. . .
cos(θk) − sin(θk)
sin(θk) cos(θk)


Proof. Note first that ifW is invariant under α, then so isW⊥. To see this,

we need that for any w in W and v in W⊥, (α(v), w) = 0. Since W is invariant
under α and α is non-singular, then α maps W onto W . Thus w = α(w1) for
some w1 in W , and (α(v), w) = (α(v), α(w1)) = (v, w1) = 0.
If α has an eigenvector v, then α(v) = av, and since α is orthogonal, (v, v) =

(av, av), so a = ±1. Now V = Rv ⊕ (Rv)⊥. The restriction of α to (Rv)⊥ is
an orthogonal transformation, and by induction on dimension, (Rv)⊥ has an
orthonormal basis of the required form. That basis together with v/‖v‖ is the
basis we seek. Now suppose that α has no eigenvector. Then the characteristic
polynomial is the product of irreducible quadratic factors. Let q(x) be one of
them. There is a non-zero v in V such that q(α)v = 0. The vectors v and
α(v) generate a two dimensional subspace X which is invariant under α. The
restriction of α to X is an orthogonal transformation on X, and q(x) is the
characteristic polynomial. Since α is orthogonal, any matrix A of α relative
to an orthonormal basis is orthogonal. Thus det(A) = det(A′) = det(A−1), so
det(A) = ±1. But det(A) is the constant term. So q(x) = x2 + bx ± 1. If
q(x) = x2 + bx − 1, then q(x) has real roots, so α has an eigenvector. Hence
q(x) = x2 + bx+ 1. Let the matrix of α (on X) relative to an orthonormal basis
of X be (

c d
e f

)
This matrix is orthogonal and satisfies q(x). Hence

1. cf − de = 1,

2. c2 + d2 = 1,

3. e2 + f2 = 1, and
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4. ce+ df = 0.

These equations imply that c = f and d = −e. Since e2 + f2 = 1, we can
write e = cos(θ) and f = sin(θ) for some θ. Hence the matrix becomes(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
By induction on dimension, X⊥ has an orthonormal basis of the required kind,
and the rest follows easily.

Corollary 5.6.21 Let A be an orthogonal matrix. Then there exists an orthog-
onal matrix B such that BAB−1 has the form in 5.6.16.

Proof. A is the matrix relative to an orthonormal basis of an orthogonal
transformation α. There is an orthonormal basis such that the matrix of α is
of the form in 5.6.16. Such a change of orthonormal bases is effected only by
orthogonal matrices.

PROBLEMS

1. Let V be a finite dimensional real vector space over R, and let {v1, v2,
. . . , vn} be a basis of V . For v = Σiaivi and w = Σibivi, define (v,
w) = Σiaibi. Prove that this makes V into a Euclidean space.

2. If V is a Euclidean space with inner product (v, w), then for any positive
real number r, r(v, w) is an inner product on V .

3. Prove that R2 is a Euclidean space if inner products are given by ((a, b), (c, d)) =
(a− b)(c− d) + bd.

4. Prove that a Euclidean space V is a metric space via V × V → R : (v,
w)→ ‖v − w‖.

5. Prove that a linear transformation α on a Euclidean space is orthogonal
if for some basis {v1, v2, . . . , vn}, (vi, vj) = (α(vi), α(vj)).

6. Let {v1, v2, . . . , vn} be an orthonormal basis of the Euclidean space V ,
and let v be in V .

(a) Prove that v = Σi(vi, v)vi.

(b) Prove that if α is a linear transformation on V , then the matrix (aij)
of α relative to {v1, v2, . . . , vn} is given by aij = (vi, α(vj)).

(c) Prove that α∗(v) = Σi(α(vi), v)vi defines the unique linear transfor-
mation on V such that (α(v), w) = (v, α∗(w)) for all v and w in V .
Prove that α∗∗ = α.

7. Prove that if α is a linear transformation on a Euclidean space, then α+α∗

is self-adjoint.
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8. Let V be a finite dimensional Euclidean space. Let V ∗ be the dual space
of V . (See 3.4.1.) Define f : V → V ∗ by f(v)(w) = (v, w) for v in V and
w in V . Prove that f is an isomorphism. Prove that for any subspace W
of V , f(W⊥) = K(W ).

9. Prove that the mapping of the set of all subspaces of a finite dimensional
Euclidean space to itself given by S → S⊥ is a duality. That is, prove that
it is a one-to-one correspondence that reverses inclusions.

10. Let α be a linear transformation on the Euclidean space V . Let V ∗ be the
dual space of V , let β : V ∗ → V ∗ be the conjugate, or adjoint of α in the
sense of 3.4.11. Let α∗ : V → V be the adjoint of α in the sense of this
section. Prove that α∗ = γ−1βγ, where γ : V → V ∗ is the map described
in Problem 8.

11. Prove that if α is self-adjoint and αk = 1 for some k ≥ 1, then α2 = 1.

12. For each of the matrices below, find an orthogonal matrix B such that
BAB−1 is diagonal.(

5 −3
−3 5

)
,

 1 1 1
1 0 1
1 1 1

 , (
4 2

(
51/2

)
2
(
51/2

)
−4

)

13. Let V be the vector space of n-tuples of complex numbers. For v = (c1,
c2, . . . , cn) and w = (d1, d2, . . . , dn) in V , define (v, w) = Σicidi, where
c̄ denotes the conjugate of the complex number c. Prove that for all u, v,
and w in V , and a and b in C,

(a) (v, w) = (w, v),

(b) (v, v) ≥ 0, and (v, v) = 0 if and only if v = 0, and

(c) (au+ bv, w) = a(u, w) + b(v, w).

A vector space V over C with a map V × V → C satisfying (a), (b), and
(c) above is called a unitary space. Length and distance are defined
exactly as for Euclidean spaces.

14. Prove 5.6.3 for unitary spaces, and show that the notion of distance makes
a unitary space a metric space.

15. Let V be the vector space of all continuous complex valued functions on
[0, 1]. Prove that V together with the map V × V → C given by (f(x),
g(x)) =

∫ 1

0
f(x)g(x)dx is an infinite dimensional unitary space.

16. Prove that a finite dimensional unitary space has an orthonormal basis.

17. A linear transformation α on a unitary space V is called unitary if (α(v),
α(w)) = (v, w) for all v and w in V . Prove that if (α(v), α(v)) = (v, v)
for all v in V , then α is unitary.
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18. Prove that a linear transformation on a unitary space is unitary if and
only if it takes orthonormal bases to orthonormal bases.

19. If C = (cij) is an n × n complex matrix, then C∗ is the matrix whose
(i, j)-entry is cji, and is called the adjoint of C. The matrix C is called
unitary if CC∗ = 1. Prove that a linear transformation on a unitary
space is unitary if and only if its matrix relative to any orthonormal basis
is unitary. Prove that if {v1, v2, . . . , vn} is an orthonormal basis of a
unitary space V , then {w1, w2, . . . , wn} given by wj = Σicijvi is an
orthonormal basis of V if and only if (cij) is unitary.

20. Let α be a linear transformation on the finite dimensional unitary space V .
Let {v1, v2, . . . , vn} be an orthonormal basis of V , and let the matrix of
α relative to this basis be (aij). Define α∗ : V → V by α∗(vi) = Σjaijvj .
Prove that for all v and w in V , (α(v), w) = (v, α∗(w)). Prove that if β is
any linear transformation on V satisfying (α(v), w) = (v, β(w)) for all v
and w in V , then β = α∗. As in the case of Euclidean spaces, α∗ is called
the adjoint of α.

21. A linear transformation α on a unitary space is called normal if αα∗ =
α∗α. Let a be an eigenvalue of a normal α, and let v be an eigenvector
belonging to a– that is, let α(v) = av. Prove that α∗(v) = āv. Thus,
prove that the conjugate of a is an eigenvalue of α∗, and that v is an
eigenvector of α∗ belonging to ā.

22. Let v be an eigenvector of the normal linear transformation α defined on
a unitary space V . Prove that

(Cv)⊥ = {w ∈ V : (v, w) = 0}

is invariant under α.

23. Let α be a normal linear transformation on the finite dimensional unitary
space V . Prove that there exists an orthonormal basis of V such that the
matrix of α relative to it is diagonal.

24. Let C be an n × n complex matrix such that CC∗ = C∗C; that is, C is
a normal matrix. Prove that there exists a unitary matrix U such that
U−1CU is diagonal. (Note that unitary matrices A satisfy AA∗ = A∗A.)

25. A linear transformation α on a unitary space V is called self-adjoint, or
Hermitian, if α = α∗. Prove that a self-adjoint α on a finite dimensional
space V has a real diagonal matrix relative to some orthonormal basis of
V . Prove that the eigenvalues of such an Hermitian linear transformation
are real.

26. Let C be a complex n × n matrix such that C = C∗. That is, cij = cji
for all entries cij of C. Prove that there is a unitary matrix U such that
U−1CU is diagonal, and that all the eigenvalues of C are real.
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27. Prove that a linear transformation α on a unitary space is Hermitian if
and only if (α(v), v) is real for all v in V .

28. Prove that a normal linear transformation is unitary if and only if its
eigenvalues are all of absolute value 1.

29. Prove that if α is a normal linear transformation, then α∗ is a polynomial
in α; that is, α∗ = p(α), where p(x) is in C[x].

30. Prove that if α and β are linear transformations on a unitary space, if β
is normal, and if αβ = 0, then αβ∗ = 0.



Chapter 6

Fields

6.1 Subfields and Extension Fields

A knowledge of fields is essential for almost any algebraic endeavor. We will
concentrate on the very basic notions, but will proceed far enough to show the
impossibility of “duplicating cubes,” of “trisecting angles,” and, more deeply,
of “solving by radicals”polynomials of degree greater than four. We thus have
two purposes– to present some of the notions of field theory, and to show how
these notions lead to the solution of some classical problems.
We begin by listing some examples of fields.

Example 6.1.1 a. The field Q of rational numbers;

b. the field R of real numbers;

c. the field C of complex numbers;

d. the field Z/pZ of integers modulo the prime p;

e. {a+ bi : a, b ∈ Q};

f. {a+ b(2)1/2 : a, b ∈ Q};

g. {a+ b(q)1/2 : a, b ∈ Q, q a fixed positive rational number};

h. the quotient field F (x) of the integral domain F [x] of all polynomials in x
with coeffi cients from a field F ;

i. Q[x]/(x2 + x+ 1);

j. (Z/2Z)[x]/(x3 + x+ 1);

k. F [x]/I, where I is any prime ideal in F [x].

237
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Any field F has a unique smallest subfield P , called the prime subfield of
F . It may be obtained by taking the intersection of all the subfields of F , or
alternately by taking the subfield generated by 1. If the integral multiples n · 1
of 1 are distinct in F , then the map

Z→ Z · 1 : n→ n · 1

is an isomorphism, and thus F contains a copy of the ring Z of integers and
hence of the field Q of rationals. It should be clear that in this case the prime
subfield of F is isomorphic to Q. Furthermore, if n · a = 0 for any a ∈ F , then
0 = n · a = (n · 1)a, so either a or n is zero. Therefore, the non-zero elements
of F all have infinite additive order. This is expressed by saying that F has
characteristic zero. If m · 1 = n · 1 with m 6= n, then (m − n) · 1 = 0, and
thus there is a smallest positive integer p such that p · 1 = 0. If p = qr with
1 ≤ q < p, then 0 = p · 1 = (qr) · 1 = (q · 1)(r · 1), whence r · 1 = 0, and r = p.
It follows that p is a prime. In this case, the map

Z→ Z · 1 : n→ n · 1

has kernel pZ. This is a ring homomorphism and is clearly onto. Thus Z · 1 ≈
Z/pZ, which is a field. Therefore Z·1 is the smallest subfield of F . For a non-zero
element a of F , p ·a = (p ·1)a = 0. Therefore the additive order of any non-zero
element of F is p. This is expressed by saying that F has characteristic p.

Theorem 6.1.2 The prime subfield of a field of characteristic 0 is isomorphic
to the field Q of rational numbers. The prime subfield of a field of prime char-
acteristic p is isomorphic to the field Z/pZ of integers modulo p.

If F is a subfield of a field K, then K is called an extension of F . In
particular, every field is an extension of its prime subfield. If K is an extension
of F , then K is, in particular, a vector space over F .

Definition 6.1.3 Let K be an extension of F . The dimension of K as a vector
space over F is denoted by [K : F ] and called the degree of the extension.

The vector space K over F may not have a finite basis, in which case we
have not really defined its dimension, and will just say that it is infinite. Our
real concern with degrees will be with finite ones. An extension of finite degree
is called a finite extension.
The field of complex numbers C is an extension of degree 2 of the field of

real numbers R. The set {1, i} is a basis of C as a vector space over R. For any
field F , the quotient field F (x) of F [x] is an extension of infinite degree of F .
The set {1, x, x2, x3, . . . } is linearly independent over F .
LetK be an extension of F . If a ∈ K, let F (a) denote the smallest subfield of

K containing F and a, and let F [a] denote the smallest subring of K containing
F and a. Note that F [a] is just the set of all polynomials c0 + c1a+ · · ·+ cna

n

in a with coeffi cients in F , and that F (a) is the field of quotients of F [a]. We
distinguish two principal kinds of elements a in the extension K of F– those
with [F (a) : F ] finite, and those with [F (a) : F ] not finite.
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Theorem 6.1.4 Let K be an extension of F and let a ∈ K. Then [F (a) : F ]
is finite if and only if a is a root of a non-zero polynomial in F [x].

Proof. Suppose that [F (a) : F ] = n. Then the family {1, a, a2, . . . , an} is
dependent. Thus there are ci in F , not all zero, such that Σni=0cia

i = 0. Hence
a is a root of the non-zero polynomial Σni=0cix

i in F [x].
Now suppose that a is a root of a non-zero polynomial in F [x]. The set of

all polynomials in F [x] of which a is a root is an ideal in F [x], and this ideal has
a unique monic generator p(x). If p(x) = q(x)r(x), then 0 = p(a) = q(a)r(a),
whence either q(a) or r(a) is zero. Therefore p(x) is prime in F [x]. The map

ϕ : F [x]→ F [a] : f(x)→ f(a)

is a ring homomorphism with kernel (p(x)). Hence F [x]/(p(x)) ≈ Im(ϕ). Since
p(x) is prime, F [x]/(p(x)) is a field. But Im(ϕ) = F [a]. Thus

F [x]/(p(x)) ≈ F [a] = F (a).

Let x+(p(x)) = y and let deg(p(x)) = n. It is trivial to check that {1, y, y2, . . .
, yn−1} is a basis of F [x]/(p(x)) over F . The map ϕ induces an isomorphism
between the vector spaces F [x]/(p(x)) and F (a) over F . Therefore [F (a) : F ] is
finite. In fact, {1, a, a2, . . . , an−1} is a basis of F (a) over F .

Definition 6.1.5 Let K be an extension of F . The element a in K is alge-
braic over F if it is a root of a non-zero polynomial in F [x]. The (unique)
monic polynomial in F [x] of smallest degree that a satisfies is the minimum
polynomial of a. Its degree is the degree of a over F . The extension K of F
is an algebraic extension if every element of K is algebraic over F .

Therefore the elements a of K that are algebraic over F are those that
generate finite extensions F (a) of F . In the proof of 6.1.4, we saw that if
[F (a) : F ] = n, then {1, a, . . . , an−1} is a basis of F (a) over F , n is the degree
of a over F , and F [a] = F (a).
Suppose that two elements a and b in K are algebraic over F . The elements

a + b, ab, and a−1 if a 6= 0 are also algebraic over F , but this is not exactly
obvious. We will show that the set of all elements of K which are algebraic over
F is a subfield of K. We need some important preliminaries.

Theorem 6.1.6 Let K be a finite extension of F , and let L be a finite extension
of K. Then [L : F ] = [L : K][K : F ]. In particular, L is a finite extension of
F .

Proof. The idea is simple. Let {a1, a2, . . . , am} be a basis of K over F ,
and let {b1, b2, . . . , bn} be a basis of L over K. We will show that

{ai · bj : i = 1, 2, , m; j = 1, 2, . . . , n}
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is a basis of L over F . Let c ∈ L. Then c = Σni=1eibi with ei ∈ K, and
ei = Σmj=1fijaj with fij ∈ F . Thus

c =

n∑
i=1

 m∑
j=1

fijaj

 bi =
∑
i,j

fijajbi.

Hence the set {aibj} generates L over F . We need it to be independent over F .
Suppose that Σi,jfijaibj = 0 with fij ∈ F . Then 0 = Σnj=1(Σmi=1fijai)bj , with
Σmi=1fijai ∈ K. Since {b1, . . . , bn} is independent over K, Σmi=1fijai = 0 for all
j. Since {a1, . . . , am} is independent over F , fij = 0 for all j. This completes
the proof.
Note that if F ⊂ K ⊂ L and [L : F ] = n is finite, then the degrees [K : F ]

and [L : K] divide n. In particular, if [L : K] is prime, then there are no fields
between L and K.

Theorem 6.1.7 Let K be an extension of F . Then the set of all elements of
K that are algebraic over F is a subfield of K.

Proof. Let a and b be in K and algebraic over F . Let b 6= 0. We need a+ b,
ab, and 1/b algebraic over F . This follows immediately from 6.1.6. We have

[F (a)(b) : F ] = [F (a)(b) : F (a)][F (a) : F ].

Both [F (a) : F ] and [F (a)(b) : F (a)] are finite, the latter because b is algebraic
over F and thus certainly over F (a). Thus [F (a)(b) : F ] is finite. Therefore
every element in F (a)(b) is algebraic over F . The elements a + b, ab, and 1/b
are in F (a)(b).
It should be clear that F (a)(b) = F (b)(a). This field is denoted F (a, b).

More generally, if {a1, a2, . . . , an} is any finite set of elements in K, where K is
an extension of F , then F (a1, a2, . . . , an) denotes the subfield of K generated
by F and the elements a1, a2, . . . , an.

Corollary 6.1.8 If K is an algebraic extension of F , and if L is an algebraic
extension of K, then L is an algebraic extension of F .

Proof. Let a be an element of L. We need [F (a) : F ] finite. The element
a satisfies a non-zero polynomial Σni=0aix

i in K[x]. The field F (a1, a2, . . . ,
an) = G is a finite extension of F , and G(a) is a finite extension of G. Therefore
[G(a) : F ] is finite. Since F (a) is a subfield of G(a), it follows that [F (a) : F ] is
finite.
At this point we are able to answer some classical questions concerning

constructions with ruler and compass. The key result is 6.1.6.
The real number a is called constructible if it belongs to a subfield K of

the field of real numbers such that K can be gotten from Q by a succession
of extensions of degree 2. Thus for K to be constructible, there must be fields
K0, K1, . . . , Kn such that K = Kn ⊃ Kn−1 ⊃ · · · ⊃ K1 ⊃ K0 = Q, with
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[Ki=1 : Ki] = 2, and a ∈ K. The degree of the extension K of Q is a power of 2,
but it is a special kind of extension. We will see the reason for the terminology
constructible in a moment.

Theorem 6.1.9 The set of constructible real numbers is a field.

Proof. Let a and b be constructible real numbers. Then there are fields F
and K with a ∈ F , b ∈ K, and appropriate fields Fi between F and Q and Ki

between K and Q. Let L be the subfield generated by F and K. Let

Fi = Q(a1, a2, . . . , ai)

with [Fi+1 : Fi] = 2 and Fn = F . Let Ki = Q(b1, b2, . . . , bi) with [Ki+1 : Ki] =
2 and Km = K. Let Fn+i = F (b1, b2, . . . , bi). Then [Fn+i+1 : Fn+i] is either
one or two. Thus the sequence

Q ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = F ⊂ Fn+1 ⊂ · · · ⊂ Fn+m = L

is one of successive extensions each of degree one or two. Since a± b and a/b (if
b 6= 0) are in L, the theorem follows.

Note that a constructible number has degree a power of 2 over Q.
Constructible numbers are numbers that can be constructed with ruler and

compass. What does this mean? Ruler and compass constructions are generally
done in elementary geometry courses. These are constructions done in a finite
number of steps, starting with only the unit segment (unless specifically stated
otherwise). To use the ruler means to regard as drawn the line determined
by two given points. To use the compass means to regard as drawn the circle
having a given point as center and the length of a given line segment as radius.
Ruler and compass constructions are carried out in the plane. For example, such
constructions as those of a perpendicular bisector of a given line segment, and of
a line through a given point parallel to a given line are no doubt familiar. Other
possible ruler (more appropriately, straight-edge) and compass constructions
are those of points partitioning a given segment into n equal segments, of line
segments of length equal to the sum, difference, product, or quotient of the
lengths of two given line segments. To say that a real number x is constructible
means that a line segment of length |x| is constructible. In particular, all rational
numbers are constructible. One can construct the square root of a given positive
real number. Thus square roots of positive rational numbers are constructible
with ruler and compass. Therefore, starting with the unit segment, we can
construct Q, and for any positive rational number x, we can construct x1/2.
Hence we can construct Q(x1/2). Similarly, we can construct Q(x1/2, y1/2) for
any other positive number y ∈ Q(x1/2). Thus we see that a real number r is
constructible (with ruler and compass) if r is in a field of real numbers obtainable
from Q by successive extensions of degree 2.
Suppose that we are given a field F of real numbers. What new numbers

are constructible from it with ruler and compass? We can draw all circles whose
centers have coordinates in F and whose radii are in F , and we can draw all
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lines determined by points whose coordinates are in F . The intersections of these
circles and lines given us new points, but each such new point has coordinates
in F (r1/2) for some positive real number r (depending on the point). This is not
particularly hard to show. Now from the F (r1/2) we can get additional fields
of the form F (r1/2, s1/2), and so on. The reader should be convinced at this
point that a real number is constructible according to our earlier definition if
and only if it is constructible with ruler and compass.
Now suppose that an angle θ is constructible with ruler and compass. This

means that starting with the unit segment and using ruler and compass con-
structions, two lines can be gotten intersecting at an angle θ. Then the num-
bers sin θ and cos θ are constructible. If the angle θ can be trisected, then the
length cos θ/3 is constructible. The angle 60o is constructible. If it could be
trisected, then cos 20o would be constructible. But the trigonometric identity
cos 3θ = 4 cos3 θ − 3 cos θ yields 1/2 = 4x3 − 3x, where x = cos 20o. Hence
8x3− 6x− 1 = 0. But the polynomial 8x3− 6x− 1 is irreducible over Q. Hence
x is of degree 3 over Q and so is not constructible. Therefore the angle 60o

cannot be trisected with ruler and compass. It is easy to find other angles that
cannot be trisected.
To duplicate the (unit) cube boils down to constructing a number x such

that x3 = 2, that is, constructing a cube whose volume is twice that of the unit
cube. But clearly 21/3 is not constructible. It is of degree 3 over Q.
To “square the circle”means to construct a square whose area is that of a

circle whose radius is 1, thus to construct a number x such that x2 = π. But π
is not algebraic over Q, whence one cannot “square the circle”. (To prove that
π is not algebraic over Q is a diffi cult matter, and we will not do it.)
The gist of the whole matter is that one cannot make ruler and compass

constructions that result in constructing real numbers that are not algebraic of
degree a power of 2 over Q.

PROBLEMS

1. Let K be an extension of F , and let a ∈ K. Prove that F [a] = F (a) if
and only if a is algebraic over F .

2. Let K be an extension of F , and let a and b be in K. Prove that F (a)(b) =
F (b)(a).

3. Let K be a finite extension of F , and let a and b be in K. Prove that
[F (a, b) : F ] ≤ [F (b) : F ][F (a) : F ].

4. Prove that if f(x) is irreducible over F [x] and [K : F ] is relatively prime
to deg(f(x)), then f(x) is irreducible over K[x].

5. Let F be a subfield of an integral domain K. Prove that if K has finite
dimension as a vector space over F , then K is a field.

6. Prove that the usual formula for the roots of a quadratic equation holds
for any field of characteristic not 2.
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7. Suppose that [K : Q] = 2. Prove that K = Q(
√
n), where n is a square-

free integer.

8. Let F be the quotient field of a principal ideal domain D of characteristic
not 2. Suppose that [K : F ] = 2. Prove that K = F (d1/2), where d is a
square-free element of D.

9. Suppose that the minimum polynomial of the number a over Q is x3 +
2x2−5x−1. Write (a5 + 2a−7)/(a2 + 4) in the form r0 + r1a+ r2a

2 with
ri ∈ Q.

10. Let K be a finite extension of F , and let a ∈ K with a 6= 0. Prove that
the map K → K : b → ab is a nonsingular linear transformation on the
vector space K over F , and that the minimum polynomial of this linear
transformation is the same as the minimum polynomial of a as an element
algebraic over F .

11. Find the minimum polynomial over Q of each of the following.

a. 1 + 21/2 b. 21/2 + 31/2; c. i+ 31/2

d. 31/3 + 91/3 e. 21/2 + 31/3

12. Prove that the order of a finite field is a power of a prime.

13. Prove that any two fields of order 4 are isomorphic.

14. Prove that any two fields of order 9 are isomorphic.

15. Let a1, a2, . . . , an+1 be distinct elements of the field F , and let b1, b2, . . .
, bn+1 be any elements of F . Prove that there is exactly one polynomial
f(x) in F [x] of degree n such that f(ai) = bi for all i.

16. Prove that the angles of 72o and of 60o are constructible, while the angle
of (360/7)o is not constructible.

17. Prove that a regular pentagon and a regular hexagon are constructible,
while a regular septagon is not constructible.

6.2 Splitting Fields

IfK is an algebraic extension of F , then an element a inK satisfies a polynomial
f(x) in F [x] of degree at least one. Conversely, given such a polynomial, is
there an algebraic extension K of F in which that polynomial has a root? The
existence of such a field is a fundamental fact of field theory.

Theorem 6.2.1 Let F be a field, and let f(x) be in F [x] and have degree at
least one. Then there is a finite extension K of F containing a root of f(x).
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Proof. Let p(x) be a prime factor of f(x). Then F [x]/(p(x)) is a field, and
it contains F via the embedding

F → F [x]/(p(x)) : a→ a+ (p(x)).

The desired field is K = F [x]/(p(x)). In the proof of 6.1.4, we observed that
[K : F ] = deg(p(x)). We need only that K contains a root of f(x). We will
show that it contains a root of p(x). Let p(x) = a0 + a1x+ · · ·+ anx

n. For K
to contain a root of p(x) means that there is an element k ∈ K such that

a0 + a1k + · · ·+ ank
n = 0.

The element x+ (p(x)) works. Indeed

a0 + a1(x+ (p(x))) + · · ·+ an(x+ (p(x)))n

= a0 + a1x+ · · ·+ anx
n + (p(x)) = 0.

Therefore, we may “adjoin a root”of a polynomial f(x) ∈ F [x] to F simply
by forming the field K = F [x]/(p(x)), where p(x) is any non-linear prime factor
of f(x). The field K, as a vector space over F , has basis

{1 + (p(x)), x+ (p(x)), , xn−1 + (p(x))},

and as an extension of F , K = F (x+ (p(x))). In K[x], p(x) has a linear factor.
Now adjoin a root of an irreducible non-linear factor of f(x) over K. Using
4.5.10, we arrive by iteration at a field L such that f(x) factors into linear
factors in L[x]. In other words, L “contains all the roots”of f(x), and in fact
is generated by F and those roots. By our construction, [L : F ] ≤ m!, where
m = deg(f(x)). Strictly speaking, the field L is not unique. However, it is as
unique as one can expect.

Definition 6.2.2 Let f(x) be a polynomial in F [x]. An extension K of F is a
splitting field of f(x) over F if f(x) factors into linear factors in K[x] and K
is generated by F and the roots of f(x).

Splitting fields are also called root fields. If K is a root field of f(x) ∈ F [x],
then f(x) = a(x− a1)(x− a2) · · · (x− an) in K[x], and K = F (a1, a2, . . . , an).
We know that every polynomial f(x) in F [x] has a splitting field. We want to
show that any two splitting fields of f(x) are essentially the same.

Let α : F → G be an isomorphism between the fields F and G. Then α
induces an isomorphism α : F [x]→ G[x] by

α(a0 + a1x+ · · ·+ anx
n) = α(a0) + α(a1)x+ · · ·+ α(an)xn.

If p(x) is a prime polynomial in F [x], then α(p(x)) is prime in G[x], and α
induces an isomorphism

α : F [x]/(p(x))→ G[x]/(α(p(x)))
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by α(f(x) + (p(x))) = α(f(x)) + (α(p(x))). In particular, α(x + (p(x))) =
x + (α(p(x))). We saw in the proof of 6.1.4 that if K is an extension of F ,
and if a is an element of K which is a root of p(x), then F (a) is isomorphic
to F [x]/(p(x)) via the mapping given by f(x) + (p(x)) → f(a). We can make
the analogous statement about G and α(p(x)). We have proved the following
theorem.

Theorem 6.2.3 Let α : F → G be an isomorphism between the fields F and G.
Let p(x) be a prime polynomial in F [x]. If a is a root of p(x) in an extension
of F , and if b is a root of α(p(x)) in an extension of G, then there is an
isomorphism β : F (a)→ G(b) such that α = β on F and β(a) = b.

Corollary 6.2.4 Let p(x) be prime in F [x]. If a and b are roots of p(x) in an
extension of F , then there is an isomorphism α : F (a) → F (b) such that α is
the identity on F and such that α(a) = b.

Proof. Let F = G and let α be the identity map in 6.2.3.

Theorem 6.2.5 Let α : F → G be an isomorphism, and let f(x) be in F [x].
If K is a root field for f(x) and if L is a root field of α(f(x)), then there is an
isomorphism β : K → L which agrees with α on F .

Proof. We will induct on the degree of f(x). If deg(f(x)) = 1, then take
β = α. Let p(x) be a prime factor of f(x). Let a be a root of p(x) in K, and let
b be a root of α(p(x)) in L. By 6.2.3, there is an isomorphism γ : F (a)→ G(b)
such that γ = α on F , and such that γ(a) = b. Write f(x) = (x − a)g(x) in
F (a)[x]. Now K is a splitting field for g(x) over F (a), and L is a splitting field
for α(g(x)) over G(b). Since deg(g(x)) < deg(f(x)), there is an isomorphism
β : K → L such that β agrees with γ on F (a). This completes the proof.

The following corollary is the result we are really after. In order to proceed
by induction, we were forced to prove the stronger result 6.2.5.

Corollary 6.2.6 Let f(x) ∈ F [x], and let K and L be splitting fields for f(x).
Then there is an isomorphism α : K → L such that α is the identity on F .

Let F be a field, and let f(x) be an element of F [x] of degree > 1. There
is an algebraic extension K of F such that in K[x], f(x) factors into a product
of linear factors. It is natural to wonder if there is an algebraic extension K
of F such that every such f(x) ∈ F [x] factors completely in K[x]. This is
indeed the case. In fact, there exists an algebraic extension K of F such that
every f(x) in K[x] of degree ≥ 1 factors into linear factors in K[x], and any
two such extensions of F are F -isomorphic, that is, if K and L are two such
extensions of F , then there is an isomorphism ϕ : K → L such that ϕ(a) = a
for all a ∈ F . A field K such that every f(x) ∈ K[x] of degree ≥ 1 factors
into a product of linear factors is said to be algebraically closed. This is
equivalent to every polynomial in K[x] of degree ≥ 1 having a root in K, and is
equivalent to K having no algebraic extensions. If K is an algebraic extension
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of F and if K is algebraically closed, then K is called an algebraic closure of
F . The classic example of an algebraically closed field is the field of complex
numbers. A proof that that field is algebraically closed is given in 7.6. A proof
of the existence of algebraic closures for arbitrary fields is a little beyond us at
this point. It involves the Axiom of Choice which we will not meet until the
appendix. However, we will now sketch a proof that a countable field has an
algebraic closure.
Recall that a set S is countably infinite if there exists a one-to-one map

f from the set of positive integers onto S, and is countable if it is finite or
countably infinite (1.3). For example, the field Q is countably infinite. Now
suppose that F is any countable field. Then F = {a1, a2, . . . , an} for some n,
or F = {a1, a2, . . . }. In either case, let Sm = {ai : i ≤ m}. There are finitely
many non-zero elements in F [x] of degree ≤ m with coeffi cients in Sm. Let
fm(x) be their product. Let F = F0, and for m ≥ 0, let Fm+1 be the root field
of fm+1(x) over Fm. We have the chain F0 ⊂ F1 ⊂ F2 ⊂ · · · . Let K = ∪mFm.
We assert that K is an algebraic closure of F . First, K is algebraic over F since
each Fm is algebraic over F . If k(x) ∈ K[x], then k(x) ∈ Fm[x] for some m.
Thus the roots of k(x) are algebraic over F , whence satisfy some polynomial
f(x) in F [x]. But f(x) divides some fp(x), whence the roots of k(x) are in Fp+1.
Therefore K is algebraically closed.
How unique is an algebraic closure of a countable field? Let K and L be

algebraic closures of the countable field F . Let f1(x), f2(x), . . . be the polyno-
mials in F [x] constructed earlier. Then f1(x) splits completely in K[x] and in
L[x], so that K and L contain root fields K1 and L1, respectively, of f1(x) over
F . By 6.2.5, there is an isomorphism ϕ1 : K1 → L1 fixing F elementwise. Now
f2(x) is in K1[x] and L1[x], and splits completely in K[x] and L[x], so that K
and L contain root fields K2 and L2 of f2(x) over K1[x] and L1[x], respectively.
By 6.2.5, there is an isomorphism ϕ2 : K2 → L2 extending ϕ1 : K1 → L1.
Continue this process. We get an isomorphism ϕ : ∪iKi → ∪iLi. Since K is
algebraic over F , K = ∪iKi, and similarly for L. Thus we have an isomorphism
ϕ : K → L which is the identity on F . We have proved the following theorem.

Theorem 6.2.7 A countable field has an algebraic closure. If K and L are
algebraic closures of a countable field F , then there is an isomorphism ϕ : K → L
fixing F elementwise.

The theorem is true with the countability hypothesis removed, as we shall
see in the appendix.
The algebraic closure of Q is the field of algebraic numbers. Finite ex-

tensions of Q are called algebraic number fields, or simply number fields.
They have an elaborate theory. Of particular interest is the set of all algebraic
numbers which satisfy a monic polynomial with integer coeffi cients. This turns
out to be a ring, the ring of algebraic integers. The algebraic integers in a
given algebraic number field are called the integers of that field.

A more detailed study of splitting fields is complicated by the existence of
irreducible polynomials of degree n that have fewer than n roots in their splitting
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fields. We need some information about them at this point. If K and L are
splitting fields of f(x), then from 6.2.6 it follows that f(x) factors into distinct
linear factors over K if and only if it so factors over L.

Definition 6.2.8 A polynomial of degree n is separable if it has n distinct
roots in its splitting field. A finite extension K of F is separable if every
element of K is a root of a separable polynomial in F [x]. Inseparable means
not separable.

There is an easy test for separability of polynomials. If f(x) is any poly-
nomial in F [x], we can take its (formal) derivative. For instance, if f(x) =
a0 + a1x+ · · ·+ anx

n, then

f ′(x) = a1 + a2x+ 2a3x
2 + · · ·+ nanx

n−1.

The usual rules for differentiation hold, and are easily verified. Here is the test
for separability.

Theorem 6.2.9 A polynomial f(x) over the field F is separable if and only if
f(x) and f ′(x) are relatively prime.

Proof. Since f(x) and f ′(x) are both in F [x], their greatest common divisor
in K[x] for any extension K of F is the same as their greatest common divisor
in F [x]. Let K be the root field of f(x), and write f(x) = c Πn

i=1(x − ai)ki in
K[x], with the ai distinct. We get

f ′(x) = c

n∑
i=1

ki(x− ai)ki−1
∏
i 6=j

(x− aj)kj
 .

If for some i, ki > 1, then x−ai is a common factor of f(x) and f ′(x). If ki = 1
for all i, then

f ′(ai) = c

∏
i 6=j

(ai − aj)

 6= 0,

so that f(x) and f ′(x) have no root, and hence no factor, in common.

Corollary 6.2.10 A prime polynomial f(x) is inseparable if and only if f ′(x) =
0. A prime polynomial over a field F of characteristic 0 is separable. A prime
polynomial over a field F of characteristic p is inseparable if and only if it is a
polynomial in xp.

Proof. If f ′(x) = 0, then f(x) and f ′(x) are not relatively prime, whence
f(x) is inseparable. If f(x) is inseparable, then f(x) and f ′(x) have a factor of
degree at least one in common. Since f(x) is prime, f(x) divides f ′(x). But
deg(f ′(x)) < deg(f(x)). Thus f ′(x) = 0. If F has characteristic 0 and f(x)
is prime, then f(x) has degree at least one, and hence f ′(x) 6= 0. If F has
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characteristic p and f(x) is prime, then it is apparent that f ′(x) = 0 if and only
if f(x) = g(xp).
It may not be clear that there exist prime inseparable polynomials. Here is

an example. Let P = Z/pZ be the field with p elements. Form the quotient
field K = P (y) of the polynomial ring P [y]. Let F be the subfield P (yp) of
K. The polynomial xp − yp ∈ F [x] is inseparable since its derivative is 0. In
K[x], xp − yp = (x − y)p . If xp − yp = f(x)g(x) is a non-trivial factorization
in F [x], then f(x) = (x − y)n for 0 < n < p. Therefore yn ∈ F . Now
F = P (yp) consists of quotients of polynomials in yp with coeffi cients in P .
Hence yn = h(yp)/k(yp) with h(yp) and k(yp) in P (yp), and so k(yp)yn = h(yp)
is in P [yp]. But 0 < n < p clearly makes this impossible. Therefore xp − yp is
prime in F [x], is separable, and has y as a root of multiplicity p in K.
We are in a position to use splitting fields to describe completely all finite

fields. We begin by noticing a few elementary properties that a finite field F
must have. The characteristic of F is a prime p. Hence F is a vector space of
finite dimension n over its prime subfield P of p elements. Therefore F has pn

elements. Let q = pn. Every element of F satisfies the polynomial xq − x in
P [x]. To see this, note that the multiplicative group F ∗ of non-zero elements
of F has q − 1 elements. Thus for a ∈ F ∗, aq−1 = 1, whence aq = a. Now 0
certainly satisfies xq − x. The polynomial xq − x has q roots in F , hence splits
completely in F . Therefore F is the root field of xq − x over the field P of p
elements. Any two such root fields are isomorphic by 6.2.5. We have shown
that there is at most one field of order pn (up to isomorphism).
To show that there is a finite field with pn = q elements, the natural thing

to do is to take the splitting field of xq − x over the field P of p elements. This
gets a field F , but conceivably it is too small. If a and b are roots of xq − x in
F , then

(a+ b)q − (a+ b) = aq + bq − a− b = 0,

and (ab)q − ab = aqbq − ab = 0, using the facts that the characteristic of P is
p, so that py = 0 for any y ∈ F , that aq = a, and that bq = b. Similarly, if
a 6= 0, then 1/a is a root of xq −x. Therefore the root field F of xq −x consists
entirely of roots of xq − x. If this polynomial has no multiple roots, then F has
q = pn elements. By 6.2.8, this is the case. Thus we have the following theorem
about finite fields.

Theorem 6.2.11 Let p be a prime, and let n be a non-negative integer. There
is, up to isomorphism, exactly one field with pn = q elements. That field is the
splitting field of the polynomial xq − x over the field of integers modulo p.

The multiplicative group of a finite field is cyclic. This is a special case of a
more general result that is just as easy to prove.

Theorem 6.2.12 A finite multiplicative subgroup of a field is cyclic.

Proof. Let G be a finite multiplicative subgroup of a field. If q is the largest
invariant factor of G, then xq = 1 for all x in G, so that xq−1 has o(G) roots in
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G. Since q ≤ o(G) and xq−1 has no more than q roots, it follows that q = o(G),
and that G is cyclic.
If F is any field of characteristic p, then

F → F : a→ ap

is an isomorphism of F onto its subfield of pth powers. If F is finite, this
map must be onto as well. Thus the following theorem is true.

Theorem 6.2.13 Let F be a finite field of characteristic p. Then the map
F → F : a → ap is an automorphism of F . In particular, every element of F
has a pth root.

Let F be a finite field, and let K be any finite extension of F . If K has
pn = q elements, then it is a root field of xq−x over F [x], and hence a separable
extension. If a is any generator of K∗, then k = F (a). Therefore any extension
of finite degree over a finite field F is a simple extension, that is, is of the form
F (a) for some a in the extension field. The key to this is the separability of the
extension.

Theorem 6.2.14 Let K be a finite separable extension of any field F . Then
K = F (a) for some a ∈ K.

Proof. Since K is a finite extension of F ,

K = F (a1, a2, . . . , an)

for some ai ∈ K. By induction, we may assume that K = F (a, b) for a and b
in K. Let f(x) be the minimum polynomial of a over F , and let g(x) be the
minimum polynomial of b over F . We will work in the root field L of f(x)g(x)
over K. Let a1, a2, . . . , am be the roots of f(x), and let b1, b2, . . . , bn be
the roots of g(x), with a = a1 and b = b1. Since K is separable, the bi are
distinct. We already observed that finite fields are simple extensions of any
subfield. Thus we may assume that F is infinite. Choose an element c in F
different from (ai − a1)/(b1 − bk), 1 ≤ i ≤ m, 1 < k ≤ n. Let d = a + bc. We
assert that K = F (d). Now f(d − cx) and g(x) have the root b in common.
Since d− cbk = a+ bc− cbk = ai implies that c = (ai − a1)/(b1 − bk), it is the
only root they have in common. Thus the greatest common factor of f(c− dx)
and g(x) is x− b. But f(d− cx) and g(x) are in F (d)[x]. Therefore so is their
greatest common divisor. Hence b ∈ F (d). Since b, c, and d are in F (d), so is
a = d− bc. Thus K ⊂ F (d). But d ∈ K implies that K = F (d), and our proof
is complete.
Notice that we really proved something stronger, namely that if K = F (a1,

a2, . . . , an) and if a2, a3, . . . , an are roots of separable polynomials, then K is
a simple extension of F . Just note that our proof shows that F (a1, a2) = F (d1)
for some d1 ∈ K. Hence K = F (d1, a3, . . . , an) with a3, . . . , an roots of
separable polynomials, and induction finishes the job. Note that even if a1
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were also separable, we do not know yet that F (a1, a2, . . . , an) is a separable
extension. That fact will not be available until 6.3.9.
This theorem simplifies the study of finite separable extensions K of a field

F , since K then has a basis of the form {1, a, a2, . . . , an−1} over F . We will
make good use of it in the next section.

Corollary 6.2.15 Any finite extension of a field of characteristic 0 is a simple
extension.

PROBLEMS

1. Find the degrees of the splitting fields of the following polynomials over
Q.
a. x2 − 1 b. x2 + 1 c. x2 − 2
d. x3 − 2 e. x3 − 3 f. x4 − 5
g. x4 − 4 h. x4 + x2 + 1 i. xp − 1, p a prime

2. Let K be an algebraic extension of F , and let f(x) ∈ K[x]. Prove that
there is a finite extension L of K such that in L[x], f(x) divides some
non-zero element of F [x].

3. Find the group of automorphisms of the fields Q(21/3), Q(21/2), and Q(i).

4. Let C be the algebraic closure of a field F , and let K be a field between
F and C. Prove that C is the algebraic closure of K.

5. Prove that if F is countable, then so is F [x].

6. Prove that the algebraic closure of a countable field is countable.

7. Prove that the usual rules for differentiation of polynomials hold. Thus
show that

(a) (f(x) + g(x))′ = f ′(x) + g′(x),

(b) (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x), and

(c) (f(x)n)′ = nf(x)n−1f ′(x).

8. Let f(x) be a polynomial over a field of characteristic 0. Let d(x) be the
greatest common divisor of f(x) and f ′(x). Prove that f(x)/d(x) has the
same roots as f(x), and that f(x)/d(x) is separable.

9. Prove that if F is a field with pn elements, then F contains a subfield with
pm elements if and only if m divides n.

10. Prove that if F and G are subfields of a finite field, and F ≈ G, then
F = G.

11. Determine the order of the automorphism F → F : a→ ap of a finite field
F of characteristic p.
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12. Prove that the derivative of a polynomial f(x) over a finite field F of
characteristic p is zero if and only if f(x) = (g(x))p for some g(x) ∈ F [x].

13. Let F be a field of characteristic p 6= 0. Prove that if F → F : a → ap is
not onto, then F has a finite inseparable extension.

14. Let K be an extension of the field F of characteristic p 6= 0. Let L = {a ∈
K : aq ∈ F for q some power of p}. Prove that L is a subfield of K.
Prove that [L : F ] is a power of p, if finite.

15. Prove that if K is a separable extension of F , and L is any field between
K and F , then K is a separable extension of L.

16. Let K be a finite extension of F , and let

{b1, b2, . . . , bn}

be a basis of K over F . For a ∈ K, let abi = Σnj=1aijbj . Prove that the
polynomial det(xIn− (aij)) is a multiple of the minimum polynomial of a
over F . Prove that it is a power of the minimum polynomial of a over F.

6.3 Galois Theory

Let K be an extension of F . Galois theory relates, in certain special cases,
extensions of F containing K with subgroups of the group of automorphisms of
K which fix F elementwise. It provides a way of reducing questions about fields
to questions about groups. The insolvability of quintic equations is proved via
Galois theory, for example. The subject is diffi cult, but it is important.
Let K be an extension of F . The set of automorphisms of K is a group under

composition of maps. Those automorphisms of K which fix F elementwise form
a subgroup of that group, and is denoted G(K/F ). It is called the group of
automorphisms of K over F , or the group of F -automorphisms of K.
We will also speak of F -automorphisms from an extension K of F into another
extension L of F . It is an isomorphism from K into L that fixes F elementwise.
If C is the field of complex numbers, and R is the field of real numbers, then

G(C/R) is the two element group, and G(C/Q) consists of all automorphisms
of C. If F is any field, and K = F (x1, x2, . . . , xn) is the field of quotients
of the ring F [x1, x2, . . . , xn] of all polynomials in the indeterminants xi with
coeffi cients in F , then any permutation of

{x1, x2, . . . , xn}

induces an automorphism of K which fixes F elementwise. On the other hand,
G(Q(21/3)/Q) has just one element. To see this, note that any automorphism
of Q(21/3) must fix 21/3 since 2 has only one real cube root. But every element
of Q(21/3) is of the form a+ b(21/3) + c(21/3)2, with a, b, and c in Q. Therefore
any automorphism that fixes Q elementwise, and fixes 21/3 must be the identity
automorphism.
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Let S be a subgroup of the group of all automorphisms of a field K. The
subfield K(S) = {a ∈ K : α(a) = a for all α ∈ S} is called the fixed field
of S. Note that indeed it is a subfield of K. If S is a subgroup of G(K/F ),
then K(S) contains F . In this case, we have associated with each subgroup S
of G(K/F ) a field between K and F . The subgroup {e} corresponds to K, and
G(K/F ) corresponds to some subfield of K containing F , but not necessarily
to F , as the extension Q(21/3) of Q testifies. The Fundamental Theorem of
Galois Theory asserts that in certain special cases, this association is a one-to-
one correspondence between the subgroups of G(K/F ) and the extensions of F
contained in K. Our goal is this fundamental theorem. The crux of the matter
is determining when the fixed field of G(K/F ) is F itself.
The following definition is a fundamental one.

Definition 6.3.1 An extension K of F is normal if it is algebraic and if every
irreducible polynomial in F [x] which has a root in K factors into linear factors
in K[x].

Thus if an irreducible polynomial f(x) ∈ F [x] has a root in the normal
extension K of F , then it has all its roots in K. Another way to put it is that K
contains a root field of any irreducible polynomial in F [x] of which it contains a
root. The precise connection between root fields and normal extensions is given
in the following theorem.

Theorem 6.3.2 A field K is a finite normal extension of a field F if and only
if it is the root field of some polynomial in F [x].

Proof. Let K be the root field of f(x) ∈ F [x]. Then K is a finite, and thus
an algebraic, extension of F . Suppose that an irreducible polynomial g(x) ∈
F [x] has a root a in K. Let L be a root field of g(x) over K, and let b be a root
of g(x) in L. Then there is an F -isomorphism α : F (a) → F (b) which takes a
to b. Further, K(a) and K(b) are root fields of f(x) and α(f(x)) = f(x) over
F (a)[x] and F (b)[x], respectively. Therefore, by 6.2.5, there is an isomorphism
β : K(a)→ K(b) extending α. But K(a) = K since a is in K. Since β fixes F
elementwise, β must permute the roots of f(x), which all lie in K and generate
K over F . Thus β(K) = K. Hence b ∈ K, and K is a normal extension of F.
Now suppose that K is a finite normal extension of F . Let K = F (a1, a2,

. . . , an), and let fi(x) be the minimum polynomial of ai over F . Then K is the
root field of Πn

i=1fi(x) over F .
The next lemma and its corollaries will dispose of many of the technical

details in proving the Fundamental Theorem of Galois Theory. One additional
notion is needed. Let a1, a2, . . . , an be elements of a field K. The elementary
symmetric polynomials in a1, a2, . . . , an are the coeffi cients of the polynomial
Πn
i=1(x+ ai) ∈ K[x]. For example, if n = 4, they are

1,

a1 + a2 + a3 + a4,
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a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4,

a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4,

and
a1a2a3a4.

For our purposes at the moment, the pertinent fact is this. If σ is any automor-
phism of K which induces a permutation of {a1, a2, . . . , an}, then σ fixes each
elementary symmetric polynomial in the ai’s. This should be obvious.

Lemma 6.3.3 Let G be a subgroup of the group of automorphisms of a field
K, and let F be the fixed field of G. Suppose that each element in K has only
finitely many images under G; that is, for each a ∈ K, the set {α(a) : α ∈ G}
is finite. Then K is a normal separable extension of F .

Proof. Let a ∈ K, and let a1, a2, . . . , an be the distinct images of a
under the automorphisms in G. One of them is a, of course. Each α ∈ G
permutes the set {a1, a2, . . . , an}. Therefore each α ∈ G fixes each coeffi cient
of f(x) = Πn

i=1(x − ai), whence f(x) must be in F [x]. Since the roots of f(x)
are the distinct elements a1, a2, . . . , an, f(x) is a separable polynomial, and
so K is a separable extension of F . To get K normal over F , let g(x) be an
irreducible polynomial in F [x] with a root a ∈ K. Using the notation above, we
see that g(x) divides f(x) since g(x) is the minimum polynomial of a over F ,
and a is a root of f(x) ∈ F [x]. The polynomial f(x) splits completely in K[x],
and thus so must g(x). Therefore K is normal over F .
It is useful to observe that the polynomial f(x) = Πn

i=1(x− ai) constructed
in the proof above is irreducible over F . Indeed, if f(x) = g(x)h(x) with g(x)
and h(x) non-units in F [x], and if ai is a root of g(x), then for some α ∈ G,
α(ai) is a root of h(x). But each automorphism of K which fixes F elementwise
must take roots of a polynomial over F into roots of that same polynomial. But
g(x) and h(x) have no roots in common since f(x) has no multiple roots. Hence
f(x) is prime in F [x].
There are two important cases when each element of K has only finitely

many images under G. If K is algebraic over F , each element a in K satisfies
its minimum polynomial f(x) ∈ F [x], and each element of G must carry a to a
root of f(x). Thus each element of K has only finitely many images under G.
The other case is when G itself is finite.

Corollary 6.3.4 Let G be a subgroup of the group of automorphisms of a field
K, and let F be the fixed field of G. If K is algebraic over F , then K is a
normal separable extension of F .

Corollary 6.3.5 Let G be a finite subgroup of the group of automorphisms of
a field K, and let F be the fixed field of G. Then

a. K is a finite normal separable extension of F,

b. [K : F ] = |G|, and
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c. G(K/F ) = G.

Proof. By 6.3.3, K is a normal separable extension of F . Therefore any
finite extension L of F contained in K is separable and hence simple. If L =
F (a), then the degree of the minimum polynomial of a over F is [L : F ]. But
the minimum polynomial of a is the polynomial f(x) constructed for a in 6.3.3,
which in our present case is of degree at most |G|. It follows that [K : F ] ≤ |G|.
Let K = F (a). Only the identity element of G fixes a. Therefore the set
of images of a under G is {α(a) : α ∈ G}, and has |G| elements. Thus the
polynomial f(x) = Πα∈G(x − α(a)) is the polynomial constructed for a in the
lemma, and is the minimum polynomial for a. Its degree on the one hand is |G|,
and on the other is [K : F ]. This proves (b). To prove (c), we note first that
|G(K/F )| ≤ [K : F ]. Since K = F (a), an F -automorphism of K is determined
by its effect on a, and there are only [K : F ] possible images for a, namely the
roots of the minimum polynomial of a over K, which has degree [K : F ]. Now
(c) follows from the inclusion G ⊂ G(K/F ).
Notice that we do not know yet that if K is a finite extension of F , then

G(K/F ) is a finite group. We need this fact.

Lemma 6.3.6 Let K be a finite extension of F . Then |G(K/F )| ≤ [K : F ]. In
fact, |G(K/F )| = [K : H], where H is the fixed field of G(K/F ).

Proof. By 6.3.4, K is a separable extension of the fixed field H of G(K/F ).
Thus K = H(a) for some a in K. Each element of G(K/F ) = G(K/H) is
uniquely determined by its action on a, and a can only go to other roots
of its minimum polynomial over H. Therefore G(K/F ) is finite. By 6.3.5,
|G(K/F )| ≤ [K : F ].
At this point we need a variant of 6.2.5.

Lemma 6.3.7 Let f(x) be a separable polynomial in F [x], and let α : F → K
be an isomorphism. If M is a root field of f(x) and if N is a root field of
α(f(x)), then there are [M : F ] extensions of α to an isomorphism β : M → N .

Proof. We induct on [M : F ]. If [M : F ] = 1, then the lemma is clear.
Let p(x) be a prime factor of f(x), and let a be a root of p(x) in M . There
are deg(p(x)) isomorphisms from F (a) into N extending α, one for each root
b of α(p(x)). Consider such a map β : F (a) → K(b). Now M is a root field
of the separable polynomial f(x) ∈ F (a)[x], and N is a root field of β(f(x)) ∈
K(b)[x]. By the induction hypothesis, there are [M : F (a)] extensions of β to
an isomorphism M → N . The result follows.

Now we are in a position to prove a basic theorem, which sums up much of
what we have done so far.

Theorem 6.3.8 Let K be a finite extension of F . Then the following are equiv-
alent.

a. K is a normal separable extension of F .
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b. K is the root field of a separable polynomial in F [x].

1. G(K/F )| = [K : F ].

2. The fixed field of G(K/F ) is F .

Proof. Assume (a). By 6.2.14, K = F (a) for some a ∈ K. The minimum
polynomial of a has all its roots in K since K is normal over F . Thus (a) implies
(b). By 6.3.7 applied to the identity map F → F , (b) implies (c). By 6.3.6, (c)
implies (d), and by 6.3.4, (d) implies (a).
The Fundamental Theorem of Galois Theory is now at hand. However, 6.3.8

enables us to establish two important properties of separability, and we digress
to do that. Suppose that K is any extension of a field F . It is a quite non-
obvious fact that the elements of K which are separable over F form a subfield
of K. To prove this fact, let a and b be elements of K which are separable over
F . Let f(x) and g(x) be the minimum polynomials of a and b, respectively.
If f(x) = g(x), then the root field N of f(x) over F is separable. If f(x) and
g(x) are distinct, then they are relatively prime, so the root field N of f(x)g(x)
over F is a separable extension of F by 6.3.8. In either case, N contains a
copy of F (a, b). Hence F (a, b) is separable over F . Therefore the elements of K
separable over F form a subfield Ks of K, called the separable closure of F in
K.
Now we will show that separability is transitive. Let K be a separable

extension of F , and let L be a separable extension of K. Let Ls be the separable
closure of F in L. It clearly contains K, so L is separable over Ls. We need
L = Ls. Let a be an element of L, and let f(x) be its minimum polynomial
over F . If f(x) is not separable, then f(x) = f1(xp), and f1(x) is the minimum
polynomial of ap over F . If f1(x) is not separable, then f1(x) = f2(xp), and
f2(x) is the minimum polynomial of aq over F , where q = p2. Continuing, there
is a smallest integer e such that if q = pe, then aq is separable over F . Now
aq ∈ Ls, and a satisfies (x − a)q = xq − aq ∈ Ls[x]. Therefore its minimum
polynomial over Ls must divide xq − aq. But a is separable over Ls, so its
minimum polynomial over Ls has distinct roots. It follows that its minimum
polynomial is x − a, so that a is in Ls, and L = Ls, as desired. We have the
following theorem.

Theorem 6.3.9 The following hold for a field F .

a. If K is an extension of F , then the set of elements of K which are separable
over F is a subfield of K.

b. If K is a separable extension of F , and if L is a separable extension of K,
then L is a separable extension of F .

Definition 6.3.10 A Galois extension of a field F is a finite normal sepa-
rable extension K of F . In this case, G(K/F ) is called the Galois group of K
over F . If f(x) ∈ F [x] is separable, then the root field K of f(x) over F is a
Galois extension, and G(K/F ) is called the Galois group of f(x) over F .



256 CHAPTER 6. FIELDS

Note that if K is a Galois extension of F , and if L is any field between K
and F , then K is a Galois extension of L.

Theorem 6.3.11 (The Fundamental Theorem of Galois Theory) Let K
be a Galois extension of F . Then

L→ G(K/L)

is a one-to-one correspondence between the subfields L between K and F and the
subgroups of G(K/F ). The extension L of F is normal if and only if G(K/L)
is a normal subgroup of G(K/F ). In this case, G(L/F ) ≈ G(K/F )/G(K/L).

Proof. Since K is a Galois extension of any L between K and F , L is the
fixed field of G(K/L) by 6.3.8. Thus L → G(K/L) is one-to-one. If S is a
subgroup of G(K/L), then by 6.3.5, S = G(K/F (S)), where F (S) is the fixed
field of S. Thus our correspondence L→ G(K/F ) is also onto.

Suppose that L is a normal extension of F . Since L is a simple extension
F (a) of F , for α ∈ G(K/F ), α(a) must be a root of the minimum polynomial of
a. All those roots lie in L since L is normal. Therefore L is mapped into itself
by every element of G(K/F ). Since L is a finite dimensional vector space over
F , every element of G(K/F ) induces an automorphism of L. We then have a
homomorphism G(K/F )→ G(L/F ), namely the restriction to L. The kernel of
this mapping is clearly G(K/L), so G(K/L) is a normal subgroup of G(K/F ).
If G(K/L) is a normal subgroup of G(K/F ), then |G(K/F )/G(K/L)| = [K :

F ]/[K : L] = [L : F ], and it follows that G(K/F )→ G(L/F ) is an epimorphism
since |G(L/F )| ≤ [L : F ] by 6.3.6. Thus G(K/F )/G(K/L) ≈ G(L/F ), and
|G(L/F )| = [L : F ]. By 6.3.8, L is a normal extension of F , and this completes
the proof.
To illustrate the theory, we will compute the Galois group of the polynomial

X3 − 5 over the field Q of rational numbers. So let K be the root field over
Q of x3 − 5. The roots are 51/3, ω51/3, and ω251/3, where ω is the cube root
(1 + i31/2)/2 of 1. Since [Q(51/3) : Q] = 3, and Q(51/3) does not contain ω
or ω2, and since [K : Q] ≤ 6, it follows that [K : L] = 6. Since G(K/Q) is
a subgroup of permutations of {51/3, ω51/3, ω251/3}, and since G(K/Q) has
6 elements, it must be the group of all permutations of these roots of x3 − 5.
Thus G(K/Q) is S3, the symmetric group on 3 objects. This group has one
non-trivial normal subgroup, the alternating group A3. This normal subgroup
corresponds to the normal extension Q(ω), which is the root field over Q of the
polynomial x2 +x+ 1. There are three subgroups of G(K/Q) of order 2. These
correspond to the extensions Q(51/3), Q(ω51/3), and Q(ω251/3). It is easy to
check that these three extensions are distinct.
In any field F , an nth root of 1 is primitive if it is not an mth root of 1

for 0 < m < n. For example, in the field of complex numbers, −1 is a primitive
second root of 1, (1 + i31/2)/2 is a primitive cube root of 1, i is a primitive 4th
root of 1, −1 is not a primitive 4th root of 1, and iω is a primitive 12th root of
1. The primitive nth roots of 1 are precisely the generators of the multiplicative
group of all nth roots of 1, and are in one-to-one correspondence with the



6.3. GALOIS THEORY 257

positive integers less than and prime to n, or equivalently, to the multiplicative
units in Z/nZ. We will find the Galois group of the root field K of x8 − 1 over
Q. First, note that K = Q(a), where a is any primitive 8th root of 1. Thus any
element of G(Q(a)/Q) is determined by its effect on a. The element a can be
taken precisely to the roots of the minimum polynomial of a over Q. What is
this polynomial? It must divide x8− 1 = (x− 1)(x+ 1)(x2 + 1)(x4 + 1). Clearly
all the primitive 8th roots of 1 are roots of x4 + 1, and x4 + 1 is irreducible
over Q (8.2, Problem 9.). Hence the minimum polynomial of a is x4 + 1, and
so G(Q(a)/Q) has four elements. But there are two groups with four elements.
Which is it? The four primitive 8th roots of 1 are a, a3, a5, and a7, and the four
elements of G(Q(a)/Q) are 1, α, β, and γ characterized by 1(a) = a, α(a) = a3,
β(a) = a5, and γ(a) = a7. Thus G(Q(a)/Q) is isomorphic to the group {1,
3, 5, 7} with multiplication being ordinary multiplication modulo 8. In other
words, it is isomorphic to the group (Z/8Z)∗ of units of Z/8Z. Every element
of this group except the identity has order 2, whence the group is the direct
product of two groups of order 2. Since it is Abelian, every field between Q
and Q(a) is a normal extension of Q. Our group G(Q(a)/Q) has three non-
trivial subgroups, so that there are three fields between Q(a) and Q. What
are they? Above, a was any primitive 8th root of 1. The primitive 8th roots
of 1 are the four numbers ±(21/2 ± i21/2)/2. It is easy to see that the three
intermediate fields are Q(i), Q(21/2), and Q(i21/2). These are distinct fields,
and there are only three such. To which subgroups of G(Q(a)/Q) do they
correspond? Letting a = (21/2 + i21/2)/2, we have a3 = (−21/2 + i21/2)/2,
a5 = (−21/2 − i21/2)/2 = −a, and a7 = (21/2 − i21/2)/2 = −a3. Again, letting
α, β, and γ be characterized by α(a) = a3, β(a) = −a, and γ(a) = −a3, we
see that α(a + a3) = a + a3, β(a2) = (−a)2 = a2, and γ(a − a3) = a − a3.
Thus the subgroup {1, α} fixes a + a3 = i21/2 and hence corresponds to the
extension Q(i21/2), the subgroup {1, β} fixes a2 = i and hence corresponds
to the extension Q(i), and the subgroup {1, γ} fixes a − a3 = 21/2 and hence
corresponds to the extension Q(21/2).

There are some features of the example above which merit attention. All
the primitive 8th roots of 1 have the same minimum polynomial over Q. That
minimum polynomial was Π4

i=1(x− ai), where ai ranged over the primitive 8th
roots of 1. In particular, this product has rational coeffi cients and is irreducible
over Q. It even has integer coeffi cients. The Galois group of the splitting field
of x8−1 was isomorphic to the group units of Z/8Z, which is an Abelian group.
These facts prevail for any n, as we will now see.

Let F be a field of characteristic 0 containing the nth roots of 1. Since F
has characteristic 0, the polynomial xn− 1 is separable, and so there are n nth
roots of 1. Let ϕn(x) be the polynomial in F [x] which has as its roots the
primitive nth roots of 1. Thus ϕn(x) = Π

ϕ(n)
i=1 (x− ωi), where the ωi range over

the primitive nth roots of 1. The function ϕ(n) is Euler’s ϕ-function. It is
the number of positive integers less than n and prime to n; equivalently, ϕ(n)
is the number of primitive nth roots of 1. Our first goal is to show that ϕn(x)
is irreducible over Q[x]. The polynomial ϕn(x) is called the nth cyclotomic



258 CHAPTER 6. FIELDS

polynomial. We need a lemma.

Lemma 6.3.12 Let f(x) be a monic polynomial with integer coeffi cients. Let
f(x) = g(x)h(x) in Q[x] with g(x) and h(x) monic. Then g(x) and h(x) are in
Z[x].

Proof. Let a and b be the smallest positive integers such that ag(x) = m(x)
and bh(x) = n(x) are in Z[x]. We have abf(x) = m(x)n(x). Let m(x) =
Σri=0aix

i, and let n(x) = Σsi=0bix
i. Note that gcd{a0, a1, . . . , ar} = gcd{b0,

b1, . . . , bs} = 1. If ab = 1, there is nothing to do. Otherwise, let p be a prime
dividing ab. Let i and j be the smallest indices such that p does not divide ai
and bj , respectively. Now p must divide the coeffi cient . . . ai−2bj+2 +ai−1bj+1 +
aibj + ai+1bj−1 + . . . of xi+j , and it divides every term except aibj . Therefore
ab = 1, and the lemma is proved.

This lemma is a classic. We will treat factorizations of polynomials over
certain integral domains in Chapter 8.

Theorem 6.3.13 The nth cyclotomic polynomial ϕn(x) is in Z[x] and is irre-
ducible over Q[x].

Proof. Let ω be a primitive nth root of 1, and let f(x) be its minimum
polynomial overQ. Let p be a prime not dividing n, and let g(x) be the minimum
polynomial over Q of the primitive nth root ωp. By the lemma above, f(x) and
g(x) are in Z[x]. If f(x) 6= g(x), then they are relatively prime in Q[x], and
hence have no roots in common. They both divide xn − 1 = f(x)g(x)h(x),
with h(x) ∈ Z[x] also. The polynomial g(xp) has ω as a root, whence g(xp) =
f(x)k(x), again with k(x) ∈ Z[x]. Now view the equalities

xn − 1 = f(x)g(x)h(x), and g(xp) = f(x)k(x)

modulo p. That is, regard the polynomials in (Z/pZ)[x]. Operating modulo
p, we have g(xp) = g(x)p = f(x)k(x), and any prime factor q(x) of f(x) must
divide g(x), whence q(x)2 must divide xn − 1 = f(x)g(x)h(x). Hence xn − 1
has multiple roots. But xn − 1 and nxn−1 are relatively prime since p does not
divide n. Therefore, back in Q[x] we have f(x) = g(x).
Now let ωm be any primitive nth root of 1. Then m = p1p2 · · · pt, with the pi

prime and prime to n. By what we just did, the minimum polynomial of ωp1 is
f(x). But then for the same reason, the minimum polynomial of ωp1p2 is f(x).
It follows that f(x) is the minimum polynomial over Q of all the primitive nth
roots of 1. Thus f(x) divides ϕn(x) in Z[x]. But the degree of f(x) is at least
as great as that of ϕn(x), and hence ϕn(x) = f(x). Our theorem is proved.

The previous theorem enables us to compute the Galois group over Q of
ϕn(x), or equivalently of xn − 1.

Theorem 6.3.14 The Galois group over Q of the nth cyclotomic polynomial
ϕn(x) is isomorphic to the group of units in the ring Z/nZ. In particular, it is
Abelian and has order ϕ(n).
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Proof. Let K be a root field of ϕn(x) over Q, and let ω be a primitive
nth root of 1. Then K = Q(ω), and if σ ∈ G(K/Q), then σ(ω) = ωi, where
0 < i < n and (i, n) = 1. Since ϕn(x) is the minimum polynomial of ω over Q,
there is a σ ∈ G(K/Q) for each such i. It is now completely routine to check
that σ → i gives the desired isomorphism.

The proof above works with Q replaced by any field F of characteristic 0,
except that ϕn(x) may not be irreducible over F and hence the map σ → i may
not be onto. Thus we have

Theorem 6.3.15 Let F be any field of characteristic 0. The Galois group of
xn − 1 over F is isomorphic to a subgroup of the group of units of Z/nZ. In
particular, it is Abelian.

An extension K of F is called Abelian if G(K/F ) is Abelian. Similarly
one speaks of cyclic extensions. Abelian extensions and cyclic extensions are
classical topics of study in algebraic number theory. The previous theorems and
the following one barely scratch the surface of these important subjects.

Theorem 6.3.16 Let F be a field of characteristic 0 which contains all the nth
roots of 1, and let a ∈ F . Then the Galois group of xn−a over F is isomorphic
to a subgroup of the additive group of Z/nZ. In particular, it is cyclic, and if
xn − a is irreducible, it is cyclic of order n.

Proof. Let K be a root field of xn − a over F . If K 6= F , then let bn = a
with b ∈ K and b /∈ F . Let ω be a primitive nth root of 1. Then the roots of
xn − a are the distinct elements b, bω, bω2, . . . , bωn−1. Therefore K = F (b),
and the elements of G(K/F ) are determined by their effect on b. Let σ and τ
be in G(K/F ). Then σ(b) = bωi and τ(b) = bωj for unique integers satisfying
0 ≤ i < n and 0 ≤ j < n. Hence

στ(b) = σ(bωj) = σ(b)σ(ωj) = bωiωj = bωi+j .

It follows that associating σ with i is a monomorphism from G(K/F ) into the
additive group of integers modulo n, as we needed to show.

Corollary 6.3.17 Let F be a field of characteristic 0, let p be a prime, let F
contain the pth roots of 1, and let a ∈ F . Then xp − a is either irreducible or
splits completely over F . If xp − a is irreducible over F , then its Galois group
over F is cyclic of order p.

Proof. The Galois group of xp − a is either cyclic of order p or 1 by 6.3.16.
The corollary follows.

PROBLEMS

1. Prove that the root field of a separable polynomial is the root field of an
irreducible separable polynomial.
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2. Prove that the Galois group of a polynomial of degree n has order dividing
n!.

3. Prove that K is a finite normal extension of F if and only if for any
extension L of K, every element of G(L/F ) induces an automorphism of
K.

4. Prove that if K is a finite normal extension of F , if F ⊂ L ⊂ K, and if α is
an F -isomorphism of L into K, then α is induced by an F -automorphism
of K.

5. Prove that if K is a normal extension of F and if α is an F -isomorphism
of K into itself, then α is an F -automorphism of K.

6. Let K be a finite extension of F . Prove that there is a (finite) normal
extension N of F containing K such that if M is any normal extension
of F containing K, then there is a K-isomorphism of N into M . The
extension N of F is called a normal closure of the extension K of F .
Prove that any two normal closures of K over F are K-isomorphic.

7. Let K be a Galois extension of F , let α ∈ G(K/F ), and let L and
M be fields between K and F . Prove that α(L) = M if and only if
αG(K/L)α−1 = G(K/M). (That is, prove that L and M are “conjugate”
subfields if and only if G(K/L) and G(K/M) are conjugate subgroups.)

8. Prove that the Galois group G(K/F ) of a separable polynomial f(x) ∈
F [x] is transitive on the roots of f(x) if and only if f(x) is irreducible in
F [x].

9. Prove that if K is a finite separable extension of F , then the number of
fields between K and F is finite.

10. Prove that K(51/3) is the root field of x3 − 5 over the field K = Q(i31/2).

11. Find the Galois group of the polynomials

(a) x3 − 3(b)x4 − 2(c)x3 + 2x+ 1

(b) x4 + x2 + 1(e)x6 − 1(f)x12 − 1

(c) x5 − 1

over the field Q. In each case, make explicit the correspondence between
subgroups and intermediate extensions, and determine which are normal.

12. Prove that xn − 1 = Πd|nϕd(x). Prove from this fact that for all n,
ϕn(x) ∈ Z[x].

13. Calculate ϕn(x) for n ≤ 12.

14. Let F be a field of prime characteristic p, and let n be a positive integer
prime to p. Prove that there are primitive nth roots of 1 in some extension
of F .
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15. Prove that if p is prime, then the Galois group of xp−1 over Q is cyclic of
order p−1. Prove that the Galois group of xp−a over Q is not necessarily
Abelian.

16. Let p be a prime. Let F ⊂ L ⊂ K with G(K/F ) and G(L/F ) cyclic of
orders pn and pn−1, respectively. Prove that if K = L(a), then K = F (a).

17. Let F be a field of characteristic 0, and let xn − a ∈ F [x]. Prove that if
xn − a has a factor in F [x] of degree prime to n, then xn − a has a root
in F .

18. Let x be an indeterminate, and let y ∈ F (x). Prove that F (x) = F (y) if
and only if there exist elements a, b, c, d ∈ F such that ad − bc 6= 0 and
such that y = (ax+ b)/(cx+ d). Find G(F (x)/F ).

6.4 Solvability by Radicals

To simplify our discussion somewhat, we will assume throughout this section
that all our fields have characteristic 0. First, we make precise the notion of
“solving by radicals.” Let f(x) ∈ F [x]. If f(x) is linear, its roots are in F . If
f(x) is quadratic, then its roots lie in a radical extension K of F , that is, in
a field K such that K = F (a) where an ∈ F for some positive integer n. In
fact, if f(x) = ax2 + bx+ c with a 6= 0, then the roots are given by the familiar
expression (−b±(b2−4ac)1/2)/2a, whence the roots lie in K = F ((b2−4ac)1/2),
and (b2 − 4ac) ∈ F . If f(x) is cubic, then it can be shown that its roots lie in
a field K that can be gotten from F by two successive radical extensions. This
means that K is a radical extension of a radical extension of F . The standard
formulas for the roots of cubics bear this out. A similar statement is true if
f(x) is a quartic. The roots of f(x) lie in a field that can be gotten from F
by a succession of radical extensions. A classic theorem proved by Abel around
1821 asserts that this is not necessarily true if f(x) is of degree five or higher.
Galois theory, introduced by Galois around 1830, elucidates this phenomenon
by providing a condition on the Galois group of f(x) that is decisive for the
solution of f(x) by radicals.

Definition 6.4.1 Let f(x) ∈ F [x]. Then f(x) is solvable by radicals over
F if there is a finite sequence

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn

of fields with each Fi a radical extension of Fi−1, and with Fn containing the
root field of f(x) over F .

If f(x) is not solvable by radicals, then in particular there is no formula
expressing the roots of f(x) in terms of various roots of rational functions of the
coeffi cients of f(x). For any polynomials of degree less than five, such formulas
exist, but not for arbitrary polynomials of degree five or greater.
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The condition on the Galois group of f(x) that is decisive for the solvability
of f(x) by radicals follows.

Definition 6.4.2 A group G is solvable if it has a sequence of subgroups 1 =
G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = G such that each Gi is normal in Gi+1 and such
that Gi+1/Gi is Abelian.

In particular, every Abelian group is solvable. A deep theorem only recently
proved (Feit and Thompson, 1963) asserts that every group of odd order is
solvable. However, the alternating groups An with n ≥ 5 are simple, and since
such An are non-Abelian, they are not solvable.
One should note that if G is finite and solvable, then there is a sequence

of subgroups 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi is normal in Gi+1,
and such that Gi+1/Gi is cyclic of prime order. Indeed, if Gi+1/Gi is Abelian
and has more than one element, then it has a subgroup H/Gi of prime order.
The subgroup H is normal in Gi+1, and by induction, there is a finite chain
H = H0 ⊂ H1 ⊂ · · · ⊂ Hr = Gi+1 with Hi normal in Hi+1 and with Hi+1/Hi

cyclic of prime order. The rest should be clear. Therefore, in the case G is
finite, the condition in 6.4.1 that Gi+1/Gi be Abelian could be replaced by
the condition that Gi+1/Gi be cyclic of prime order (or simply cyclic, if one
preferred).
Our goal is to show that f(x) ∈ F [x] is solvable by radicals over F if and

only if the Galois group of f(x) over F is solvable. Keep in mind that our
fields all have characteristic 0. First we record some basic properties of solvable
groups.

Theorem 6.4.3 Subgroups and quotient groups of solvable groups are solvable.
If N is a normal subgroup of G and if N and G/N are solvable, then G is
solvable.

Proof. Let S be a subgroup of the solvable group G. There is a chain 1 =
G0 ⊂ G1 ⊂ · · · ⊂ Gn = G of subgroups Gi of G such that Gi is normal in Gi+1

and Gi+1/Gi is Abelian. Let Si = S ∩Gi. Then 1 = S0 ⊂ S1 ⊂ · · · ⊂ Sn = S is
such a chain for S. Indeed, if x ∈ Si+1 and y ∈ Si, then xyx−1 ∈ S since x and
y are both in S, and xyx−1 ∈ Gi since x ∈ Gi+1, y ∈ Gi, and Gi is normal in
Gi+1. Hence Si is normal in Si+1. The map Si+1/Si → Gi+1/Gi : xSi → xGi
is a monomorphism, whence Si+1/Si is Abelian and S is solvable.
Now let G/N be a factor group of the solvable group G. In a similar vein,

one can verify that G0N/N ⊂ G1N/N ⊂ · · · ⊂ GnN/N satisfies the conditions
necessary to make G/N solvable.
Suppose that N is a normal subgroup of G and that N and G/N are solvable.

Then there are the usual chains of subgroups 1 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = N ,
and

1 = N/N ⊂ G1/N ⊂ · · · ⊂ Gs/N = G/N

of N and G/N . It is completely routine to check that the chain of subgroups
1 = N0 ⊂ N1 ⊂ · · · ⊂ Nr ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gs = G has the requisite
properties.
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The following lemma eases our work a bit.

Lemma 6.4.4 Let f(x) ∈ F [x] be solvable by radicals over F . Then there is
a finite sequence F = F0 ⊂ F1 ⊂ · · · ⊂ Fn of fields with each Fi a radical
extension of Fi−1 and a normal extension of F , and with Fn containing the root
field of f(x) over F .

Proof. By the definition of f(x) being solvable by radicals over F , there is
a chain F = F1 ⊂ F2 ⊂ · · · ⊂ Fn with Fi = Fi−1(ai), with a

ri
i ∈ Fi−1, and with

Fn containing a root field of f(x) over F . If ri = rs, then Fi = Fi−1(ari )(ai),
ari ∈ Fi−1(ari ), and (ari )

s = ari ∈ Fi−1. Hence we may suppose that the ri
are prime numbers. Let m = Πn

i=1ri, and let K0 be the root field of xm − 1
over F . For i ≥ 1, let Ki = Ki−1(ai). By 6.3.17, each extension in the chain
F ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Kn is a normal radical extension, and the lemma is
proved.

Theorem 6.4.5 Let F be a field of characteristic 0, and let f(x) ∈ F [x]. Then
f(x) is solvable by radicals over F if and only if the Galois group of f(x) over
F is solvable.

Proof. Let f(x) be solvable by radicals over F . Let F ⊂ K0 ⊂ K1 ⊂ · · · ⊂
Kn be the chain constructed in the proof of 6.4.4. Consider the chain of groups

1 = G(Kn/Kn) ⊂ G(Kn/Kn−1) ⊂ · · · ⊂ G(Kn/K0) ⊂ G(Kn/F ).

Each subgroup is normal in the next since each extensionKi+1 ofKi andK0 of F
is normal. For i ≥ 0, G(Kn/Ki)/G(Kn/Ki+1) is isomorphic to G(Ki+1/Ki) by
part of the Fundamental Theorem of Galois Theory (6.3.11), and G(Ki+1/Ki) is
Abelian by 6.3.17. Similarly, G(Kn/F )/G(Kn/K0) is isomorphic to G(K0/F ).
By 6.3.15, G(K0/F ) is Abelian. It follows from 6.4.3 that G(Kn/F ) is solvable.
The root field K of f(x) over F lies between F and Kn, and is normal over F .
By the Fundamental Theorem (6.3.11), the Galois group G(K/F ) of f(x) over
F is isomorphic to G(Kn/F )/G(Kn/K), and by 6.4.3, this quotient is solvable.
Hence the Galois group of f(x) over F is solvable.

The proof of the converse is a little complicated. In order not to lose sight
of it, we put the essence of the matter in the following lemma.

Lemma 6.4.6 Let K be a normal extension of F of prime degree p, and let F
contain all the pth roots of 1. Then K is a radical extension of F .

Proof. Let ω be a pth root of 1 with ω 6= 1. Let K = F (a), let σ generate
G(K/F ), and for 0 ≤ i < p, consider the quantities

ai = a+ ωiσ(a) + (ω2)iσ2(a) + · · ·+ (ωp−1)iσp−1(a).

We have σ(ai) = ω−iai. Therefore σ(api ) = (ω−i)papi = api , whence a
p
i is in F .

Noting that Σp−1
j=0(ωi)j = 0 for 0 < i ≤ p − 1, because ω satisfies 1 + x + x2 +
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· · · + xp−1 = 0, we get (1/p)Σp−1
i=0 ai = a. Since a is not in F , some ai is not in

F . For that i, K = F (ai), and a
p
i ∈ F . Our lemma is proved.

Now we will reduce the remaining half of the proof of 6.4.5 to the situation
in Lemma 6.4.6. So suppose that the Galois group of f(x) over F is solvable.
Let K be the root field of f(x) over F , and let [K : F ] = n. Let N be the root
field of xn − 1 over K. We have F ⊂ K ⊂ N , G(N/K) Abelian, and hence
solvable, G(N/K) normal in G(N/F ), and G(K/F ) solvable by hypothesis. By
6.4.3, G(N/F ) is solvable. Since G(K/F ) is solvable and finite, there is a chain
of fields F = F0 ⊂ F1 ⊂ · · · ⊂ Fr = K such that each Fi+1 is a normal
extension of Fi, and such that G(Fi+1/Fi) is cyclic of prime order pi. Each
Fi+1 is the root field of some polynomial fi(x) ∈ Fi[x]. The root field of xn − 1
over F is contained in N . Let K0 be this root field, and for i ≥ 0, let Ki+1

be the root field in N of fi(x) over Ki. If an element of G(Ki+1/Ki) fixes
elementwise the roots of fi(x), then it is the identity. Therefore the restriction
of an element of G(Ki+1/Ki) to Fi+1 is an element of G(Fi+1/Fi). This gives
rise to a homomorphism G(Ki+1/Ki)→ G(Fi+1/Fi). An element in the kernel
of this homomorphism fixes the roots of fi(x), and hence fixes Ki+1. Therefore
we have a monomorphism G(Ki+1/Ki) → G(Fi+1/Fi). Since |G(Fi+1/Fi)| is
prime, it follows that [Ki+1 : Ki] = pi or 1. The extension K0 of F is a radical
extension, and K0 contains all the pith roots of 1. We need the extension Ki+1

of Ki to be radical. That was the purpose of 6.4.6.
In order to show that not every polynomial is solvable by radicals, it suffi ces

to find one whose Galois group is not solvable. For n ≥ 5, the symmetric groups
Sn are not solvable since the normal subgroups An are simple and non-Abelian.

Theorem 6.4.7 For every positive integer n, there is a field F and a polynomial
f(x) ∈ F [x] of degree n whose Galois group over F is the symmetric group Sn.

This theorem will be a consequence of the following discussion which involves
symmetric polynomials, and which is of interest in its own right.
Let F be a field, and adjoin n indeterminates x1, x2, . . . , xn to F . Thus the

resulting field F (x1, x2, . . . , xn) = K consists of quotients of polynomials in the
xi with coeffi cients in F . Any permutation of the xi induces an automorphism
of K which fixes F elementwise, and distinct such permutations induce distinct
automorphisms of K. Hence Sn, the symmetric group of degree n, is a subgroup
of G(K/F ). Let S be the fixed field of Sn. We have F ⊂ S ⊂ K and G(K/F ) ⊃
Sn. The elements of S are called symmetric rational functions of the xi. For
example, S contains all the symmetric polynomials in the xi and in particular
the elementary symmetric polynomials

x1 + x2 + · · ·+ xn,
x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn,

...
x1x2x3· · ·xn.

Let s(x) = Πn
i=1(x − xi). The coeffi cients of s(x) are (neglecting sign) these

elementary symmetric polynomials. Thus s(x) ∈ S[x]. Clearly K is a root
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field of s(x) over S. This implies that [K : S] ≤ n!. Since |G(K/S)| ≥ n!, it
follows from 6.3.8 that [K : S] = n! and that G(K/S) ≈ Sn. At this point,
we have of course proved 6.4.7. However, a couple of more observations about
symmetric polynomials are in order. Let E be the subfield of S generated
by F and the elementary symmetric polynomials in x1, x2, . . . xn. Then
F ⊂ E ⊂ X ⊂ K. Since the coeffi cients of s(x) (neglecting sign) are precisely
the elementary symmetric polynomials in x1, x2, . . . , xn, then s(x) ∈ E[x]
and K is the root field of s(x) over E. Hence [K : E] ≤ n!. It follows that
S = E. In other words, the symmetric rational functions in x1, x2, . . . , xn are
rational functions of the elementary symmetric polynomials in x1, x2, . . . , xn.
Actually something stronger is true, but it has nothing to do with field theory.
A symmetric polynomial in x1, x2, . . . , xn is a polynomial in the elementary
symmetric polynomials. For example,

x2
1x2 + x1x

2
2 = x1x2(x1 + x2),

and
x2

1x2 + x1x
2
2 + x1x

2
3 + x2

2x3 + x2x
2
3 + x2

1x3

= (x1x2 + x2x3 + x2x3)(x1 + x2 + x3)− 3x1x2x3.

We omit the proof in general, but it is only slightly diffi cult.
We close this section by exhibiting a specific polynomial in Q[x] of degree 5

whose Galois group is S5 and hence is not solvable. Our Theorem 6.4.7 is not
applicable. However, its proof does enable one to get such a polynomial over a
subfield F of the field of real numbers. One only needs real numbers r1, r2, r3,
r4, r5 such that if x1, x2, x3, x4, x5 are indeterminates, then

Q(x1, x2, x3, x4, x5) ≈ Q(r1, r2, r3, r4, r5)

via an isomorphism α such that α(xi) = ri for all i. Then the proof of 6.4.7
shows that the Galois group of f(x) = Π5

i=1(x− ri) over the field generated by
Q and the coeffi cients of f(x) is S5. The existence of such a set of ri is most
easily shown by appealing to cardinality arguments. Pick a real number r1

which is not algebraic over Q. The field Q(r1) is countable, and only countably
many real numbers are algebraic over Q(r1). Pick a real number r2 which is not
algebraic over Q(r1). Proceeding in this way, we get real numbers r1, r2, r3, r4,
r5 which fill the bill.

A frequently used example of a polynomial in Q[x] which is not solvable by
radicals is x5−4x+2. We will indicate that its Galois group over Q is S5. First,
we need it to be irreducible over Q. This can be shown using the Eisenstein
criterion (8.2.9). The polynomial has exactly three real roots. Just graph it and
observe that it crosses the x axis exactly three times. It has no double roots
since it is irreducible over Q and hence separable. Hence it has exactly two
complex roots. Let K be the root field of x5 − 4x + 2 over Q in the field C of
complex numbers. If a and b are roots of x5 − 4x+ 2, then there is an element
σ ∈ G(K/F ) such that σ(a) = b. This follows from the irreducibility of the
polynomial. The automorphism of C which takes a complex number a + bi to
a− bi induces an automorphism of K which fixes the real roots of x5 − 4x+ 2
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and interchanges the two complex ones. View G(K/Q) as a subgroup of S5.
We have just seen that this subgroup has the following properties. Given any
i and j in {1, 2, 3, 4, 5}, there is an element α in that subgroup such that
σ(i) = j, and there is a transposition in that subgroup. The only such subgroup
of S5 is S5 itself, as one can check. Therefore G(K/Q) is isomorphic to S5 and
x5 − 4x+ 2 is not solvable over Q by radicals.

PROBLEMS

1. Prove that if F ⊂ K and f(x) ∈ F [x] is solvable over F , then f(x) is
solvable over K.

2. Prove that if G(K/F ) is finite and solvable, and if f(x) ∈ F [x] is solvable
over K, then f(x) is solvable over F .

3. Prove that if an irreducible polynomial f(x) ∈ F [x] has a root in a radical
extension of F , then f(x) is solvable by radicals.

4. Prove that if K is a radical extension of Q of prime degree p > 2, then K
is not a normal extension of Q.

5. A group G of permutations of a set S is called transitive if given s and t
in S, there is a σ in G such that σ(s) = t. Let K be the root field over F of
an irreducible polynomial f(x) ∈ F [x]. Prove that G(K/F ) is transitive
when viewed as a permutation of the roots of f(x).

6. Let f(x) be a separable polynomial in F [x], and let K be its root field
over F . Prove that f(x) is irreducible in F [x] if and only if G(K/F ) is
transitive as a group of permutations of the roots of f(x).

7. Determine whether or not the following polynomials are solvable by radi-
cals over Q.

(a) x5 − 8x+ 3

(b) x6 + x5 + x4 + x3 + x2 + x+ 1

(c) x18 + x9 + 1

(d) x6 + x3 + 1

(e) x5 − 5x3 − 20x+ 5.

8. Let p be a prime ≥ 5. Prove that the polynomial xp−4x+2 is not solvable
by radicals over Q.

9. Let f(x) be an irreducible polynomial of prime degree over a field F , and
let K be its root field. Suppose that f(x) is solvable by radicals over F .
Prove that if a and b are two roots of f(x) in K, then K = F (a, b).
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10. Let F be a subfield of K, and let a1, a2, . . . , an be elements of K. Let
x1, x2, . . . , xn be indeterminates. Prove that if no ai is algebraic over

F (a1, . . . , ai−1, ai+1, . . . , an),

then F (a1, a2, . . . , an) ≈ F (x1, x2, . . . , xn) via an F -isomorphism α such
that α(ai) = xi for all i.

11. Determine the Galois group over Q of a polynomial f(x) ∈ Q[x] of degree
4 that has a quadratic factor in Q[x].
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Chapter 7

Topics from Group Theory

7.1 Introduction

Group theory is a vast subject which pervades almost every mathematical dis-
cipline. This chapter gives a brief introduction to some of the classical topics
in non-Abelian group theory. In Chapter 2, we presented the basic notions of
homomorphisms, normal subgroup, quotient group, direct sum, and so on. The
Fundamental Theorem of Finite Abelian Groups (2.7.6), and the fact that for
n ≥ 5, the alternating group An is simple (2.5.7) are the deepest results in that
chapter. In section 6.4, we introduced solvable groups (6.4.2) and derived some
of their properties. We will return to that topic in this chapter.
Since our discussion here is with groups that are not necessarily Abelian, we

will use multiplicative notation.

7.2 The Jordan-Hölder Theorem

Let G be a finite group. If G is not simple, then G has a normal subgroup
G1 6= G such that G/G1 is simple. Just let G1 be a maximal normal subgroup
in the finite group G. Similarly, G1 has a normal subgroup G2 such that G1/G2

is simple. Thus we get a descending chain

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}

such that Gi+1 is normal in Gi, and Gi/Gi+1 is simple. Now suppose that

G = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hm = {e}

is another such chain of subgroups. The Jordan-Hölder Theorem asserts that
m = n, and that there is a one-to-one correspondence between the factor groups
Gi/Gi+1 and Hj/Hj+1 such that corresponding factor groups are isomorphic.
We will prove this remarkable theorem, but first some notation and terminology
are needed. The groups considered are not necessarily finite.

269
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Definition 7.2.1 Let G be a group. A normal series of G is a chain of sub-
groups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}

such that Gi+1 is a normal subgroup of Gi for each i. The groups Gi/Gi+1 are
the factor groups of the chain. The length of the chain is the number of strict
inclusions in the chain. A normal series is a composition series if each factor
group Gi/Gi+1 is a simple group 6= {e}. Two normal series are equivalent
if there is a one-to-one correspondence between their factor groups such that
corresponding factor groups are isomorphic.

Theorem 7.2.2 (Jordan-Hölder) Any two composition series of a group are
equivalent.

Proof. If a group has a composition series of length one, then the group is
simple and any two composition series are certainly equivalent. Now suppose
that a group G has a composition series

G = G0 ⊃ G1 ⊃ G2 ⊃ ... ⊃ Gn = {e} (1)

of length n > 1, and that if a group has a composition series of length less than
n, then any two composition series of that group are equivalent. Let

G = H0 ⊃ H1 ⊃ H2 ⊃ ... ⊃ Hm = {e} (2)

be any composition series of G. Consider the series

G = G0 ⊃ G1 ⊃ G1 ∩H1 ⊃ G2 ∩H1 ⊃ ... ⊃ Gn ∩H1 = {e} (3)

and
G = H0 ⊃ H1 ⊃ H1 ∩G1 ⊃ H2 ∩G1 ⊃ ... ⊃ Hm ∩G1 = {e}. (4)

Since Gi+1 ∩ H1 is a normal subgroup of Gi ∩ H1 and Gi ⊃ Gi+1, the Third
Isomorphism Theorem (2.3.12) yields

(Gi ∩H1)/(Gi+1 ∩H1) = (Gi ∩H1)/(Gi+1 ∩ (Gi ∩H1))

≈ Gi+1(Gi ∩H1)/Gi+1,

and Gi+1(Gi∩H1) is a normal subgroup of Gi since it is a product of two normal
subgroups. Since Gi/Gi+1 is a simple group, (Gi+1(Gi ∩ H1))/Gi+1 is either
Gi/Gi+1 or Gi+1/Gi+1. That is, Gi+1(Gi∩H1) is either Gi+1 or Gi. Therefore,
if we remove repetitions from

G1 ⊃ (G1 ∩H1) ⊃ (G2 ∩H1) ⊃ . . . ⊃ (Gn ∩H1) = {e},

we get a composition series for G1. By our induction hypothesis, the resulting
composition series is equivalent to the composition series

G1 ⊃ G2 ⊃ . . . ⊃ Gn = {e},
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and hence (1) and (3) (with repetitions removed) are equivalent. If G1 = H1,
then (1) and (2) are certainly equivalent. If G1 6= H1, then G1H1 is a normal
subgroup of G properly containing G1, so G1H1 = G. Thus G1/(G1 ∩ H1) ≈
(G1H1)/H1, and H1/(H1 ∩ G1) ≈ (G1H1)/G1 = G/G1. Therefore (3) (with
repetitions removed) and (4) (with repetitions removed) are equivalent, and the
theorem is proved.

PROBLEMS

1. Prove that if G has a composition series, then any normal subgroup of G
has a composition series.

2. Prove that if N is normal in G, and if G has a composition series, then so
does G/N .

3. Suppose that G has a composition series and that N is normal in G. Prove
that G has a composition series of which N is a member.

4. Suppose that G has a composition series. Prove that any normal series of
G has a refinement that is a composition series.

5. (Zassenhaus’s Lemma) Let A and B be subgroups of a group G, and let
M and N be normal in A and B, respectively. Prove that

(a) M(A ∩N) is a normal subgroup of M(A ∩B).

(b) N(M ∩B) is a normal subgroup of N(A ∩B).

(c) (M(A ∩B))/(M(A ∩N)) ≈ (N(A ∩B))/(N(M ∩B)).

6. Derive the Third Isomorphism Theorem (2.3.12) from Problem 5.

7. Prove from Problem 5 that any two normal series of a group G have
refinements that are equivalent.

8. Prove the Jordan-Hölder Theorem from Problem 7.

9. Find all composition series of the cyclic group of order 6; of order 15; of
order 30.

10. Find all composition series of the cyclic group of order 8; of order 16; of
order 27.

11. Find all composition series of S3; of S4; of Sn.

12. Find all composition series of the quaternions Q8.

13. Find all composition series of the dihedral group D8.

14. Find all composition series of the holomorph of Z(5).

15. Find all composition series of the holomorph of Z(8).

16. Find a group that does not have a composition series.
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7.3 The Sylow Theorems

Let G be a finite group, and let p be a prime. If pn is the highest power of p
that divides o(G), then G has a subgroup S such that o(S) = pn. Any two such
subgroups of G are conjugate, and the number of such subgroups is ≡ 1 (mod p)
and divides o(G). This is the essence of the Sylow Theorems, and we begin now
to prove these theorems. We assume throughout that all our groups are finite.
Let G be a group. Two subsets S and T of G are conjugate if there is an

element g ∈ G such that g−1Sg = T . Conjugacy is an equivalence relation on
the set of subsets of G. The equivalence class determined by a set S is denoted
Cl(S). The normalizer of a subset S of G is the set

N(S) = {g ∈ G : g−1Sg = S}.

The set N(S) is clearly a subgroup of G.

Lemma 7.3.1 Let S be a subset of G. Then G : N(S) = o(Cl(S)).

Proof. If xN(S) = yN(S), then y−1x ∈ N(S), and hence (y−1x)−1Sy−1x =
S. Thus x−1ySy−1x = S, and so ySy−1 = xSx−1. Similarly, if ySy−1 = xSx−1,
then xN(S) = yN(S). The lemma follows.

We now apply 7.3.1 to the case where S consists of one element. Conjugacy
is clearly an equivalence relation on the set of one element subsets of G, that
is, on the set G. Hence G is the union of the set of equivalence classes Cl(a) of
elements a of G. The number of elements in each Cl(a) is the index of N(a)
in G. Thus

o(G) =
∑

o(Cl(a)) =
∑

G : N(a) =
∑

o(G)/o(N(a)),

where the sum ranges over a set of representatives of the equivalence classes. If
an element a is in the center

Z(G) = {g ∈ G : gx = xg for all x ∈ G}

of G, then Cl(a) = {a}. The equation in the next theorem is called the class
equation, and it follows from the equations above.

Theorem 7.3.2 o(G) = o(Z(G)) + Σ o(G)/o(N(a)), where the sum is over a
set of representatives a such that a /∈ Z(G).

Corollary 7.3.3 Let p be a prime. If o(G) = pn and n ≥ 1, then Z(G) 6= {e}.

Proof. o(G) = o(Z(G)) + Σ o(G)/o(N(a)) as in 7.3.2. Now o(G)/o(N(a))
is divisible by p since N(a) 6= G. Since o(G) is divisible by p, o(Z(G)) must be
divisible by p.

Corollary 7.3.4 If p is a prime, and if o(G) = p2, then G is Abelian.
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Proof. If Z(G) 6= G, then o(G/Z(G)) = p, so G/Z(G) is cyclic. Let gZ(G)
generate G/Z(G). Then every element of G is of the form gna, with a ∈ Z(G).
Any two such elements commute. Hence G is Abelian.

The next corollary is crucial in showing the existence of Sylow subgroups of
groups. If pn is the highest power of the prime p that divides o(G), and if n ≥ 1,
then for G to have a subgroup of order pn, it certainly must have an element of
order p. This is how we get started showing the existence of such a subgroup.

Corollary 7.3.5 (Cauchy’s Theorem) If p is a prime and p divides o(G),
then G has an element of order p.

Proof. The proof is by induction on o(G). If o(G) = 1, the assertion is
trivial. Suppose that o(G) > 1 and that every group of smaller order than
o(G) has an element of order p whenever p divides its order. Consider the class
equation

o(G) = o(Z(G)) +
∑

G : N(a)

of G. If p divides some o(N(a)), then since a /∈ Z(G), o(N(a)) < o(G), and
N(a) has an element of order p. So we may suppose that p divides no o(N(a)).
Thus p divides each G : N(a), and since p divides o(G), it divides o(Z(G)).
Let g ∈ Z(G), g 6= e. If p does not divide o(〈g〉), then p divides o(Z(G)/ 〈g〉),
so that Z(G)/ 〈g〉) has an element x 〈g〉 of order p since o(Z(G)/ 〈g〉) < o(G).
Thus xp = gn for some n. If o(gn) = m, then o(x) = p ·m, and it follows that
o(xm) = p. If p divides o(〈g〉), then o(g) = p · n for some n, whence o(gn) = p.

Now we can prove that Sylow subgroups exist.

Theorem 7.3.6 (Sylow) Let pn divide o(G). Then G has a subgroup of order
pn.

Proof. We induct on o(G). If o(G) = 1, then the proof is trivial. Now
suppose that o(G) > 1 and that the theorem is true for all groups whose orders
are less than o(G). If G has a proper subgroup H such that G : H is prime
to p, then pn divides o(H), so that H has a subgroup of order pn. So we
may suppose that p divides G : H for all proper subgroups H of G. Now
o(G) = o(Z(G))+Σ G : N(a), so p divides o(Z(G)). Thus Z(G) has a subgroup
S such that o(S) = p. The subgroup S is normal, o(G/S) < o(G), o(G/S) is
divisible by pn−1, and so G/S has a subgroup H/S whose order is pn−1. It
follows that o(H) is pn.

Definition 7.3.7 Let pn be the highest power of the prime p that divides o(G).
A subgroup S of G such that o(S) = pn is called a Sylow p-subgroup of G.

Now we want to find the number of Sylow p-subgroups of a group and to
show that any two are conjugate. We need a preliminary definition and lemma.

Definition 7.3.8 Let A and B be subgroups of a group G. An A-conjugate of
B is a subgroup of the form a−1Ba with a ∈ A. (So a G-conjugate of B is just
a conjugate of B.)
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Lemma 7.3.9 Let A and B be subgroups of a group G. Then the number of
A-conjugates of B is A : (N(B) ∩A).

Proof. a−1Ba = a−1
1 Ba1 if and only if a1a

−1Baa−1
1 = B if and only if

a1a
−1 ∈ N(B) if and only if (N(B) ∩A)a1 = (N(B) ∩A)a. Therefore

a−1Ba→ (N(B) ∩A)a

is a one-to-one mapping from the set of A-conjugates of B onto the set of right
cosets of N(B) ∩A in A.

Theorem 7.3.10 Let G be a finite group, and let p be a prime.

a. If H is a subgroup of G and if o(H) is a power of p, then H is contained
in a Sylow p-subgroup of G.

b. Any two Sylow p-subgroups of G are conjugate.

c. The number of Sylow p-subgroups of G is ≡ 1 (mod p), and divides o(G).

Proof. (a) Let H be a subgroup of G, and suppose that o(H) = pn. Let
S be any Sylow p-subgroup of G. The number of conjugates of S is G : N(S),
which is prime to p. Now H induces a partition of the set of conjugates of S;
two conjugates of S are in the same member of the partition if they are H-
conjugate. Let S1 be any conjugate of S. By 7.3.9, the number of H-conjugates
of S1 is H : (N(S1) ∩H), and this is a power of p since o(H) = pn. Thus the
number of conjugates of S in every member of this partition of the conjugates
of S is a power of p and the total number of conjugates is prime to p. Therefore
some member of this partition has exactly one element. Let that element be T .
Then H : (N(T ) ∩ H) = 1, so N(T ) ⊃ H. Therefore TH is a subgroup, T is
normal in TH, and TH/T ∼= H/(H ∩ T ) is a p-group. It follows that TH is
a p-group, so that TH = T . Hence T ⊃ H. Hence H is contained in a Sylow
p-subgroup. This proves (a). If H is already a Sylow p-subgroup, then H = T ,
so H is conjugate to S, and (b) follows. If H = S, then S partitions the set
of conjugates of S (that is, the set of all Sylow p-subgroups of G) into subsets
with a power of p elements, and one member of the partition has one element.
But whenever one member of the partition has only one element, that element
is H = S. Therefore exactly one member of the partition of the conjugates of
S has exactly one element. Since they all have a power of p elements, the total
number of conjugates of S is ≡ 1 (mod p). Since o(Cl(S)) = G : N(S), the
number of Sylow p-subgroups divides o(G), and (c) follows.

Corollary 7.3.11 Let S be a Sylow p-subgroup of the finite group G. Then S
is the only Sylow p-subgroup of N(S).

Corollary 7.3.12 Let S be a Sylow p-subgroup of the finite group G. Then
N(N(S)) = N(S).

Proof. If x−1N(S)x = N(S), then x−1Sx = S since S is the only Sylow
p-subgroup of N(S). Thus x ∈ N(S). Hence N(N(S)) ⊂ N(S), so N(N(S)) =
N(S).
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PROBLEMS

1. Find all the Sylow 2-subgroups and all the Sylow 3-subgroups of S3, S4,
and S5.

2. Let H be a proper subgroup of the finite group G. Prove that G is not
the set union of the conjugates of H.

3. Let G be a finite group, let N be a normal subgroup of G, and let S be
a Sylow p-subgroup of G. Prove that S ∩N is a Sylow p-subgroup of N ,
and that SN/N is a Sylow p-subgroup of G/N .

4. Prove that a group of order 28 has a normal subgroup of order 7. Prove
that a group of order 28 that does not have exactly 7 Sylow 2-subgroups
has a normal subgroup of order 4, and is Abelian.

5. If o(G) = pq with p and q primes, and p < q. Let S be a subgroup of G
of order p, and let T be a subgroup of G of order q.

(a) Prove that T is normal in G.

(b) Prove that G is a split extension of T by S.

(c) Prove that G is the direct product of S and T , and hence is cyclic,
unless p divides q − 1.

(d) Suppose that p divides q. Prove that there is a non-Abelian group of
order pq.

6. Prove that any group of order less than 60 is either of prime order or has
a proper normal subgroup.

7. Prove that a group of order 108 has a normal subgroup of order 9 or 27.

8. Let G be finite, and let S be a Sylow p-subgroup of G. If S is normal in
N , and if N is normal in G, prove that S is normal in G.

9. Prove that any simple group of order 60 is isomorphic to A5.

10. If o(G) = pn, p a prime, and if H is a proper subgroup of G, then N(H) 6=
H.

7.4 Solvable and Nilpotent Groups

Solvable groups have been defined in Chapter 6 (6.4.2) in connection with Galois
theory, and a few of their properties were noted there. Recall that a group G is
solvable if it has a normal series

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {e}

such that Gi/Gi+1 is Abelian. Such a series will be called a solvable series.
We showed that subgroups and quotient groups of solvable groups are solvable,
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and that if N is normal in G, then N and G/N solvable imply that G is solvable.
We noted further that a solvable group has a normal chain whose factors are
cyclic of prime order. Since a non-trivial p-group G has non-trivial center Z(G),
it follows by induction on o(G) that G is solvable. Indeed, Z(G) is a solvable
normal subgroup of G and G/Z(G) is solvable since it is a p-group smaller that
G. It follows that G is solvable. This fact is important enough to exhibit as a
theorem.

Theorem 7.4.1 Finite p-groups are solvable.

Actually, finite p-groups satisfy a much stronger condition than that of solv-
ability. They are nilpotent, a concept we will come to shortly.
Recall that the commutator subgroup G′ of a group G is the subgroup

generated by all its commutators a−1b−1ab, where a and b are in G. The crucial
facts about G′ are that G′ is a fully invariant subgroup of G, G/G′ is Abelian,
and G′ is contained in every normal subgroup N such that G/N is Abelian. We
now define the higher commutator subgroups of a group G inductively by

G(0) = G, and G(i+1) = (G(i))′.

Then we have a normal chain

G = G(0) ⊃ G(1) ⊃ G(2) ⊃ · · · .

This chain is called the derived series of G. In the derived series, either each
inclusion is proper, or for some i, G(i) = G(i+n) for all n. Either situation may
occur. If G is finite, the latter must occur, of course.

Theorem 7.4.2 A group G is solvable if and only if G(n) = {e} for some n.

Proof. If G(n) = {e}, then the normal series

G = G(0) ⊃ G(1) ⊃ · · · ⊃ G(n) = {e}

has Abelian quotients, whence G is solvable. Now suppose that G is solvable.
Let

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e}

be a solvable series for G. Then since G0/G1 is Abelian, G1 ⊃ G(1). Suppose
that Gi ⊃ G(i). Then (Gi)

′ ⊃ (G(i))′ = G(i+1), and since Gi/Gi+1 is Abelian,
Gi+1 ⊃ (Gi)

′. Thus Gi+1 ⊃ G(i+1), and we have by induction that Gi ⊃ G(i)

for all i. Since Gn = {e}, G(n) = {e}, and the theorem is proved.
There are two other series of a group we will now define. If H and K are

subgroups of G, [H,K] is the subgroup generated by all elements of the form
h−1k−1hk with h ∈ H and k ∈ K. The lower central series (or descending
central series) of a group G is the chain

G = G0 ⊃ G1 ⊃ G2 ⊃ · · ·
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where Gi+1 = [Gi, G]. Recall that a subgroupH of a group G is fully invariant
if it is taken into itself by every endomorphism of G. It is an easy exercise to
show that every member of the lower central series of G is a fully invariant
subgroup of G. In particular, each member of the lower central series is a
normal subgroup of G. The factors of the series are certainly Abelian, since
Gi+1 = [Gi, G] ⊃ [Gi, Gi] = (Gi)′.

Let Z0(G) = {e}, Z(G) be the center of G, and in general Zi+1(G) be given
by Z(G/Zi(G)) = Zi+1(G)/Zi(G). The chain

{e} = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ · · ·

is called the upper central series (or ascending central series) of G. A
subgroup H of a group G is called characteristic if f(H) = H for every
automorphism f of G. It is straightforward to verify that each member of the
upper central series of G is a characteristic subgroup of G. In particular, each
member of the upper central series is a normal subgroup of G. Again, the factors
Zi+1(G)/Zi(G) of the series are certainly Abelian.
A fundamental fact about the upper and lower central series of a group G is

that the upper central series reaches G in a finite number of steps if and only
if the lower central series reaches {e} in that same finite number of steps. To
prove this, it is convenient to have the following two lemmas, whose proofs are
left as exercises (Problems 13 and 14).

Lemma 7.4.3 Let N and K be subgroups of G with N normal in G and with
N ⊂ K. Then K/N ⊂ Z(G/N) if and only if [K,G] ⊂ N .

Lemma 7.4.4 If f : G → H is an epimorphism, and if S ⊂ Z(G), then
f(S) ⊂ Z(H).

Theorem 7.4.5 Zm(G) = G if and only if Gm = {e}. In this case, Gi ⊂
Zm−i(G) for all i.

Proof. Note that the theorem is trivial if m = 1. So we assume m ≥ 2.
Suppose that Zm(G) = G. We will show that Gi ⊂ Zm−i(G) by induction on i.
If i = 0, then Gi = G = Zm(G), so the inclusion holds. If Gi ⊂ Zm−i(G), then

Gi+1 = [Gi, G] ⊂ [Zm−i(G), G].

Letting N = Zm−(i+1)(G) and K = Zm−i(G) in 7.4.3, we get [Zm−i(G), G] ⊂
Zm−(i+1)(G), whence Gi+1 ⊂ Zm−(i+1). Hence, if Zm(G) = G, then setting
i = m, we get Gm ⊂ Z0 = {e}.

Conversely, suppose that Gm = {e}. We will show that Gi ⊂ Zm−i(G) by
induction on m − i. If m − i = 0, then Gi = Gm = {e} ⊂ Z0(G), and our
inequality holds. If Gi ⊂ Zm−0(G), then there is a natural epimorphism

G/Gi → G/Zm−i(G)
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given by gGi → gZm−i(G). Since Gi−1/Gi ⊂ Z(G/Gi) by 7.4.3, then by
7.4.4, the image Gi−1Zm−i(G)/Zm=i(G) of Gi−1/Gi under the epimorphism is
contained in the center of

Z(G/Zm−i(G)) = Zm−(i−1)(G)/Zm−i(G).

Therefore Gi−1 ⊂ Zm−(i−1)(G). This completes the induction. If Gm = {e},
then setting i = 0, we get G = G0 ⊂ ZM (G), whence Zm(G) = G. This
completes the proof of the theorem.

Definition 7.4.6 A group G is nilpotent if Gn = {e} for some n.

We could equally as well have defined G to be nilpotent if Zn(G) = G for
some integer n. It is very easy to show that subgroups and quotient groups
of nilpotent groups are nilpotent. It follows from the definition that if G is
nilpotent, then G is solvable. However, not every solvable group is nilpotent.
The symmetric group S3 is solvable but it not nilpotent. From 7.3.3 and 7.4.5,
we get the following important fact.

Theorem 7.4.7 Every finite p-group is nilpotent.

Lemma 7.4.8 If H is a proper subgroup of a nilpotent group G, then N(H) 6=
H.

Proof. Let n be the smallest integer such that Gn ⊂ H. Then [Gn−1, H] ⊂
[Gn−1, G] = Gn ⊂ H, whence Gn−1 ⊂ N(H) by Problem 15. Therefore N(H)
properly contains H.
The next theorem is a basic characterization of finite nilpotent groups. It

reduces the study of such groups to that of finite p-groups.

Theorem 7.4.9 A finite group is nilpotent if and only if it is the direct product
of its Sylow subgroups.

Proof. If a finite group is the direct product of its Sylow subgroups, it
is nilpotent by Problem 17 since each Sylow subgroup is nilpotent by 7.4.7.
Conversely, suppose that a finite group G is nilpotent. Let Sp be a Sylow p-
subgroup of G. Since N(N(Sp)) = N(Sp), then N(Sp) = G by 7.4.8. That
is, every Sylow subgroup of G is normal. Since any two Sylow p-subgroups are
conjugate, for each p dividing o(G) there is exactly one Sylow p-subgroup. The
rest of the proof is routine.

PROBLEMS

1. Prove that (G×H)′ = G′ ×H ′.

2. Prove that if G1, G2, , Gn are solvable, then so is the direct product∏
Gi.



7.4. SOLVABLE AND NILPOTENT GROUPS 279

3. Prove that if m and n are integers such that m ≤ n, then (G/G(n))(m) =
G(m)/G(n).

4. Prove that any group of order pq is solvable, where p and q are primes.

5. Prove that any group of order p2q is solvable, where p and q are primes.

6. Prove that a solvable groupG 6= {e} has a fully invariant Abelian subgroup
6= {e}.

7. Prove that a finite solvable group G 6= {e} has a fully invariant Abelian
p-subgroup 6= {e}.

8. Prove that if H and K are solvable normal subgroups of G, then HK is a
solvable normal subgroup of G.

9. Let A and B be two finite solvable groups of the same order. Prove that
there is a one-to-one correspondence between the factors of a composition
series of A and the factors of a composition series of B such that the
corresponding factors are isomorphic.

10. Prove that S3 is solvable but not nilpotent.

11. Prove that every member of the lower central series of a group G is a fully
invariant subgroup of G.

12. Prove that every member of the upper central series of a group G is a
characteristic subgroup of G.

13. Prove that if N is a normal subgroup of G, and if K is a subgroup of G
containing N , then K/N ⊂ Z(G/N) if and only if [K,G] ⊂ N .

14. Prove that if f : G → H is an epimorphism and if S ⊂ Z(G), then
f(S) ⊂ Z(H).

15. Prove that if A and B are subgroups of G, then [A,B] ⊂ B if and only if
A ⊂ N(B).

16. Prove directly from the definition of nilpotent groups that subgroups and
quotient groups of nilpotent groups are nilpotent.

17. Prove that if G1, G2, , Gn are nilpotent, then so is the direct product
Π Gi.

18. Prove that if H ⊂ Z(G) and if G/H is nilpotent, then G is nilpotent.

19. Let H be a subgroup of a finite nilpotent group G. Prove that H =∏
(H ∩ Sp), where Sp ranges over the Sylow subgroups of G.
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7.5 The Wedderburn Theorem for Finite Divi-
sion Rings

A theorem proved by Wedderburn in 1905 asserts that a finite division ring
is a field. That is, if D is a finite division ring, then the multiplicative group
D∗ = {d ∈ D : d 6= 0} is commutative. We prove this theorem here instead of
in Chapter 8 because its proof involves only the class equation (7.3.2) and some
number theory. Thus its proof is largely group theoretic, even though one thinks
of the theorem as a theorem about rings. The number theoretic fact needed is
that the nth cyclotomic polynomial

ϕn(x) =

ϕ(n)∏
i=1

(x− ωi),

where the product ranges over the primitive nth roots of 1, is in Z[x] (6.3.13).

Theorem 7.5.1 (Wedderburn) A finite division ring is a field.

Proof. Let D be a finite division ring. Its center Z(D) is a field F , and
since D is a finite dimensional vector space over F , D has qn elements, where
o(F ) = q and n is the dimension of D over F . Let a ∈ D. Then it is easy to
check that

N(a) = {d ∈ D : da = ad}

is a subdivision ring of D. Since N(a) ⊃ F , it is a vector space over F , so that
o(N(a)) = qn(a) for some integer n(a). Now consider the class equation for the
group D∗ of non-zero elements of D. It is

qn − 1 = 1− 1 + Σa(qn − 1)/(qn(a) − 1)

where the sum is over representatives a of each conjugate class for a not in the
center Z(D∗) of the group D∗. Since qn(a) − 1 divides qn − 1, n(a) must divide
n. In fact, if n = n(a)m+ r with 0 ≤ r < n(a), then

qn − 1 = (qn(a) − 1)(qn−n(a) + qn−2n(a) + . . . + qn−mn(a)) + qn−mn(a) − 1,

and since qn−mn(a) − 1 < qn(a) − 1 and qn(a) − 1 divides qn − 1, it follows that
n−mn(a) = 0. Therefore, in each term (qn−1)/(qn(a)−1) in the class equation,
n(a) divides n. Now consider the polynomials xn − 1 = Π(x− αi) and

xn(a) − 1 =
∏

(x− βj),

where the αi range over the nth roots of 1 and the βj range over the n(a)th
roots of 1. Since no βj is a primitive nth root of 1, αn(x) = Π(x−αi), where αi
ranges over the primitive nth roots of 1, is relatively prime to xn(a)−1. Since all
these polynomials are in Z[x], ϕn(x) divides (xn− 1)/(xn(a)− 1) in Z[x]. Hence
the integer ϕn(q) divides (qn − 1)/(qn(a) − 1) in Z. From the class equation,
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this forces the integer ϕn(q) to divide q − 1. But ϕn(q) = Π(q − αi), where αi
ranges over the primitive nth roots of 1. Each q−αi has absolute value |q−αi|
strictly greater than q− 1 if n > 1. Indeed, if αi = a+ bi, then since αni = 1, αi
has absolute value 1, so a2 + b2 = 1. Thus

|q − (a+ bi)|2 = (q − a)2 + b2 = q2 − 2qa+ a2 + b2 = q2 − 2qa+ 1,

and
|q − 1|2 = q2 − 2q + 1.

If n > 1, then a < 1. Since q is positive, it follows that

q2 − 2qa+ 1 > q2 − 2q + 1,

whence |q−αi| > q− 1. Therefore ϕn(q) is strictly larger than q− 1. It follows
that n = 1, that is, that F = D.

7.6 The Fundamental Theorem of Algebra

The existence of Sylow subgroups (7.3.6) together with Galois theory (Section
6.3) enables us to prove the Fundamental Theorem of Algebra– the field of
complex numbers C is algebraically closed. That is, every polynomial in C[x]
of degree ≥ 1 factors into the product of linear factors. Equivalently, every
polynomial in C[x] of degree ≥ 1 has a root in C. We take as the definition of C
the field of all numbers a+ bi with a and b in the field R of real numbers, and
with addition and multiplication given by that of R and by i2 = −1. We will not
go into the definition of R, but the properties of R that we must use are these.
First, every polynomial f(x) in R[x] of odd degree has a root in R. To see this,
visualize the graph of a monic polynomial f(x) of odd degree. For suffi ciently
large positive a, f(a) is positive, and for a negative and of suffi ciently large
absolute value, f(a) is negative. From the completeness property of the real
numbers, the polynomial f(x) must assume the every value in between, so f(x)
must have a root. Second, we need the fact that positive real numbers have a
square root. This can be seen in the same way by considering the polynomial
x2 − a for a > 0. Finally, we need to know that every complex number has a
square root. Let a+ bi be any complex number. We need to solve the equation
(x+ yi)2 = a+ bi. Using the fact that positive real numbers have square roots,
this is an easy exercise.

Theorem 7.6.1 (The Fundamental Theorem of Algebra) The field of com-
plex numbers is algebraically closed.

Proof. Let C be the field of complex numbers, and suppose that C1 is a
proper finite extension of C. By 6.2.15, C1 = C(a) with a ∈ C and with a a
root of an irreducible p(x) ∈ C[x]. The root field K of p(x) is a finite normal
separable extension of C, and K ⊃ C1 (6.3.2). We need to show that such
a proper extension K of C does not exist. Note that K is the root field of
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p(x)(x2 + 1) over R, so that K is a finite normal separable extension of R. Let
F be the fixed field of a Sylow 2-subgroup S of G(K/R). Then K ⊃ F ⊃ R,
S = G(K/F ), |S| = [K : F ] (6.3.8), and since [K : R] = [K : F ][F : R], we
get that [F : R] is odd. Therefore F = R(a) with a satisfying an irreducible
polynomial f(x) ∈ R[x] of odd degree. But every such polynomial of odd degree
has a root in R. Thus F = R. Therefore, G(K/R) is a 2-group, and hence
G(K/C) is a 2-group. Since K 6= C, G(K/C) has at least 2 elements. Let L be
the fixed field of a subgroup of index 2 in G(K/C) (7.3.6). Then [L : C] = 2,
and L = C(a) with a satisfying an irreducible polynomial x2 + bx + c in C[x].
But this polynomial has its roots x = (−b± (b2 − 4c)1/2)/2 in C, since b2 − 4c
is in C. We have reached a contradiction, and must conclude that no such K
exists. This concludes the proof.
Complex variable theory offers an elegant proof of the Fundamental Theorem

of Algebra. It involves complex integration and matters too far removed from
our topic to discuss here. That such disjoint topics, complex variable theory on
the one hand, and Galois theory and Sylow theory on the other, should yield
such a theorem as the Fundamental Theorem of Algebra is one of the beautiful
and intriguing aspects of mathematics.

PROBLEMS

1. Assume that every positive real number has a square root. Prove that
every complex number has a square root.

2. Prove that every polynomial in R[x] factors in R[x] into a product of linear
and quadratic factors.

3. Let A be the set of all elements in C that are algebraic over Q. Use 7.6.1
to prove that A is algebraically closed. Generalize.



Chapter 8

Topics in Ring Theory

8.1 Introduction

Ring theory is broadly divided into two areas– commutative ring theory and
non-commutative ring theory. Commutative ring theory has developed from
algebraic geometry and algebraic number theory. The prototype of the rings
studied in algebraic geometry is the ring F [x1, x2, . . . , xn] of polynomials in
n indeterminates x1, x2, . . . , xn with coeffi cients from a field F . In algebraic
number theory, the prototype is the ring Z of integers. Both of these areas are
vast and important mathematical topics, and are part of what is generally called
commutative algebra. Commutative algebra is the study of commutative rings.
The first topics we take up are from commutative ring theory. Section 8.2

takes up unique factorization domains, and the goal there is to show that if
R is a unique factorization domain, then so is R[x] (8.2.10). This is one of
several important theorems in ring theory that asserts that if R satisfies a certain
property, then so does R[x]. Section 8.3 is in that same spirit. There we prove
one of the most famous of these theorems —the Hilbert Basis Theorem (8.3.2).
That theorem says that if R is a commutative Noetherian ring, then so is R[x].
Section 8.4 presents a classical topic from commutative Noetherian rings, the
Noether-Lasker decomposition theory. These three topics from commutative
ring theory were chosen because they require minimum background, and yet
impart some of the flavor of commutative ring theory.
The prototype of the rings studied in non-commutative theory is the ring Fn

of all n×n matrices over a field F , or more generally the ring Dn of all such ma-
trices over a division ring D. In fact, our only topic (8.5) from non-commutative
ring theory deals essentially with just these rings. We begin that topic with an
examination of the rings Dn. One of the best theorems in non-commutative
ring theory is the Wedderburn-Artin Theorem (8.5.9) which gives elegant nec-
essary and suffi cient conditions for a ring to be isomorphic to some Dn. We will
prove this theorem via the more general Jacobson Density Theorem (8.5.8). It
is hoped that this topic will impart some of the flavor of non-commutative ring
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theory.

8.2 Unique Factorization Domains

We will be using the notation and terminology of section 4.4.

Definition 8.2.1 A unique factorization domain (UFD) is an integral do-
main in which every element not 0 or a unit is a product of irreducible elements,
and these irreducible elements are unique up to order and associates.

Thus if R is a UFD, a is in R, and a is not 0 or a unit, then a = a1a2 · · · an
with each ai irreducible. If a = b1b2 · · · bn with each bi irreducible, then m = n,
and there is a one-to-one correspondence between the ai’s and the bi’s such that
corresponding elements are associates.
From section 4.4, we know that any PID is a UFD. However, there are UFD’s

that are not PID’s. For example, if F is a field, then F [x, y] is a UFD but is
not a PID, and Z[x] is a UFD but not a PID. Our aim is to prove that if R is
a UFD, then so is R[x].
First we dispose of some easy preliminaries. Suppose that R is a UFD and

that a is in R with a not 0 or a unit. Then a = a1a2 · · · an with each ai
irreducible. If ai is an associate of a1, write ai = uia1. In this manner, we can
express a as a product

a = uam1
1 am2

2 · · · a
mk

k ,

where the ai’s are non-associate irreducible elements, mi > 0, and u is a unit.
If a is also another such product

a = vbn11 bn22 · · · bnss ,

then s = k, and after renumbering, ai and bi are associates and mi = ni for all
i. If a and b are two non-zero elements of R, then we can write

a = uam1
1 am2

2 · · · amr
r ,

and
b = van11 an22 · · · anrr ,

with u and v units, ai irreducible, and mi and ni ≥ 0. If this is done, then a
divides b if and only if mi ≤ ni for all i. Finally, note that an element a in R is
irreducible if and only if it is prime (Problem 3).

Lemma 8.2.2 In a UFD, any two elements have a greatest common divisor
(gcd).

Proof. Let a and b be in a UFD R. The only non-trivial case is the one
where neither a nor b is zero or a unit. Write a and b as above, and let ki be
the minimum of mi and ni. We claim that

d = ak11 a
k2
2 · · · akrr
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is a gcd of a and b. It certainly divides both. Suppose that e divides a and b.
Then by earlier remarks,

e = aj11 a
j2
2 · · · ajrr ,

with ji ≤ mi and ji ≤ ni, and hence ji ≤ ki. Thus e divides d, so that d is a
gcd of a and b.

Similarly, we can show that a finite subset (or, in fact, any subset) of elements
of a UFD has a gcd.

Definition 8.2.3 Let R be a UFD, and let f(x) be in R[x]. Then f(x) is
primitive if a gcd of the coeffi cients of f(x) is 1. A gcd of the coeffi cients of
f(x) is called the content of f(x), and denoted c(f(x)).

The content c(f(x)) is unique only up to multiplication by a unit. Note that
if f(x) is a non-zero element of R[x] where R is a UFD, then f(x) = c(f(x))f1(x)
with f1(x) primitive. Also note that if f(x) = c · g(x) with g(x) primitive, then
c is a content of f(x). The following classical lemma is crucial.

Lemma 8.2.4 (Gauss’Lemma) If f(x) and g(x) are primitive polynomials
in R[x] and R is a UFD, then f(x)g(x) is primitive.

Proof. Let f(x) = Σmi=0aix
i and g(x) = Σni=0bix

i. Suppose that p is a
prime dividing all the coeffi cients of f(x)g(x). Let i be the smallest integer such
that p does not divide ai, and let j be the smallest integer such that p does not
divide bj . The coeffi cient of xi+j in f(x)g(x) is

ci+j = a0bi+j + a1bi+j−1 + · · ·+ aibj + · · ·+ ai+jb0.

(If i+ j > m, take ai+j = 0, and similarly for bi+j .) Since p divides a0, a1, . . . ,
ai−1 and b0, b1, . . . , bj−1, then p divides every term except possibly aibj . But
p divides ci+j , whence p divides aibj . Thus p divides either ai or bj , which is
impossible. Thus f(x)g(x) is primitive.

There are a number of corollaries of interest.

Corollary 8.2.5 Let R be a UFD, and let f(x) and g(x) be in R[x]. Then
c(f(x)g(x)) = c(f(x))c(g(x)), up to units.

Proof. Write f(x) = c(f(x))f1(x), and g(x) = c(g(x))g1(x) with f1(x) and
g1(x) primitive. Then

f(x)g(x) = c(f(x))c(g(x))f1(x)g1(x).

Since f1(x)g1(x) is primitive, c(f(x))c(g(x)) is the content of f(x)g(x).

Corollary 8.2.6 Let R be a UFD, and let F be its quotient field. If f(x) is in
R[x] and if f(x) = g(x)h(x) in F [x], then f(x) = g1(x)h1(x) with g1(x) and
h1(x) in R[x] and with deg(g1(x)) = deg(g(x)).
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Proof. Let r and s be non-zero elements of R such that rg(x) and sh(x)
are in R[x]. Then rsf(x) = (rg(x))(sh(x)), rg(x) = c1g1(x), and sh(x) =
c2h1(x) with ci in R and g1(x) and h1(x) primitive elements of R[x]. Thus
rsf(x) = c1c2g1(x)h1(x). Since g1(x) and h1(x) are primitive, rs divides c1c2.
Thus f(x) = (cg1(x))h1(x). Since the degree of g1(x) is the degree of g(x), the
corollary follows.

The following two corollaries are immediate consequences of 8.2.6.

Corollary 8.2.7 Let R be a UFD, and let F be its quotient field. A primitive
polynomial f(x) in R[x] is irreducible in F [x] if and only if it is irreducible in
R[x].

Corollary 8.2.8 Let R be a UFD, and let F be its quotient field. If f(x) is
monic, f(x) is in R[x], and f(x) = g(x)h(x) in F [x], then f(x) = g1(x)h1(x)
in R[x] with g1(x) and h1(x) monic and having the same degrees as g(x) and
h(x), respectively.

Corollaries 8.2.6, 8.2.7, and 8.2.8 are of interest even for the case R = Z.
Here is the main theorem.

Theorem 8.2.9 If R is a UFD, then R[x] is a UFD.

Proof. Suppose that f(x) is a polynomial in R[x] of positive degree. Let
F be the quotient field of R. In F [x], f(x) = f1(x)f2(x) · · · fn(x) with the
fi(x) prime in F [x]. Let ri be a non-zero element of R such that rifi(x) is
in R[x]. Then r1r2 · · · rnf(x) = (r1f1(x))(r2f2(x)) · · · (rnfn(x)). Write each
rifi(x) = cigi(x) with ci in R and gi(x) a primitive polynomial in R[x]. Then
gi(x) is irreducible in R[x] by 8.2.7, and we have

r1r2· · · rnf(x) = c1c2· · · cng1(x)g2(x)· · · gn(x).

Now c = c1c2 · · · cn is the content of r1r2 · · · rnf(x) since g1(x)g2(x) · · · gn(x) is
primitive. Thus r1r2 · · · rn divides c. Hence

f(x) = rg1(x)g2(x) · · · gn(x)

with r in R, and with r a product ua1a2 · · · ak of irreducible elements ai in R
and a unit u in R. Since any element in R not 0 or a unit is a product of
irreducible elements in R, and since every element irreducible in R is irreducible
in R[x], we have shown that every element in R[x] is a product of irreducible
elements. Suppose that

a1a2· · · ajf1(x)f2(x)· · · fm(x) = b1b2 · · · bkg1(x)g2(x)· · · gn(x),

with each factor irreducible in R[x], with the ai and bi in R, and the fi(x)
and gi(x) polynomials of positive degree. Each fi(x) and gi(x) is primitive and
hence irreducible in F [x] by 8.2.7. In F [x], the ai and bi are units. Therefore,
viewing the equality in the PID F [x], m = n, and after rearrangement, fi(x)
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and gi(x) are associates in F [x]. Hence (ri/si)fi(x) = gi(x) with ri and si in
R, and so rifi(x) = sigi(x). Since fi(x) and gi(x) are primitive, ri and si are
associates in R. Thus we have a1a2 · · · aj = b1b2 · · · bkv with v a unit. Since R
is a UFD, j = k, and after renumbering, ai and bi are associates in R. This
completes the proof.

Corollary 8.2.10 If R is a UFD, then R[x1, x2, . . . , xn] is a UFD.

Corollary 8.2.11 Z[x1, x2, . . . , xn] is a UFD.

Corollary 8.2.12 If F is a field, then F [x1, x2, . . . , xn] is a UFD.

Let R be a UFD. It is usually quite diffi cult to tell whether a polynomial in
R[x] is irreducible or not. One test that is easy to apply is the following.

Theorem 8.2.13 (The Eisenstein Criterion) Let R be a UFD, and let f(x) =
a0 +a1x+ . . . +anx

n be in R[x]. If p is a prime in R such that p does not divide
an, p divides each of a0, a1, . . . , an−1, and p2 does not divide a0, then f(x) is
irreducible over F [x], where F is the quotient field of R.

Proof. Write f(x) = c(f(x))f1(x). Then f(x) satisfies the hypothesis on
its coeffi cients if and only if f1(x) does, and f(x) is irreducible in F [x] if and
only if f1(x) is irreducible in F [x]. Thus we may assume that f(x) is primitive.
Suppose that f(x) factors properly in F [x]. Then by 8.2.7,

f(x) = (b0 + b1x+ · · ·+ brx
r)(c0 + c1x+ · · ·+ csx

s)

with the bi and ci in R, r and s positive, and br and cs not zero. Since p
divides a0, p divides b0c0 = a0. Since p2 does not divide a0, p divides exactly
one of b0 and c0, say b0. If p divides all the bi, then p divides an. Thus p
does not divide some bk, and let k be the smallest such integer. Now ak =
bkc0 + bk−1c1 + · · ·+ b0ck, p divides b0, b1, , bk−1, and since k < n, p divides
ak. Thus p divides bkc0. But p divides neither bk nor c0. This contradiction
establishes the theorem.

Eisenstein’s Criterion is of special interest for the case R = Z.
An easy example of an integral domain that is not a UFD is this. Let F

be any field, and let R = F [x2, x3] be the subring of F [x] generated by F , x2,
and x3. Then in R, x6 = x2x2x2 = x3x3, and both x2 and x3 are irreducible
elements. Neither element is prime. For example, x2 divides x3 · x3, but does
not divide x3.
A less apparent example is the integral domain R = {m + n(−5)1/2 : m,

n ∈ Z}. To show that R is not a UFD, it is convenient to introduce the map
N : R→ Z given by

N(m+ n(−5)1/2) = (m+ n(−5)1/2)(m− n(−5)1/2) = m2 + 5n2.

One can readily check that N is multiplicative, that is, that if r and s are
in R, then N(rs) = N(r)N(s). Therefore, if u is a unit in R, then N(uu−1) =



288 CHAPTER 8. TOPICS IN RING THEORY

N(u)N(u−1) = N(1), whence N(u) = 1. Thus the only units in R are ± 1.
Now 21 can be factored in three ways into the product of irreducible factors:

21 = 3 · 7 = (1 + 2(−5)1/2)(1− 2(−5)1/2) = (4 + (−5)1/2)(4− (−5)1/2).

The factors are all irreducible. For example, N(3) = 9, so for any factor r of
3, N(r) = 1 or N(r) = 3. But N(r) = 1 implies that r = ±1, and N(m +
n(−5)1/2) = m2 + 5n2 = 3 is impossible. Similarly, one can show that the other
factors are irreducible. Therefore R is not a UFD.

PROBLEMS

1. Prove that an element in a UFD is irreducible if and only if it is prime.

2. Prove that any finite subset of a UFD has a gcd.

3. Let R be a UFD, let
a = uam1

1 am2
2 . . . amr

r ,

and let
b = van11 an22 . . . anrr ,

with the ai irreducible, mi and ni positive, and u and v units. Prove that
a divides b if and only if mi ≤ ni for all i.

4. In Problem 3, let ki be the minimum of mi and ni. Prove that

gcd(a, b) = ak11 a
k2
2 · · · akrr .

5. Let R be a UFD, and let f(x) = ag(x) = bh(x) with a and b in R, and g(x)
and h(x) primitive elements of R[x]. Prove that a and b are associates in
R, and that g(x) and h(x) are associates in R[x].

6. Let R be a UFD. Prove that

x4 + 2y2x3 + 3y3x2 + 4 yx+ y + 8y2

is irreducible in R[x, y].

7. Let R be a UFD. Prove that if f(x) is in R[x] and f(x) is reducible, then
so is f(x+ a) for each a in R.

8. Prove that if p is a prime, then xp−1 + xp−2 + . . . +x+ 1 is irreducible in
Z[x].

9. Prove that x4 + 1 is irreducible over Q[x].

10. Prove that if R is a UFD and if f(x) is a monic polynomial with a root
in the quotient field of R, then that root is in R.
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8.3 The Hilbert Basis Theorem

In this section we will prove the Hilbert Basis Theorem– if R is a commutative
Noetherian ring, then so is R[x]. This theorem is fundamental in the ideal
theory of commutative rings.
A ring R is Noetherian (4.4.5) if every infinite chain

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

of ideals becomes constant. That is, it is impossible to have an infinite strictly
increasing chain of ideals of R. This is also expressed by saying that R sat-
isfies the ascending chain condition (acc) on ideals. A ring R satisfies the
maximum condition on ideals if every non-empty set of ideals of R has a
member that is not properly contained in any other member of that set. Such a
member is called a maximal element of that set. An ideal I of R is finitely
generated if there are finitely many elements r1, r2, . . . , rn of R such that I
is the smallest ideal of R containing all the ri. If R is commutative, this simply
means that I = Rr1 +Rr2 + · · ·+Rrn.
The Hilbert Basis Theorem is concerned with commutative rings. However,

we will need in later sections the notion of left Noetherian ring (and right
Noetherian ring). A ring R is left Noetherian if every ascending chain of left
ideals becomes constant. Similarly, R satisfies the maximum condition on
left ideals if every non-empty set of left ideals has a maximal element.

Lemma 8.3.1 Let R be a ring. The following are equivalent.

a. R is left Noetherian.

b. R satisfies the maximum condition on left ideals.

c. Every left ideal of R is finitely generated.

Proof. Assume (a), and let S be a non-empty set of left ideals of R. Let
I1 be in S. If I1 is not a maximal element of S, then there is an element I2 of
S such that I1 is properly contained in I2. If I2 is not maximal, then there is
an I3 in S such that I2 is properly contained in I3, and so on. Since R is left
Noetherian, we eventually reach an In that is maximal in S. Thus (a) implies
(b).
Assume (b), and let I be a left ideal of R. Let r1 be in I, and let I1 be the

left ideal generated by r1, that is, I1 = Rr1. If I1 is not I, then there is an
element r2 in I and not in I1. Let I2 be the ideal Rr1 + Rr2 generated by r1

and r2. Then I2 properly contains I1. If I2 is not I, then there is an element r3

in I and not in I2. This process must stop. That we must come to an In such
that In = I. Otherwise we get a non-empty set {I1, I2, I3, . . . } of left ideals
which has no maximal element. Thus I = In for some n, whence I is generated
by the finite set {r1, r2, . . . , rn}. Thus (b) implies (c).
Assume (c), and let I1 ⊂ I2 ⊂ I3 ⊂ · · · be a chain of left ideals of R. By

(c), the left ideal I = ∪jIj is generated by a finite subset {r1, r2, . . . , rn} of I.
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Each ri is in some member of the chain of left ideals, and hence there exists an
n such that all ri are in In. Thus In = I, and so

In = In+1 = In+2 = · · · .

Hence (c) implies (a), and the proof is complete.
If R is a commutative ring, then left ideals are the same as ideals. Hence,

if R is a commutative ring, then R is Noetherian if and only if every ideal of R
is finitely generated. This is the fact we need in the proof below of the Hilbert
Basis Theorem.

Theorem 8.3.2 (The Hilbert Basis Theorem) If R is a commutative Noetherian
ring, then so is R[x].

Proof. Let A be an ideal of R[x]. Let Ai be the set of elements a in R which
appear as the leading coeffi cient in some polynomial a0 +a1x+a2x

2 + · · ·+axj

in A of degree j ≤ i. If a and b are in Ai, then a is the leading coeffi cient of
a polynomial f(x) in A of degree j ≤ i, and b is the leading coeffi cient of a
polynomial g(x) in A of degree k ≤ i. Therefore, a+ b is the leading coeffi cient
of the polynomial xi−jf(x) + xi−kg(x) in A of degree i. Since ra is the leading
coeffi cient of rf(x), it follows that Ai is an ideal of R. The ideals Ai form an
increasing chain

A0 ⊂ A1 ⊂ A2 ⊂ · · · . ,

and since R is Noetherian, this chain stops, say at An. So An = An+1 = An+2 =
· · · . Each Ai is finitely generated, and let ai1, ai2, . . . , airi generate Ai for
i = 0, 1, . . . , n. For each i, let fij be a polynomial of A of degree i with leading
coeffi cient aij , j = 1, 2, . . . , ri. We will now show that the fij generate A. Let
f be in A, f 6= 0. We induct on the degree d of f . If d > n, then the leading
coeffi cients of xd−nfn1, . . . , xd−nfnrn generate Ad. Hence there exist elements
s1, s2, . . . , srn in R such that

g = f − s1x
d−nfn1 − · · · − srnxd−nfnrn

has degree less than d, and g is in A. Similarly, if d ≤ n we get an element
g = f−s1fd1−· · ·−srnfdrnof degree less than d with g in A. (g may be 0.) By
induction, we can subtract from f a polynomial h in the ideal generated by the
fij such that f − h is again in the ideal generated by the fij . This completes
the proof.

Corollary 8.3.3 If R is a commutative Noetherian ring, then so is R[x1, x2,
. . . , xn].

Corollary 8.3.4 If F is a field, then F [x1, x2, . . . , xn] is Noetherian.
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8.4 The Lasker-Noether Decomposition Theo-
rem

Throughout this section all our rings will be commutative. An ideal I in a ring
R is prime if whenever a product a · b is in I, then either a or b is in I. The
concept corresponds to the concept of a prime number in ordinary arithmetic.
In fact, in a PID, an ideal I such that I 6= 0 and I 6= R is prime if and only
I = Rp where p is prime. An ideal I is primary if whenever a product a · b is
in I and a is not in I, then bn is in I for some positive integer n. This concept
corresponds to that in ordinary arithmetic of being a power of a prime number.
In a PID, an ideal I not zero or R is primary if and only if I = Rpn, where p is
prime. In a PID, every element a, not a unit or zero, is uniquely a product

a = pn11 pn22 · · · pnrr

of powers of distinct primes. This can be expressed by the equation

Ra = Rpn11 ∩Rp
n2
2 ∩ · · · ∩Rpnrr .

In an arbitrary Noetherian ring, it is not necessarily true that an element
is a product of powers of primes. However, it is true that every ideal in a
Noetherian ring is the intersection of primary ideals, and there is a certain
amount of uniqueness to the set of primary ideals involved. That is the gist
of the Lasker-Noether decomposition theorem. We proceed now to the precise
formulation and proof of this theorem. Some further preliminaries are needed.
An ideal in a ring is irreducible if it is not the intersection of a finite number

of ideals strictly containing it.

Lemma 8.4.1 Let R be a Noetherian ring. Then every ideal of R is the inter-
section of finitely many irreducible ideals.

Proof. Let Ω be the set of all ideals of R which are not intersections of
finitely many irreducible ideals. We need to show that Ω is empty. If Ω is not
empty, then it has a maximal element I because R is Noetherian. Since I is not
irreducible, I = J ∩K, where J and K are ideals properly containing I. Since
J and K properly contain I and I is a maximal element of Ω, neither J nor K
is in Ω. Hence J and K are finite intersections of irreducible ideals, whence I
is a finite intersection of irreducible ideals. This is a contradiction. Therefore
Ω is empty, and the lemma is proved.

The next step is to show that in a Noetherian ring, irreducible ideals are
primary. Let I be an ideal, and let S be a subset of R. Then I : S is defined to
be the set {r ∈ R : rS ⊂ I}. That is, I : S is the set of all r in R such that r · s
is in I for all s in S. It is easy to check that I : S is an ideal of R.

Lemma 8.4.2 Let R be a Noetherian ring. Then irreducible ideals of R are
primary.
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Proof. Let I be an ideal of R. If I is not primary, then there are elements
a and b in R with a · b in I, a not in I, and no power of b in I. Since R is
Noetherian, the chain

I : b ⊂ I : b2 ⊂ I : b3 ⊂ . . .

of ideals must terminate. Thus there is an integer n such that I : bn = I : bn+1.
The ideals I +Ra and I +Rbn properly contain I since neither a nor bn is in I.
We will show that

I = (I +Ra) ∩ (I +Rbn).

Let x be in (I +Ra) ∩ (I +Rbn). Then x = u+ ra = v + sbn, with u and v in
I, and r and s in R. Then

bx = bu+ rab = bv + sbn+1

is in I since bu and rab are in I. Since bv is also in I, we get that sbn+1 is in I.
Thus s is in I : bn+1, whence s is in I : bn = I : bn+1. Hence sbn is in I, and so
x is in I. It follows that I = (I +Ra)∩ (I +Rbn), and that I is not irreducible.
This concludes the proof.
From 8.4.1 and 8.4.2, we know that every ideal in a Noetherian ring is the

intersection of finitely many primary ideals. We will do much better than this,
but another concept is needed. Let I be an ideal. Then the radical of I,
denoted

√
I , is defined to be the set {r ∈ R : rn ∈ I for some positive integer

n}. It is not diffi cult to show that
√
I is an ideal.

Lemma 8.4.3 The radical of a primary ideal is a prime ideal.

Proof. Let I be a primary ideal of R, and suppose that a · b is in J =
√
I

with a not in J . Since a · b is in J , then (a · b)n = anbn is in I for some positive
integer n. Since a is not in J , an is not in I. Thus (bn)m is in I for some m,
and so b is in J . Hence J is prime.
If I is a primary ideal, then the prime ideal

√
I is called the associated

prime ideal of I, I is said to belong to the prime ideal
√
I , and I is said to

be primary for
√
I .

Lemma 8.4.4 Let Qi be primary, i = 1, 2, . . . , n, with the same associated
prime ideal P . Then ∩iQi = Q is primary with associated prime ideal P .

Proof. Suppose that a · b is in Q, and a is not in Q. Then a is not in Qj
for some j. Since a · b is in Qj , bm is in Qj for some m. Hence b is in P . Since√
Qi = P for all i, bmi is in Qi for some mi , i = 1, 2, . . . , n, whence bk is in Q

for k ≥ Σimi. Therefore Q is primary. We need
√
Q = P . But

√
Q ⊂

√
Qi = P ,

and we have just seen that if an element is in P , then a power of it is in Q.
Thus

√
Q = P .

Let I = ∩ni=1Qi with the Qi primary. This representation of I as the inter-
section of primary ideals is called irredundant if no Qi contains the intersection
of the rest of the Qi’s, and the Qi’s have distinct associated primes.
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Theorem 8.4.5 (The Lasker-Noether Decomposition Theorem) Let R
be a Noetherian ring. Then every ideal I of R admits an irredundant represen-
tation as a finite intersection of primary ideals. If

I = Q1 ∩Q2 ∩ · · · ∩Qm = Q′1 ∩Q′2 ∩ · · · ∩Q′n
are two such representations, then m = n and the two sets of associated prime
ideals Pi =

√
Qi , i = 1, 2, . . . , m and P ′i =

√
Q′i, i = 1, 2, . . . , n are the

same.

Proof. That an ideal I of R admits such a representation follows immedi-
ately from 8.4.1, 8.4.2, and 8.4.4. Indeed, by 8.4.1, I = Q1 ∩Q2 ∩ · · · ∩Qm with
Qi irreducible. By 8.4.2, each Qi is primary. If some Qi contains the intersection
of the rest, it can be discarded. If Qi and Qj have the same associated prime,
then Qi ∩Qj is primary with that same associated prime by 8.4.4. Replace Qi
and Qj by the single primary ideal Qi∩Qj . This clearly leads to an irredundant
representation of I as the intersection of finitely many primary ideals.
Now to the uniqueness part of the theorem. If the set of asssociated primes

of an ideal I is unique, then it should be describable in terms of I alone, that is,
independent of any representation of I as an intersection of other ideals. The
following lemma does this, and proves the uniqueness part of 8.4.5.

Lemma 8.4.6 Let I be an ideal of R, I 6= R, and suppose that I = ∩ml=1Qi is
an irredundant representation of I as the intersection of finitely many primary
ideals. Then a prime ideal P of R is the associated prime of one of the Qi if
and only if there is an element r in R not in I such that I : r is primary for P .

Proof. There is an element r in

Q1 ∩ · · · ∩Qi−1 ∩Qi+1 ∩ · · · ∩Qm

which is not in Qi. If a is in I : r, then a · r is in I, whence a · r is in Qi.
But since r is not in Qi, ak is in Qi for some k, whence a is in Pi. Therefore
I : r ⊂ Pi, and clearly Qi ⊂ I : r = Qi : r. If x · y is in I : r, and x is not in
I : r, then x · y · r is in Qi, x · r is not in Qi, so yn is in Qi and hence in I : r
for some n. Therefore the ideal I : r is primary. Since

Q1 ⊂ Qi : r = I : r ⊂ Pi,
√
Qi = Pi ⊂

√
I : r ⊂

√
Pi = Pi,

I : r is primary for Pi.
Now suppose that there is an element r in R not in I such that I : r is

primary for the prime ideal P . Since

I : r = (∩iQi) : r = ∩i(Qi : r),

we get
√
I : r = P =

√
∩i(Qi : r) = ∩i

√
(Qi : r). Applying the first part of

the proof to the case I = Qi, for r not in Qi we get Qi ⊂ Qi : r ⊂ Pi. Thus√
Qi : r = Pi if r is not in Qi, and

√
Qi : r = R if r is in Qi. Thus P is the

intersection of some of the prime ideals Pi. This forces P to be one of the Pi
(Problem 2).
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PROBLEMS

1. Let I1, I2, . . . , In and J be ideals of R, and let Ji =
√
Ii. Prove that

(a) (∩iIi) : J = ∩i(Ii : J),

(b) J : (ΣiIi) = ∩i(J : Ii),

(c) I1 : (I2I3) = (I1 : I2) : I3,

(d)
√
I1I2 =

√
I1 ∩ I2 =

√
I1 ∩
√
I2,

(e)
√
I1 + I2 =

√
J1 + J2, and

(f)
√
Ji = Ji.

2. Prove that if P = ∩iPi, where P and the Pi are prime ideals of R, then
P = Pi for some i.

3. Prove that if Q is primary for P , and if I and J are ideals such that
IJ ⊂ Q and I is not contained in Q, then J ⊂ P .

4. Let P and Q be ideals of R. Prove that Q is primary and
√
Q = P if and

only if

(a) Q ⊂ P ,

(b) if a is in P , then an is in Q for some n, and

(c) if a · b is in Q and a is not, then b is in P .

5. Prove that if Q is primary for P , and if I is an ideal not contained in Q,
then Q : I is primary for P .

6. Let F be a field, and let R = F [x, y].

(a) Prove that P = Rx+Ry is prime (in fact maximal).

(b) Prove that Q = Rx+Ry2 is primary.

(c) Prove that
√
Q = P .

(d) Prove that Q 6= P 2.

(e) Prove that Q is not a power of any prime ideal of R.

(f) Prove that the ideal A = Rx2 +Rxy is not primary.

(g) Prove that
√
A is prime.
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8.5 Semisimple Rings

Let D be a division ring. We want to examine the ring Dn of all n×n matrices
over D, but to do so we will need to consider modules over the ring Dn. Modules
over a division ring D are called vector spaces over D, and many of the
elementary facts about vector spaces over fields carry over to vector spaces
over division rings. Linear independence, and bases are defined in exactly the
same way, and the proof of invariance of dimension (3.3.5) goes through word for
word. In fact, all of section 3.3 goes through for vector spaces over division rings.
Suppose now that V is a right vector space over D, {v1, v2, . . . , vn} is a basis of
V , and w1, w2, . . . , wn are in V . Then there is exactly one linear transformation
α on V such that α(vi) = wi. Therefore, as in the case for vector spaces over
fields, α is uniquely determined by its image α(vi) = wi = Σjvjaij , that is, by
the matrix (aij). Associating α with its matrix (aij) relative to the basis {v1,
v2, . . . , vn} is an isomorphism from the ring of all linear transformations on V
to the ring Dn of all n× n matrices over D. (Compare with 5.1.3.)
Now to the ring Dn. First Dn is a simple ring. That is, it has no two sided

ideals except 0 and Dn. To see this, suppose that I is an ideal in Dn. Let Eij
be the element of Dn with 1 in the (i, j) position and zeroes elsewhere. Now
suppose that (aij) is in I and that apq 6= 0. Then Ekp(aij)Eqk is the matrix
apqEkk. Multiplying apqEkk by the diagonal matrix a−1

pq (δij) gets Ekk in I.
Hence ΣkEkk = (δij) is in I, and so I = Dn, and therefore Dn is a simple ring.
A (left or right) module S over any ring is a simple module if it has no

submodules other than 0 and S. Now consider Dn as a left module over itself.
Its submodules are the left ideals of Dn, and Dn is not a simple module if n > 1.
Indeed, let Cm be the set of matrices with zeroes off the mth column. Thus, an
element of Cm looks like

0 0 · · · 0 c1m 0 · · · 0
0 0 · · · 0 c2m 0 · · · 0
...
...

...
...

...
...

0 0 · · · 0 cnm 0 · · · 0


.

Then Cm is a left submodule of Dn, and in fact the module Dn is the direct
sum of the submodules Cm. The Cm are simple modules. To prove that Cm
is simple, let (aij) be any non-zero element of Cm, and let akm be a non-zero
entry in (aij). If (cij) is any element of Cm, then it is easy to check that
(cij) = Σrcrma

−1
kmErk(aij). Thus the left module Dn is a direct sum of simple

modules.
A module over any ring is called semisimple if it is a direct sum S1⊕S2⊕

· · · ⊕ Sm of simple modules. (The usual definition of semisimple allows infinite
direct sums, but our direct sums are limited to a finite number of summands.)
Thus Dn is semisimple as a left module over itself. If Dn is considered as a right
module over itself, then it is also semisimple. It is the direct sum of the right
ideals Ri of matrices with zeroes off the ith row. A ring is called left (right)
semisimple if it is semisimple as a left (right) module over itself. Thus Dn is
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both left and right semisimple.
The simple left submodules Ci of Dn are all isomorphic. Indeed, the map

Ci → Cj given by taking an element of Ci to the element of Cj whose jth
column is the ith column of Ci is a Dn-isomorphism. Thus Dn is not only left
semisimple, but it is the direct sum of mutually isomorphic simple modules.
Analogous statements hold for Dn considered as a right module over itself.

Now consider all the endomorphisms E(Cj) of one of the simple left Dn

modules Cj . Let d be in D. Note that the map Cj → Cj given by (cij)→ (cij)d
is an element of E(Cj). We will show that every element of E(Cj) is just such a
right multiplication by an element ofD. It is notationally convenient to write left
module homomorphisms on the right and to write right module homomorphisms
on the left. Thus we will be writing our homomorphisms on the opposite side
of the scalars. Also, α ◦ β for left module homomorphisms means α followed by
β. Let α : Cj → Cj be an endomorphism of Cj · Each Eij , i = 1, 2, . . . , n is
in Cj . If q 6= i, then EpqEij = 0. Thus (EpqEij)α = 0 = Epq(Eijα), so that
Eijα has no non-zero entry off the ith row. Thus Eijα = Eijdi for some di in
D. Since EkiEij = Ekj , we have

(EkiEij)α = Ekjdk = EkiEijdi = Ekjdi.

Thus di = dk. Thus α multiplies each Eij by a fixed element d of D. Now
observe that for any a in D,

(a(cij))α = a((cij)α).

For any (cij) in Cj , (cij) = ΣicijEij , so

(cij)α =

(∑
i

cijEij

)
α =

∑
i

(cij(Eij))α =
∑
i

cijEijd = (cij)d.

Hence for any (cij) in Cj , (cij)α = (cij)d. Now it is easy to see that the
endomorphism ring of Cj is isomorphic to D. Just associate each α with its
corresponding d.
Now consider Cj as a right module over E(Cj), or equivalently, over D. It

is then a right vector space of dimension n over D, and its endomorphism ring,
that is, the ring of linear transformations on Cj , is just the ring Dn.
We sum up our discussion so far in the following theorem.

Theorem 8.5.1 Let D be a division ring, and let Dn be the ring of all n × n
matrices over D. Then Dn is a simple ring. As a left module over itself, Dn

is semisimple. In fact, Dn is the direct sum of n mutually isomorphic simple
modules. The endomorphism ring E of each of these simple Dn-modules S is
isomorphic to D, and the endomorphism ring of S considered as a module over
E is isomorphic to Dn. Analogous statements hold for Dn considered as a right
module over itself.

There are still some things about Dn that we would like to know. For
example, suppose that S is a simple left Dn-module. Is S isomorphic to the
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simple modules Cj? That is, does Dn have, up to isomorphism, just one simple
left module? The answer is yes, and to see that, let s be any non-zero element
of S. Then the map Dn → S : r → rs is an epimorphism of left Dn-modules.
Its kernelM is a left ideal, and since Dn/M ≈ S and S is simple, M is maximal
in Dn. That is, there is no left ideal strictly between M and Dn. Since Dn =
C1 ⊕ C2 ⊕ · · · ⊕ Cn and M 6= Dn, M does not contain some Cj . But since Cj
is simple, M ∩ Cj = 0. Since M is maximal in Dn, Dn = M ⊕ Cj . Hence
Dn/M ≈ Cj . But Dn/M ≈ S. Therefore S ≈ Cj . Similarly, Dn has only one
simple right module (up to isomorphism).
The left module Dn is the direct sum of n simple left modules. It cannot

be the direct sum of m simple left modules with m 6= n since any simple left
Dn-module has dimension n as a vector space over D. This also follows from
the following more general theorem, which we will need later.

Theorem 8.5.2 Let M be a left module over any ring R. Suppose that M is
the direct sum S1⊕S2⊕· · ·⊕Sn of simple modules Si. If M = T1⊕T2⊕· · ·⊕Tm
with each Ti simple, then m = n, and after renumbering, Si ≈ Ti for all i.

Proof. We will induct on n. If n = 1, the theorem is obviously true.
Suppose that n > 1 and that it holds for any module which is the direct sum of
fewer than n simple modules. If M = S1 ⊕ S2 ⊕ · · · ⊕ Sn = T1 ⊕ T2 ⊕ · · · ⊕ Tm,
then

S = S1 ⊕ S2 ⊕ · · · ⊕ Sn−1

does not contain some Tj , and we may as well suppose that j = m. Since Tm is
simple, S ∩ Tm = 0. Since M/S ≈ Sn is simple, S ⊕ Tm = M . Thus

S ≈M/Tm ≈ T1 ⊕ T2 ⊕ · · · ⊕ Tm−1 ≈ S1 ⊕ S2 ⊕ · · · ⊕ Sn−1.

By induction, m−1 = n−1, whencem = n. Further, after renumbering, Si ≈ Ti
for i < n. But M = S ⊕ Tm, M/S ≈ Tm, and M/S ≈ Sn. thus Tn = Tm ≈ Sn,
and the proof is complete.

Let R be any ring. As a left module over R, its submodules are its left ideals.
Such a submodule S is a simple module if and only if it is a minimal left ideal,
that is, if there are no left ideals strictly between S and 0.

Corollary 8.5.3 Suppose that R is a ring, and as a left module over itself, R
is the direct sum of n minimal left ideals. If R is the direct sum of m minimal
left ideals, then m = n.

Corollary 8.5.4 If Dn = S1 ⊕ S2 ⊕ · · · ⊕ Sm with each Si a simple left Dn-
module, then m = n, and the Si are mutually isomorphic. Similar statements
hold for right Dn-modules.

Theorem 8.5.5 Suppose that D and E are division rings, and that the rings
Dn and Em are isomorphic. Then m = n and D ≈ E.
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Proof. Considered as a left module over itself, Dn is the direct sum of n
minimal left ideals, and similarly Em is the direct sum of m minimal left ideals.
Since the rings Em and Dn are isomorphic, m = n. The endomorphism ring of
any minimal left ideal (or simple left submodule) of Dn is D and of any minimal
left ideal (or simple left submodule) of Em is E. Since the rings Dn and Em are
isomorphic, D ≈ E.
Now suppose that R is a simple ring and that R is left semisimple. Thus

R = S1⊕S2⊕· · ·⊕Sn with the Si minimal left ideals. It turns out that R ≈ Dn

for some division ring D. Of course n and D are unique by the last theorem.
Actually n is unique by 8.5.2. Where does one get D?

Theorem 8.5.6 (Schur’s Lemma) Let S be a simple left module over any
ring R. Then the endomorphism ring ER(S) of S is a division ring.

Proof. We must show that any non-zero endomorphism of S is a unit. Let α
be in ER(S), α 6= 0. Then α is onto since Im(α) 6= 0 and S has no submodules
except 0 and S. Since Ker(α) 6= S, Ker(α) must be 0. Thus α is one-to-one
and onto, so has an inverse α−1 as a mapping of the set S onto itself. But α−1

is an endomorphsim, as can be easily checked.

Lemma 8.5.7 Let R be a left semisimple ring. Then R is a simple ring if and
only if there is, up to isomorhism, only one simple left R-module.

Proof. Since R is left semisimple, R = S1⊕S2⊕· · ·⊕Sn with the Si simple
left R-modules. Suppose that S is a simple left R-module. Then R/M ≈ S
for some maximal left ideal M. Since M does not contain some Si, M ∩ Si = 0
and M ⊕ Si = R. Thus R/M ≈ Si ≈ S. Hence we need to show that the
Si are mutually isomorphic. We have not used yet the fact that R is a simple
ring. The set 0 : Sj = {r ∈ R : rSj = 0} is a two sided ideal of R, and thus
0 : Sj = 0. For any si in Si, si 6= 0, there must be an sj in Sj with sisj 6= 0. The
map Si → Sj : x → xsj is a left R-module homomorphism, and is not 0 since
sisj 6= 0. Since Si and Sj are simple, this map must be an isomorphism.To show
that R is a simple ring if it has only simple left module, let I be a two-sided
ideal of R with I 6= R. Then I does not contain some Si, say S1, and since S1

is a simple left module, I ∩ S1 = 0. The Si are mutually isomorphic. Let ϕi be
an isomorphism from S1 to Si. Let s1 be a generator of S1. Then si = ϕi(s1)
generates Si. Since I is a two sided ideal and S1 is a left ideal, IS1 = 0, being
contained in I ∩ S1 = 0. For i in I, ϕi(i · s1) = ϕi(0) = iϕi(s1) = i · si, so
Isi = 0. But I = IR, so (IR)si = I(Rsi) = ISi = 0. Thus

I(S1 ⊕ · · · ⊕ Sn) = IR = I = 0,

and R is simple.
Thus with a simple ring R which is left semisimple, there is naturally associ-

ated a division ringD and a number n. The division ringD is the endomorphism
ring of any simple left R-module, and n is the number of summands in any de-
composition R = S1 ⊕ S2 ⊕ · · · ⊕ Sn of R into a direct sum of such minimal left
ideals. We would like to show that R ≈ Dn as rings. This is a consequence of
the following powerful theorem.
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Theorem 8.5.8 (The Jacobson Density Theorem) Let R be a ring, and
suppose that R has a simple left module S such that

0 : S = {r ∈ R : rS = 0} = 0.

Let D be the endomorphism ring ER(S) of S. If

{s1, s2, . . . , sn}

is a linearly independent subset of the right vector space S over the division ring
D, and if x1, x2, . . . , xn are elements of S, then there is an element r in R
such that rsi = xi for all i.

Proof. Before we start the proof of the theorem, let us see what it says in
a special case. If R is a simple ring, then certainly 0 : S = 0. If it turns out
that S is finite dimensional over D, then taking {s1, s2, . . . , sn} to be a basis
of S, we see that every linear transformation of the vector space S over D is
just multiplication by an element of r. Since no element r of R annihilates all
of S, R is, in effect, the ring of all linear transformations on the n-dimensional
vector space S. Thus R ≈ Dn. We will draw additional corollaries.

Now to the proof of the theorem. First we will prove the preliminary fact
that if T is a subspace of S of finite dimension, and if s is in S and not in T ,
then there is an element r in R such that rT = 0 and rs 6= 0. We induct on
dim(T ). If dim(T ) = 0, let r = 1. Suppose that dim(T ) = n > 0, and that the
assertion is true for all subspaces of dimension less than n. Now T = V ⊕ xD
with Dim(V ) = n− 1. Let

I = {r ∈ R : rV = 0}.

Now I is a left ideal of R, and by the induction hypothesis, there is an element
r in R such that rV = 0 and rx 6= 0. Such an r is in I, so Ix 6= 0. But Ix is a
non-zero submodule of the simple module S, so Ix = S. Let s be in S, s not in
T , and assume that every element of R which annihilates T also annihilates s.
Letting i · x correspond to i · s defines a map from Ix = S to S since i · x = 0
yields iT = 0, and thus i · s = 0. This map is clearly an R-homomorphism, and
therefore is an element d in D = ER(S). We have, for each i in I,

i(xd− s) = ixd− i · s = 0,

so by the induction hypothesis, xd − s is in V . Thus s is in V ⊕ xD, and this
is a contradiction. Therefore some element of R annihilates T and does not
annihilate x. This concludes the proof of our preliminary result.
Now let {s1, s2, . . . , sn} be a linearly independent subset of S, and let x1,

x2, . . . , xn be in S. We induct on n. If n = 1, there is no problem since Rs1 = S.
Assume that the theorem is true for independent sets of size < n. Then there
are elements r and a in R such that rsi = xi for i = 1, 2, . . . , n− 1, asn 6= 0,
and as1 = as2 = · · · = asn−1 = 0. Since Rasn = S, there is an element r1 in R
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such that r1asn = xn − rsn. We have (r + r1a)si = rsi + r1asi = rsi = xi for
i < n, and

(r + r1a)sn = rsn + r1asn = xn.

This concludes the proof of the theorem.
Suppose that R is a simple ring and that S is a simple left R-module. Then

the hypotheses of 8.5.8 are satisfied, and as we pointed out, if S is of dimension
n over the division ring D = ER(S), then R ≈ Dn. How can we tell from R itself
whether or not S is finite dimensional? Suppose that S is infinite dimensional.
Then there is a subset {s1, s2, . . . } of S such that for all n, {s1, s2, . . . , sn}
is linearly independent. Let In be the left ideal {r ∈ R : rsi = 0 for all i ≤ n}.
We have the chain I1 ⊃ I2 ⊃ I3 ⊃ · · · of left ideals, and by the proof of 8.5.8,
all the inclusions are proper ones. That is, R does not satisfy the descending
chain condition on left ideals. Thus, if R satisfies the descending chain condition
on left ideals, S would have to be finite dimensional. A ring that satisfies the
dcc on left ideals is called left Artinian, and right Artinian rings are similarly
defined. Also, a left Artinian ring R has a minimal left ideal S, and S is then a
simple left R-module. Thus we have the following theorem.

Theorem 8.5.9 (The Wedderburn-Artin Theorem) Let R be a left Ar-
tinian simple ring. Then R ≈ Dn for some division ring D and integer n.

A ring R which has a simple left module S such that 0 : S = 0 is called left
primitive.

Corollary 8.5.10 A left primitive left Artinian ring is isomorphic to Dn for
some division ring D and integer n.

Corollary 8.5.11 Let R be a simple ring which is left semisimple. Then R ≈
Dn for some division ring D and integer n.

Proof. A ring which is left semisimple is left Artinian (Problem 7). Then
8.5.11 follows from 8.5.9.

Corollary 8.5.12 A simple ring R is left semisimple if and only if it is right
semisimple.

Proof. If R is left semisimple, then R ≈ Dn, and Dn is right semisimple.
Now 8.5.8 holds with left and right interchanged. There is no difference in the
proof. Hence if R is right semisimple, R ≈ Dn, whence R is left semisimple.
Now suppose that R is a left semisimple ring. Then R = S1 ⊕ S2 ⊕ · · · ⊕ Sn

with the Si minimal left ideals. The Si are not necessarily isomorphic as in the
case when R is also a simple ring (8.5.7). We rewrite

R = (S11 ⊕ S12 ⊕ · · · ⊕ S1n1)⊕ (S21 ⊕ S22 ⊕ · · · ⊕ S2n2)

⊕ · · · ⊕ (Sm1 ⊕ Sm2 ⊕ · · · ⊕ Smnm)
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with Sij ≈ Spq if and only if i = p. Let

Ri = Si1 ⊕ · · · ⊕ Sini .

Thus R = R1 ⊕R2 ⊕ . . .⊕Rm, with Ri the direct sum of mutually isomorphic
minimal left ideals of R. Let sij be in Sij . If sijspq 6= 0 for some sij and spq,
then the map Sij → Spq given by x→ xspq is an R-isomorphism since Sij and
Spq are simple left R-modules. Thus i = p. Therefore, SijSpq = 0 for i 6= p,
and more generally, RiRj = 0 if i 6= j. In particular, the Ri are two-sided
ideals of R. That is, R is the ring direct sum of the subrings Ri. Hence R can
be considered as m-tuples (r1, r2, . . . , rm) with addition and multiplication
componentwise. Let 1 = e1 + e2 + · · ·+ em with ei in Ri. Then for ri in Ri,

ri = 1 · ri = ri · 1 = (e1 + e2 + · · ·+ em)ri =

ri(e1 + e2 + · · ·+ em) = eiri = riei,

so that ei is the identity of the ring Ri. Now it should be clear that each Ri is
a left semisimple ring, Ri = Si1 ⊕ · · · ⊕ Sini , and the Sij , j = 1, 2, . . . , ni are
mutually isomorphic. By 8.5.7, Ri is simple, and so is a ring of matrices over a
division ring.

Theorem 8.5.13 Let R be left semisimple. Then R is a direct sum R1⊕R2⊕
· · ·⊕Rm of minimal two sided ideals Ri. The Ri are unique, and each Ri is the
ring of ni × ni matrices over a division ring Di.

Proof. Only the uniqueness of the Ri remains to be proved. Suppose that
R = A1 ⊕ A2 ⊕ · · · ⊕ Ak with each Ai a minimal two sided ideal of R. If
Ri ∩Aj = 0 for all i, then

(R1 ⊕ · · · ⊕Rm)Aj = RAj = Aj = 0.

Thus R1 ∩ Aj 6= 0 for some i. Since Ri and Aj are both minimal two sided
ideals, Ri = Aj . Thus each Aj equals some Ri, and the uniqueness of the Ri
follows.

Corollary 8.5.14 A ring R is left semisimple if and only if it is right semi-
simple.

PROBLEMS

1. Let α be an isomorphism from the ring R to the ring S. Prove that if I is
a left ideal of R, then α(I) is a left ideal of S. Prove that if I is minimal,
then so is α(I). Prove that if the left R-module R is semisimple, then so
is the left S-module S. Prove that if R is left Artinian, then so is S.

2. Let R be a ring, and let I be a summand of the left R-module R. Prove
that I = Re with e2 = e.
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3. Prove that if a ring R has no non-zero nilpotent elements, that is, no
element r 6= 0 such that rn = 0 for some integer n, then any idempotent
in R is in the center of R.

4. Prove that if R and S are left Artinian (Noetherian), then so is R⊕ S.

5. Let R be a ring such that every left ideal of R is a summand of the left
R-module R. Prove that if R is left Noetherian, then R is semisimple.

6. Suppose that the left R-module M = S1 ⊕ · · · ⊕ Sn with each Si a simple
module. Prove that every submodule of M is a summand of M .

7. Prove that a ring that is left semisimple is left Artinian.

8. Prove that if R is semisimple, then every finitely generated left R-module
is a direct sum of simple modules. Prove that every simple left R-module
is isomorphic to a minimal left ideal of R.

9. Let e1 and e2 be idempotents in the ring R. Prove that the left modules
Re1 and Re2 are isomorphic if and only if the right modules e1R and e2R
are isomorphic.

10. Prove that the ring of all upper triangular 2× 2 matrices(
a b
0 c

)
where a is in Z, and b and c are in Q, is right Noetherian but not left
Noetherian.

11. Let D be a division ring. Let R be the ring of all upper triangular 2 × 2
matrices with entries from D. Is R simple? Is R semisimple?

12. Which rings Z/nZ are semisimple?

13. Let G = {g1, g2, . . . , gn} be a finite group. Prove that e = (1/n)(g1 +
g2 + · · · + gn) is an idempotent in Q(G). Prove that e is in the center of
Q(G). Thus prove that Q(G) is the ring direct sum Q(G)e⊕Q(G)(1− e).
Prove that the ring Q(G)e is isomorphic to Q.

14. Let G be the group with two elements. Prove that the group ring Q(G)
is semisimple. Do the same thing for the group G with three elements.
(Actually, Q(G) is semisimple for every finite group G.)

15. Let I be a minimal left ideal of a ring R. Prove that I is a summand of
R if and only if I2 6= 0.

16. Prove that a ring is semisimple if and only if it is left Artinian, and for all
minimal left ideals I, I2 6= 0.

17. Prove that a simple ring with a minimal left ideal is semisimple.
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18. Prove that the intersection J of all maximal left ideals of a ring R is a two
sided ideal. Prove that J is the intersection of all maximal right ideals of
R.

19. Let I be a left ideal of the Noetherian ring R. Prove that 1 + a has a left
inverse for all a in I if and only if I is contained in all the maximal left
ideals of R. (This is true without the assumption that R is Noetherian.
See the Appendix, Problem 9.) Prove that if 1 + a has a left inverse for
all a in I, then 1 + a has a right inverse for all a in I.
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Appendix: Zorn’s Lemma

While we have not hesitated to use the Axiom of Choice in its believable intuitive
form, and have done so without explicit mention, we have refrained from using
the more technical arguments involving Zorn’s Lemma. Such arguments are
used extensively in mathematics, especially in algebra. We will illustrate the
use of this important tool in this appendix.
Let I be a non-empty set, and let {Si}i∈I be a family of non-empty sets

Si. Is there a function f : I → ∪iSi such that f(i) is in Si for all i in I? The
assumption that there is such a function is theAxiom of Choice. The function
f “chooses”an element from each set Si. The Axiom of Choice can be neither
proved nor disproved from the usual axioms of set theory. However, it is an
extremely useful axiom, and used by most mathematicians. There are several
mathematical statements logically equivalent to the Axiom of Choice, and on
the intuitive level, some of them are not nearly as believable as the Axiom of
Choice. Zorn’s Lemma is one of these. We need some preliminary definitions
before stating it.

Definition .0.15 Let S be a set. A relation ≤ on S is a partial ordering of
S, or a partial order on S if it satisfies

1. s ≤ s for all s in S;

2. if s ≤ t and if t ≤ u, then s ≤ u;

3. if s ≤ t and t ≤ s, then s = t.

If in addition, for s and t in S, either s ≤ t or t ≤ s, then ≤ is a linear
ordering of S, or simply an ordering of S. If S is a partially ordered set, a
subset T of S is called a chain if for any pair of elements s and t of T , either
s ≤ t or t ≤ s. That is, T is a chain if ≤ induces on ordering of T . If T is a
subset of a partially ordered set S, than an element s in S is an upper bound
of T if t ≤ s for all t in T . An element s of a partially ordered set S ismaximal
if whenever t is in S and s ≤ t, then s = t. That is, there is no element in S
which is strictly bigger than s. Zorn’s Lemma has to do with the existence of
maximal elements.

Axiom .0.16 (Zorn’s Lemma) Let S be a partially ordered set. If every
chain in S has an upper bound in S, then S has a maximal element.
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Zorn’s Lemma is logically equivalent to the Axiom of Choice, but this is not
obvious.
Note that S cannot be empty. If S were empty, then S is a chain in S, and

thus must have an upper bound in S. That is, S must have an element s such
that t ≤ s for all t in S.
Here is how Zorn’s Lemma will often be applied. Let A be a set. Let S be

a set of subsets of A. Then S is partially ordered by setting A1 ≤ A2 if A1 is a
subset of A2. To conclude that S has a maximal element, one must show that
every chain C in S has an upper bound in S. This is usually done by showing
that the union of the elements of C is in S. Of course, S has to be a very special
set of subsets of A for this to be so.
Here are some applications of Zorn’s Lemma.

Theorem .0.17 Every vector space has a basis.

Proof. Let V be a vector space over F . By a basis of V , we mean a linearly
independent subset B of V that generates V . The set B may, of course, be
infinite, and an infinite set is defined to be linearly independent if every finite
subset of it is linearly independent. (B may also be empty.) Let S be the set
of all linearly independent subsets of V . The set S is partially ordered by set
inclusion. Let C be any chain in S. Thus C is a set of linearly independent
subsets of V such that for any two of them, one is contained in the other. We
need to show that C has an upper bound in S. Let U = ∪T∈CT . The set U is
linearly independent. Indeed, if {u1, u2, . . . , un} is a finite subset of U , then
there is a Ti in C such that ui is in Ti. Thus, there is a T in C such that {u1,
u2, , un} is contained in T , namely the biggest of the Ti’s. Since T is linearly
independent, so is {u1, u2, , un}, and thus U is linearly independent. By
Zorn’s Lemma, S has a maximal element B. Then B is a linearly independent
subset of V that is not properly contained in any other linearly independent
subset of V . We need to show that B generates V . Suppose not. Then there is
an element v in V not in the subspace generated by B. It follows readily that
B ∪ {v} is a linearly independent subset of V , contradicting the fact that B is
maximal among those subsets of V . Thus B is a basis of V .

Theorem .0.18 Theorem. Let W be a subspace of the vector space V over the
field F . Then W is a summand of V .

Proof. Let S be the set of all subspaces X of V such that X ∩W = 0.
The set S is partially ordered by inclusion. Suppose that C is a chain in S. Let
Y = ∪X∈CX. Then Y is a subspace of V , and Y ∩W = 0, so Y is in S. Clearly Y
is an upper bound of C. Therefore Zorn’s Lemma applies, and S has a maximal
element X. Since X ∩W = 0, all we need is that V = X + W . Suppose that
there is an element v in V such that v is not in X+W . Then (X+Fv)∩W = 0
since x + av = w 6= 0 implies that a 6= 0, whence v = −a−1x + a−1w is in
X + W . Since X + Fv properly contains S, and (X + Fv) ∩W = 0, X is not
maximal in S. This contradiction establishes that V = X ⊕W .
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Theorem .0.19 Let R be a ring with identity. Then R has a maximal left ideal.

Proof. Recall that a maximal left ideal of R is an ideal M of R such that
M 6= R and such that there is no left ideal strictly between M and R.

Let S be the set of all left ideals I of R such that I 6= R. The set S is
partially ordered by inclusion. For any chain C in R, ∪I∈CI = J is a left ideal
of R and is not R since 1 is not in J . Also J is an upper bound of C. Thus S
has a maximal element.

Theorem .0.20 Let R be a semi-simple ring. Then any left R-module M is a
direct sum of simple modules.

Proof. Let M be a left R-module. The module M is a direct sum of simple
submodules if there is a set {Si}i∈I of simple submodules of M such that every
element m in M can be written uniquely in the form m = Σi∈Isi with si in Si.
Of course, all but finitely many si must be 0. Let S be the set of all sets X of
simple submodules ofM such that the submodule generated by the submodules
in X is the direct sum of the submodules in X. The set S is partially ordered
by inclusion, and it should be clear that the union of a chain in S is in S, so
that chains in S have upper bounds in S. Thus S has a maximal element Y . We
need to show that M is the direct sum of the elements of Y . The only problem
is that the submodule N generated by the elements of Y may not be all of M .
Suppose that there is an element m in M such that m is not in N . Then since
R is semi-simple, Rm is the direct sum A1 ⊕ · · · ⊕Ak of simple modules. Some
Ai is not in Y , and it follows readily that Y ∪ {Ai} is an element of S. That is,
Y is not maximal in S. This completes the proof.

Theorem .0.21 Any field F has an algebraic closure, and any two algebraic
closures of F are F -isomorphic.

Proof. Recall that an algebraic closure of F is an algebraic extension K
of F such that every polynomial in K[x] of degree at least one factors into
linear factors in K[x]. Let X be a set in one-to-one correspondence with the
set of all polynomials in F [x] of degree at least one. We denote by x(f) the
element in X corresponding to f(x). Now form the ring F [X]. This is the ring
of all polynomials in indeterminates from X with coeffi cients from F . Thus any
element in F [X] is an element of

F [x(f1), , x(fn)]

for some finite number x(f1), , x(fn) of indeterminates. Let I be the ideal
of F [X] generated by all the elements f(x(f)). If I were F [X], then 1 =
Σni=1gifi(x(fi)) for some gi in F [X] and generators fi(x(fi)). The gi involve
only finitely many x(f)’s, so each gi is a polynomial gi(x(f1), , x(fm)), with
m ≥ n. Let F1 be a finite extension of F in which each fix(fi)), i = 1, , n
has a root ri, and for i > n, set ri = 0. Substituting ri for x(fi) in our relation

1 =

n∑
i=1

gi(x(f1), . . . , x(fm))fi(x(fi)),
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we get 1 = 0 in F . Therefore I 6= F [X]. By Zorn’s Lemma, I is contained in a
maximal ideal M . Since M is maximal, F [X]/M = K1 is a field. The field F is
contained in K1 via the map

F → K1 : a→ a+M ,

and we view F now as a subfield of K1. For any polynomial f(x) of degree at
least one in F [x], f(x(f) +M) = f(x(f)) +M = M , which is 0 in K1. That is,
every polynomial in F [x] of degree at least one has a root in K1. The field K1

is an algebraic extension of F since each x(f) +M is algebraic over F and K1

is generated by F and the set of all x(f) + M . Thus, given a field F , we have
constructed an algebraic extension K1 of F such that every polynomial f(x) in
F [x] of degree at least one has a root in K1, or equivalently, a linear factor in
K1[x]. We do not know that K1 is algebraically closed because we do not even
know that every such polynomial in F [x] factors into linear factors in K1[x].
However, construct K2 from K1 in the same way that K1 was constructed from
F ; in general, from Ki construct Ki+1 such that every polynomial in Ki[x] of
degree at least one has a root in Ki+1. Let K = ∪iKi. Then K is an algebraic
extension of F , and if f(x) is in K[x] and has degree at least one, then f(x) is
in Ki[x] for some i, whence has a root in Ki+1 and hence in K. Therefore K is
algebraically closed.
Now let K and L be two algebraic closures of F . We want an F -isomorphism

between K and L. Let Ω be the set of all F -isomorphisms α : S → T between
subfields S of K containing F and subfields T of L containing F . One such is
the identity map on F . For α′ : S′ → T ′, let α ≤ α′ if S ⊂ S′ and α′ agrees with
α on S. This partially orders Ω, and it is easy to see that every chain in Ω has
an upper bound in Ω. Therefore by Zorn’s Lemma, Ω has a maximal element
Φ : A → B. If A = K, then B ≈ K, so is algebraically closed. But L is an
algebraic extension of B. Hence B = L. Similarly, if B = L, then A = K. So
we may suppose that A 6= K and B 6= L. Let a be in K and not in A, and let
f(x) be in A[x] with deg(f(x)) at least one and f(a) = 0. By 6.2.3, we get an
isomorphism α′ : A′ → B′, where A′ is a root field of f(x), B ⊂ B′ ⊂ L, and α′
extends α. This contradicts the maximality of α : A → B, whence A = K and
B = L.

PROBLEMS

1. Let L be a linearly independent subset of a vector space V . Prove that V
has a basis containing L.

2. Let W be a subspace of a vector space V , and let X be a subspace of
V such that X ∩W = 0. Prove that V = A ⊕W for some subspace A
containing X.

3. Let I be a left ideal of a ring R, with I 6= R. Prove that R has a maximal
left ideal M such that I ⊂M .

4. Prove that every ring with identity has a maximal two sided ideal.
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5. Let M be a direct sum of simple modules. Prove that every submodule of
M is a direct summand of M .

6. Let A be any set. Let S be the set of all pairs (B, ≤) such that B is a
subset of A and ≤ is an ordering of B. Define a partial order on S and
use it to show that there exists an order relation on A.

7. An ordering on a set A is called a well ordering if every non-empty subset
of A has a least element. Prove that every set can be well ordered. (Zorn’s
Lemma is actually equivalent to the statement that every set can be well
ordered.)

8. Let G and H be groups. Prove that there are subgroups A and B of G
and H, respectively, and an isomorphism f : A → B such that f cannot
be extended to an isomorphism of subgroups properly containing A and
B.

9. Let I be a left ideal in a ring R with identity. Prove that 1 + a has a left
inverse for all a in I if and only if I is contained in all the maximal left
ideals of R.
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Finite dimensional, 96
Finite extension, 238
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First isomorphism theorem, 46
Fixed field, 251
Free module, 213
Free module of finite rank, 152
Fully invariant, 277
Fully invariant subgroup, 52
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Fundamental Theorem of Algebra, 281
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Fundamental Theorem of Finite Abelian

Groups, 71
Fundamental Theorem of Galois The-
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Galois extension, 255
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Galois Theory, 256
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General linear group, 27, 38
Generalized dihedral group, 67
Generators, 84
Geometric multiplicity, 189
Gram-Schmidt orthogonalization process,

227
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Group, 26
Group of automorphisms, 251
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Group of units, 117
Group ring, 115

Hermitian linear transformation, 235
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Hilbert Basis Theorem, 290
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Homomorphism, 42, 88, 118, 148
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Identity function, 7
Image, 6, 88, 148
Indecomposable, 158, 186
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Index, 38, 272
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Infinite cardinality, 10
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Inner product, 225
Inseparable polynomial, 247
Integers modulo n, 48
Integral domain, 112, 126
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Intersection, 2, 13
Invariant factors, 75, 164
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mation, 180
Invariant factors of a matrix, 180
Inverse, 26

Inverse function, 9
Irreducible, 131, 186
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Irredundant representation, 292
Isometry, 28
Isomorphic, 148
Isomorphic field extensions, 245
Isomorphism, 42, 118, 148

Jacobson Density Theorem, 299
Jordan canonical form, 187, 192, 194
Jordan matrix, 194
Jordan-Hölder Theorem, 270

Kernel, 45, 88, 118, 148
Kronecker delta, 103

Lasker-Noether Decomposition Theo-
rem, 293

Least common multiple, 24, 131
Left Artinian ring, 300
Left coset, 36
Left ideal, 149
Left module, 147
Left Noetherian, 289
Left primitive ring, 300
Left semisimple, 295
Length, 225
Length of cycle, 57
Linear combination, 94, 132
Linear ordering, 305
Linear transformation, 88
Linearly independent, 94
Lower central series, 276
Lower triangular, 194

Mapping, 5, 6
Mathematical induction, 19
Matrix of a homomorphism, 213
Matrix of a linear transformation, 170
Matrix of coeffi cients, 203
Matrix operations, 171
Maximal, 305
Maximal element, 289
Maximal ideal, 121
Maximum condition, 289
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Member, 13
Metric space, 226
Minimum polynomial, 179, 239
Minor, 201
Module, 147
Module of a linear transformation, 177
Modulo, 48, 91
Monic polynomial, 142
Monomial, 137
Monomorphism, 42, 148
multilinear, 208
Multilinear form, 208
Multiple, 131
Multiplicity

algebraic, 189
geometric, 189

Mutually disjoint, 13, 14

Natural basis, 95
Natural homorphism, 46
Natural linear transformation, 91
Natural map to second dual space, 104
Neotherian, 289
Nilpotent, 123, 278
Noetherian, 133
Non-Abelian, 26
Non-commutative, 26
Non-singular, 88
Nonsingular, 172
Normal, 45, 252
Normal closure, 260
Normal linear transformation, 235
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Number field, 246

Odd permutation, 58, 198
One-to-one, 6
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Onto, 6
Order, 150
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Order of a group, 35
Order of an element, 35
Ordered pairs, 5
Ordering, 305
Orthogonal, 227

Orthogonal complement, 228
Orthogonal linear transformation, 228
Orthogonal matrix, 229
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p-component, 164
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p-group, 70
p-primary part, 71
Parity, 58
Partial ordering, 305
Partition, 16
Permutation, 9
Polynomial functions, 139
Primary, 291
Primary group, 70
Primary ideal, 135
Primary module, 164
Prime, 22, 131
Prime ideal, 135, 291
Prime subfield, 81, 238
Primitive, 256, 285
Principal Axis Theorem, 231
Principal ideal, 130
Principal ideal domain, 130
Principle of mathematical induction, 19
Product, 5
Product of ideals, 124
Proper subgroup, 26
Proper subset, 2
Proper value, 187
Proper vector, 187

Quaternion group, 36
Quaternions, 116
Quotient group, 46
Quotient module, 149
Quotient ring, 119
Quotient space, 91

Radical, 292
Range, 6
Rank, 109, 159
Rational canonical form, 181, 183
Reflexive, 15
Relation, 6



316 INDEX

Relatively prime, 21, 22, 131
Remainder Theorem, 141
Representative, 38
Right coset, 36
Right ideal, 149
Right semisimple, 295
Ring, 111, 147
Ring of integers localized at p, 115
Ring of integers modulo n, 113
Ring of linear transformations, 115
Ring of polynomials, 137
Ring of subsets, 116
Root field, 244
Row rank, 108
Row space, 108

Saturated, 130
Scalar, 82, 147
Scalar multiplication, 82
Schur’s Lemma, 298
Schwarz’s inequality, 226
Second isomorphism theorem, 47
Secondary column operation, 221
Secondary matrix, 220
Secondary row operation, 221
Self-adjoint, 230
Self-adjoint linear transformation, 235
Semi-direct product, 66
Semigroup ring, 145
Semisimple module, 295
Semisimple ring, 295
Separable polynomial, 247
Set, 1
Set of representatives, 38
Similar, 173
Simple group, 59
Simple module, 156, 295
Simple ring, 295
Singular, 88
Skew matrix, 212
Skew-symmetric, 208
Solvable by radicals, 261
Solvable group, 262, 275
Solvable series, 275
Span, 84
Special linear group, 27

Split extension, 65
Splits, 65
Splitting field, 244
Subfield, 80
Subgroup, 26
Subgroup generated by a set, 34
Submodule, 148
Subring, 113, 147
Subset, 2
Subspace, 83, 91
Summand, 151
Surjective, 6
Sylow p-subgroup, 273
Sylow Theorem, 273
Symmetric, 15, 230
Symmetric group, 26
Symmetric group of degree n, 56
Symmetric rational functions, 264
Symmetries of a square, 29
Symmetry of a regular polygon, 32

Third isomorphism theorem, 47
Torsion element, 157
Torsion module, 157
Torsion submodule, 157
Torsion-free element, 157
Torsion-free module, 157
Transitive, 15, 266
Transpose, 109
Transposition, 58
Triangle inequality, 226
Triangulable, 197
Triangular matrix, 194

Ultra-filter, 125
Union, 2, 13
Unique factorization domain, 284
Unit, 113
Unitary linear transformation, 234
Unitary matrix, 235
Unitary space, 234
Upper bound, 305
Upper central series, 277
Upper triangular, 194

Vandermonde’s matrix, 210
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Vector, 82
Vector space, 79, 82
Vector space over a division ring, 295

Wedderburn Theorem, 280
Wedderburn-Artin Theorem, 300

Zassenhaus’s Lemma, 271
Zorn’s Lemma, 305
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