Exercises

Chapter 1
Let N denote a finite extension field of a field L, and let o; (i =
1,...,n) denote distinct embeddings of N, over L, into an algebraic

closure of L. Show that the o; are linearly independent over L, i.e.
if Y"1;m =0 with [; € L given, and for all m € N; then the I; are
all zero.

If now N/L is finite and separable, deduce that ¢y /K maps onto L.

Let N denote a finite Galois extension of F, with I' = Gal(N/F).
Let E, L be subextensions of N which are Galois over F, let A =
Gal(N/E), ¥ = Gal(N/L), and let M denote the compositum of E
and L in N. Show that the map e®1[ — (el,...,e"l,---) induces an
isomorphism

E@FLf:vHM

v
where the v run over a set of representatives of I'/AX.

Let N/K be a finite Galois extension of degree n with Galois group

I'={y;|i=1,...,n} and suppose K is infinite.

(a) If f € N[X,,...,X,] has the property that f(a™,...,a") =
0 for all @ € N; show that f = 0.

[Hint: For a basis {b;} of N/K set

9V, Ya) = Qb > Yab);

deduce that g = 0; and then use the invertibility of the matrix (b)?)
to show f =0.]
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(b) Write X; = X(v;), and set f(Xq,...,X,) = det(X(7i;))-
Show f(1,0,...,0) # 0 and use part (a) to show that there
exists ¢ € N such that det(c™7) # 0. Show that ¢ has the
property that {¢™ | i=1,...,n} is a K-basis of N. [Hence N
is a free KI'-module on ¢; such a basis {c?} is called a normal
basis of N/K ]

Prove that a finite field k of ¢ elements has an extension k,, of degree
m for every positive integer m. Show that for given m, k., is unique
to within isomorphism over k. Show that k,,/k is a Galois extension
with cyclic Galois group generated by the Frobenius automorphism
z— 9.

Let k be a field with ¢ elements, and let | denote an extension of k
of degree m. Show that for « € [

(@) tyr(@) =3 =

(0)  Nig(z) =ga" a1,

Hence deduce that both ¢/, and N;/; map onto k.

Show that any unique factorisation domain is integrally closed.

Let m be an integer, which is not a square, and with the property
that m = 1 mod (4). Show that Z[/m] is not a principal ideal
domain.

[Hint: A principal ideal domain is integrally closed.]

If o is a Noetherian ring, show that the formal power series ring
o[[z]] is also a Noetherian ring.

Show that the following algebraic numbers are all algebraic integers
(a) V15(¥/7+ V/39)

b) (1+19)/v2

(¢) 31+ V10+ V100).

(Burnside) Let (™ = 1 and assume that L (37", ¢¥) is an algebraic
integer. Show that either > .-, ¢t =0or¢h =Chke =... = (bm,

Let o be an integrally closed integral domain, and let f and g
be monic polynomials in o[z]. Prove that Disc(f).Disc(g) divides
Disc(f.g).

Chapter 11

Let K be a perfect field and L denote an extension of K of degree
3. Let d(L/K) denote the field discriminant of L/K, d(L/K) =
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det(Try g (x;x;)) for a K-basis {z;} of L. By considering the action
of the embeddings over K on a square root of d(L/K), show that
L/K is Galois iff d(L/K) is a square in K*.

Determine the ring of integers of Q(+/2) and hence calculate do¥/3)-

Let m be a negative, square-free integer which has at least two
distinct prime factors. Show that Z[/m] is not a principal ideal
domain.

Let K be the subfield of R obtained by adjoining to @ the positive
numbers a,, where o2 =3 (n = 1,2,3,...). Show that the ring o
of algebraic integers in K is integrally closed and that every prime
ideal of o is maximal. By considering the ideal of o generated by all
the a,,, or otherwise, prove that o is not Noetherian.

Let Z[X] denote the ring of polynomials in an indeterminate X over
Z. Show that Z[X] is Noetherian, is integrally closed in its field of
fractions, but is not a Dedekind domain.

Let R be a subring of the ring of algebraic integers o of an alge-

braic number field K. Establish the equivalence of the following

conditions:

(a) As a subgroup of the additive group o, R is of finite index,
[o: R] = f, say.

(b) R contains a basis of K over Q.

(¢) The field of fractions of R is K.

Now assume these conditions to hold; prove

(.) R is Noetherian

(it1) Every prime ideal of R is maximal

(z41) If R # o, then R is not integrally closed in K.

(zv) If R # o, then R has a non-zero ideal which is not invertible.

Every ideal of R which is also an ideal of o has this property.

Rings satisfying conditions (a)-(c) are called orders in K. If K is a

quadratic field show that the orders in K are in bijection with the

natural numbers via f — Ry, where Ry =Z + fo={z € K |z =

y+ fz, yeZ, z € o}.

Show that @, has no continuous automorphisms, apart from the
identity map.

Show that o € Q) is a unit iff X™ = « is soluble in @, for infinitely
many integers n. Deduce that any automorphism of @, must take
units to units. Hence show that the identity is the only field auto-
morphism of @Q,.
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Show that @, is uncountable.
Describe the group (D;‘,/(Q;‘,2 when (a) p#2 (b) p=2.

If p and ¢ are distinct primes, then show that @, and @, are not
isomorphic.

Show that the congruence X®=16 mod (p) is soluble for each prime
number p.

Show that k((1/T)), the ring of finitely tailed Laurent series in 1/T
with coefficients in k, is the completion of k(T') with respect to a
discrete absolute value associated with the valuation v of k(T).

If (K,u) is a valued field with completion (K, ), show that u is an
ultrametric iff w is an ultrametric.

If o is a unique factorisation domain and if 7 is an irreducible element
of o, show that the rule v(z) = n, where n is the highest power of 7
dividing z, induces a valuation on the field of fractions K.

Now let F be a field, let 0 = F[X, Y], for algebraically independent
indeterminates X,Y and let v be the valuation associated with X,
as above. Show that with the notation of §2, o/p, = F[Y], 0,/p, &
F(Y).

Let @ be an algebraic closure of @, and let Z be the integral
closure of Z, in Q;. Show that Z is integrally closed and has exactly
one (non-zero) prime ideal, which is therefore maximal; show Z is
not Noetherian, by proving that the maximal ideal is not finitely
generated.

Let a € ;*, so that a belongs to some finite extension, K say, of
@Q,. Define |a| = p~¥/¢, where v = vy, (a) for v,, the valuation of
K, and where e = e(K/Q,) is the ramification index. Prove that
this definition is independent of the choice of K (within the stated
conditions). Show that |.| is both an ultrametric and a non-discrete
absolute value on Qg, and that

o= {z e Q|2 <1},
For each non-negative real p, define
I, = {z € QS| |z] < p}.
Prove that the map p — I, is a bijection from the non-negative

reals to the set of non-finitely generated ideals of Z;. For each non-
negative rational r, define

P ={re@|lo<r}.

Prove that r — P, is a bijection from the set of non-negative ratio-
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nals to the set of finitely generated ideals of Z;, and show that in
fact these are all principal.

Show that the series
o (_1)n+1wn

log(l1+z) = Z

n

n=1
converges on pZ, with respect to |.|,. Show that for any positive
integer n, vp(n!) < n/p — 1 and hence show that

oo xn
exp(x) = Z o
n=0
converges on pZ, if p > 2 (resp. on 4Z; if p = 2). Hence show that
(1 + pZ,)* = (pZ,)" if p > 2, and that (1 + 4Z3)* = (4Z,)* if
p=2.

Let L denote a finite extension of the p-adic field @,. Let v denote
the valuation associated with L, let n denote a positive integer and
let t = v(n). Show that for ¢ > ¢, raising to the nth power induces
an isomorphism U® = U@+ Let V denote an open subgroup of
the units of oy,. Show that {u™ | u € V} is open. Show also that
N1,q, is continuous on L*, and that it is an open map.

Let o be a ring and let M be a finitely generated o module. Show

that the following conditions are equivalent:

(a) M is isomorphic to a direct summand of a finitely generated
free n-module.

(b) For every surjective map of o-modules m: P — M, there exists
an o-module homomorphism i: M — P such that m o¢ = idjy.

(¢) Given homomorphisms of o-modules M L , ST with g sur-
jective; then there exists an o-module homomorphism M rs
such that goh = f.

(Harley Flanders). Let o be a Dedekind domain with field of frac-
tions K and let F' = K(X) be the rational function field over K in
an indeterminate X. Extend the definition of the content ideal af
to rational functions f by

_ -1
Ag/h = Qg " Ay

if g,h € K[X], h # 0, and ag = (0). Prove that ay/, only depends
on g/h. If b is a fractional o ideal define

b={feF|a; Cb}
Prove that d is a principal ideal domain with field of fractions F' and
that the map b — b defines an isomorphism I, = I5, with inverse
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b — bN K. Show that P is a prime ideal of © iff p is a prime ideal
of o.

Show z* + 1 is reducible in @, for all primes p > 2.

Chapter III

Find the ring of integers of Q(0) when
(@) 6 +6+1=0;

(b) 6% —20+2=0;

() 63+6%-20+8=0.

(a) Calculate the ring of integers of Q(¢), where ¢ denotes a prim-
itive pth root of unity.

(b) By considering ramification, show that @( (—_;}) p) is the
unique quadratic subfield of Q(¢).

Let N/K denote an extension of number fields. Show that ok is a
o -direct summand of on.

Suppose now that K is a quadratic imaginary number field, and let
N/K denote a non-ramified quadratic extension of K. If {£1} are
the only roots of unity in N, show that oy is not free over og.

Show how ideals generated by 2,3,5,7 and 11, each factorise in
Q(V/6) and Q(V/10).

Show that no prime number p stays prime in Q(w, ¥/2), where w® =
1, w#1:

(a) by considering the decomposition group;

(b) by factoring 2% — 2 mod (p).

Let L/K denote an extension of algebraic number fields. If oy, is a
free o g-module, show that the discriminant d(L/K) is og-principal.
Conversely, if K has odd class number, show that o, is og-free if
d(L/K) is og-principal.

Let o be a Dedekind domain with field of fractions K let L/K be
a finite separable extension and let o;, denote the integral closure of
oin L. If B is a tamely ramified prime ideal of oy, in L/K, show
tr/k(B) = PNo. Give an example of a wildly ramified prime ideal
which has this property.

If N and L are linearly disjoint finite Galois extensions of a number
field K, and if there is a prime ideal ‘B of o, which ramifies in both
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NL/L and NL/N; show that oy ®,, or identifies with a proper
subring of onL.

Let K denote a finite extension of the rational p-adic field and let

L/K denote a finite field extension. Let B resp. p denote the unique

maximal ideal of oy resp. og; let Ug) =1+ P, Ug) =1+ p* for

i>0and put U = U, U = Uk.

(a) If L/K is non-ramified, show that, for all i > 0, t,/x (B?) = p*
and N,k (U) =UY.

(b) If L/K is at most tamely ramified, with ramification index e,
show that Ny, (US) = UQ for all i > 1.

Chapter IV

Show that Z[v/2], Z[+/3] are both Euclidean domains.
(Hint: embed Z[/2] — R?).

Let K be an algebraic number field. Show that og is a principal
ideal domain iff for every a € K, with a € ok, there exists 3,7 € og
such that 0 < |Ng,q(a8 —v)| < 1.

Using the Minkowski bound show that: @[+/—23] has class num-
ber 3; Q[v/—47] has class number 5; Q[v/—14] has class number 4;
@Q[+/—41] has class number 8.

Show that @Q(+/2) has class number 1.

Let 6 denote a root of X3 — X —4 and let K = Q(6). Show that ok

has Z-basis 1, 6, # and that

0 + 62
ox =Z[ 5 l;

hence show that K has class number 1.

[Hint: Show that (6 + 62)/2 is an algebraic integer and consider the
square factors of the discriminant of X3 — X — 4.

Let 6 denote a root of X2 — X + 2 and let K = Q(6). Show that
ok = Z[f] and that K has class number 1. [Hint: Consider the
square factors of the discriminant of X3 — X + 2 and show that
%(a + b8 + c6?) is an algebraic integer iff a, b and c are all even.]

Suppose 6% —76% +146 —7 = 0, and put K = Q(#). Show that K/Q
is Galois, that ox = Z[6] and that K has class number 1. Show that
e7(K/@Q) = 3, and that every element of og, which is coprime to 7,
has norm congruent to +1 mod (7). Deduce that a prime number p
different from 7 stays prime in K unless p = +1 mod (7).
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(Hermite). Let K denote a number field of degree n over Q. Given
1 < k < s+t show that
(a) If k < s, then there exists non-zero z € ng with

1
Im°3|§§ 1<j<s+t, j#k
27| < 2" ldk|.
(b) If k > s, then there exists non-zero x € ox with

|77 | < 1<j<s+t j#k

NN =

|[Re x7%| < Tm 7% | < 2" |dk|.

Show that K = Q(z), and hence deduce that for any given
real number N there are only finitely many algebraic number
fields K of degree n, whose discriminant d satisfies |dx| < N.
Now use the proof of Theorem 36 to show that there are only
finitely many algebraic number fields whose discriminant has
absolute value less than or equal to N.

If S is a closed, bounded, convex, symmetric set in R™ with vol(S) >
m2™, then show that S contains at least m pairs of points in Z™
(other than the origin).

Let B denote a closed, bounded, convex region in R™.

(a) If B has no interior points, show that B is Jordan measurable
with content zero.

(b) Suppose B has an interior point 0. Show that the projection
map from a large sphere S centre O into the boundary 0B
defines a homeomorphism between S and dB. Use this map to
show that 9B has content zero, so that B is Jordan measurable.

Let 7 > 1 and let ¢ denote a prime number. Show that

T —1 - E g\

S — q . q—1 q _ n—1

e =@ 0T Y (@) =
n=

By putting T = (a?” —1)/(a?" ' —1) and considering divisors of this
number, show that for a given integer a > 1, there exists a prime p
such that a has order ¢" mod (p).

If p=4n—1> 7, show that K = Q(y/—p) has class number one iff
m? +m + n is prime for all m:0 < m <n — 2.

[Since Q(+/—163) has class number one, we obtain the remarkable
fact, observed by Euler, that X2 + X + 41 takes on prime values for
X =1,2,...,39]
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Chapter V

Find the ring of integers, the class number and a fundamental unit of
@Q(6) when (a) 83+6+1 =0 (b) 63—20+2 =0 (c) 3+6%>—26+8 = 0.
Let a and b be positive integers which are not squares. Show that
every unit of Z[\/a,v/—b] is a unit of Z[/a].

Show that 2 — /7 is a fundamental unit in Q(/7).

By first observing that /5 — 2 has norm —3 or otherwise, show that
41 + 245 + 1425 is a fundamental unit of Q( \3'/5)

By first observing that 2 — +/14 has norm —6 or otherwise, show
that 29 + 14v/14 + 5v/196 is a fundamental unit of Q(v/14).

In each of the following cases show that the algebraic number given
is a fundamental unit of the given biquadratic field:

() USRI i Q(v-T, V),

(b) VEEAD i Q(v3, VE19),

() ST in Q(vV-T, VI

Determine the fundamental unit of:

(a) Q(V-1,V=7) (b) Q(V—1,v/~19) (¢) Q(v~3,V~23).

Given any c € C}; and an ideal f of o, show that there is an ideal
a of ox with class ¢ which is coprime to f.

Chapter VI

Let I,p be odd primes, with ! = 1mod (3). By considering the
factorisation of p in the cubic subfield L of @[!], show that [ splits
completely in Q(¢/p) iff p splits completely in L.

Let p be a prime number and let ¢ denote a primitive p™th root of
unity for n > 1; let N,, and t,, denote the norm and trace from Q(()
to Q(¢?). Show that

¢ (Z]C]) = pZ[¢P] ifn>1
(a) ta(Z()) = { DT >0
(b) for z,y € Z[(], and for n > 1,

Nu(z +9) = Nu(z) + Nu(y) mod pZ[c?].

Deduce that N, (z) = zP mod pZ[(].
(Liang) Let ¢ denote a root of unity and let K = Q(¢ +¢~'). Show
that o = Z[ + (1.

Let p be a fixed prime. By considering the behaviour of prime
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divisors of numbers of the form NP~! + NP2 +  + N + 1 in
Q[p], show that there are an infinite number of primes ¢ such that
=1 mod (p).

Let P = (z,y), P’ = («/,y’) denote two finite points on an elliptic
curve Y2 = X3 + aX? 4+ bX + ¢, with a,b,c € K. If z # 2/, show
that P + P’ has z and y-coordinates

z(P+ P = (y y ) —ay—z—2'

x—x

y(P+P)=— (’fii) z(P + P') - (M>

x

For an elliptic curve E, as in (5), show that the group of points of
order less than or equal to two in E(C), is isomorphic to Cy x Cs.

Let N/K denote an extension of number fields, with abelian Ga-
lois group I' = Gal(N/K). Suppose that there exists a € oy such
that (a),er is an og-basis of o. Use the Frobenius determinant
formula (A14) to show that

sv/K) = [T (T amx(v™)  ox.
xel

Use this decomposition to determine the discriminant of @[p].

For a primitive quadratic residue class character A, define the nor-
malised Gauss sum by

() = S A@) exp (27;”)

f = f(X) its conductor and the sum extending over a complete
system of prime residues  mod (f). Assuming Theorem 50, prove
that

T i A(=1) = -1
where ++/f is the positive square root. (Hint: Proceed by induction
on the number of distinct primes dividing f, using the expression

for 7(A1A2) in terms of 7(\1), 7(A2), where A1, A2 have coprime
conductors.)

V) = {+\/7 if A(—=1) =1

Let | denote an odd prime and let p denote a prime ideal in Q[I]
not dividing !. Given a € Z[l], the ring of integers in Q[!], with
a # 0 mod p, prove that there exists an Ith root of unity (%)l € i,
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so that
aNe=-D/t = (ﬂ) mod p.
P/

Show that this determines (%) uniquely. Show also that

(a) (%)l (%)l = (%)l for p t a,b € Z[l].

(b) (% = 1 <= there exists b so that a = b' mod p.

(¢) 1If a € py, then (%)l — gNe-1)/L

Now suppose that p is a prime number, p = 1 mod (!). Establish a
bijection from the set of prime ideal divisors of p in @[!] onto the
set of primitive Ith power residue class characters x of IF, so that
foralla € Z, 1 t a, we have

w-(3)

Let m be an integer, m > 2, and let p be a prime number with
p" = 1mod (m) for some odd integer r. Let p be a prime ideal
dividing p, in the maximal real subfield K of Q[p™m)| for given n > 1.
Prove that K, = Q,[p"m)|.

if pe—x.

Let p1, p2 be distinct odd prime numbers, and let d | (p1 —1,p2—1).

Show that @Q[pi1p2] has a subfield L so that

(a) (Qlpip2]: L) =d.

(b) @Q[p1p2]/L is non-ramified, i.e. for all prime ideals p of oy,
ep(Q[p1p2]/L) = 1.

Suppose m > 2 and put E = Q[4]. Let K = Q[2™], let L = Q[2™]4
denote the maximal real subfield of K and let p € Gal(K /@) denote
complex conjugation. Show that if u € Uk does not lie in ug Uy,
then u!~P = ( say, is a primitive 2™th root of unity. Prove that
Uk = ukUL by showing that Nk ,g( is a primitive fourth root of
unity, while Ng,g(u)' = must be £1.

Chapter VII

Let k be a finite field, and let d € k, ¢ € k. Show that there exist
x,y in k such that 22 4+ dy? = c.

What integers can be expressed in the form (a) X? —5Y2, (b) X2 —
6Y2, for integral X,Y?
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Find all integral solutions to 3X? — 4Y? = 11.

4. Solve the following equations for integral X,Y
(a) X3=Y2+2
() X5=Y2+19
() X®=Y?+54
(d) X3=Y?+200.

5. Solve 4X3 = Y?2 + p for integral X,Y when p = 3 mod (4), p # 3,
and when 3 does not divide the class number of Q(1/—p).

6. What integers can be expressed in the form (a) z?+5y?; (b) 22 +15y%;
(c) 2 — 23y?; (d) =2 + 23y? for integral x,y?

7. Let m be an even, square-free positive integer, and suppose that
@Q(+v/—m) has class number which is not divisible by 3. Show that
X3 =Y? 4+ m has at most one solution in natural numbers.

8. Show that Z[+/6] has class number 1; hence show that X3 4 6Y3 =
10Z2 has no non-trivial integer solutions.

Chapter VIII
1. Using the results of Ex.6 of Ch.V show that

Q(V=1,V?3)
Q(vV-3,V-19)
Q(vV-7,v-11)
all have class number 1.

2. Show that Q(+/5,v/13) has class number 2, and that Q(v/—3, v/—23)

has class number 3.

3. Let x be the primitive residue class character with conductor f(x) =
4. Prove that L(z,x) > 0 for all z > 0.

4. Let K be a cyclotomic field of odd prime degree [ over Q. Let
f = [l p:; denote the product of primes p; which ramify in K, with
all p; = 1 mod (I). For the units wy , defined in (5.6), write wgx,, =
Noif),/k (Ws,a), and let Qg denote the subgroup of K* generated
by the wk . Prove that Qg is a subgroup of finite index in the
group Uk of units of K and that

[UK . QK] = hK.

5. For a non-zero real number z define s(z) by z/|z| = (—1)%), view-
ing s(z) as an element of the field IF5 of two elements. Call a sub-
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group V of the group of units Uk of a totally real algebraic number
field K full if [V : V?] = 205®_ Suppose V is full. For a set of
elements {v,} of V whose classes mod V2 form a basis of V/V? over
IF5, consider the matrix Ay = (s(vj*)), where o, ranges over the
embeddings K — R. Prove that the rank r(Ay) of Ay depends
only on V, and show that, with . as defined in (V,§1),

(a) 2rAVIpE | hpe 2K

with equality for V = Uk.
Now let K be a cyclotomic field of odd prime degree [, and let V be

the group generated by Qi and —1. Prove that if r(Ay) = (K : @Q),
then h}; is odd. (Hasse) State and prove analogues for K = Q[p],
p an odd prime.

A prime ideal p of bk is said to have degree 1 if Np is a prime
number. By considering the behaviour of (x(z) as ¢ — 1+, show
that ox always has an infinite number of degree 1 prime ideals.

Suppose that N/Q is Galois with Galois group Ay, the alternating
group on 4 elements. Express {y(z) in terms of Dedekind zeta
functions of proper subfields of N.

(Brauer) With the notation of Theorem 73, let W('J ) denote the
exact power of p dividing Wi, (the number of roots of unity in N,).
Show that if p > 2 then

v, - T

a b
but that the above equality fails to hold in general when p = 2.
[Hint: Let Wl(f) = p™. Note that for p > 2, Gal (Q[p"]/@Q) =T, is
always cyclic. For n < m, let x, denote a faithful abelian character

of I'y,, which can then also be viewed as a character of T', via the
surjection I' — I',. Show that WI(\Z ) = pt where

t=(Pa; ) Xn)
n=1

where p, denotes the character of C(A,\I') and where (,) denotes
the standard inner product of character theory.]

Appendix A
(The notation here is that of Appendix A.)

Let I" denote a finite abelian group, let M = (x(7))4,x for v € T,
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x €T, and let M* = (x"*(7))x.y- Show that
T
MM* = diag
T’
hence deduce that det(M)? = (—1)V|T|I'l where 2N denotes the
number of elements in I" with order greater than 2.

Let V be a finitely generated KT'-module. Show that V is the di-
rect sum of the K spaces Ve, (x € f‘), furthermore, given an-
other such module V', then V and V' are isomorphic KT-modules
iff dimg (Vey) = dimg (V'e, ) for all x € I,

Let E/F be a Galois extension of algebraic number fields with
abelian Galois group I', viewed as contained in the algebraically
closed field K. Suppose that F contains all the values x(v) (x €T,
«v € T"). Using Ex 3 of Chapter I, prove that E has an F-basis {ay}
(x € T) such that

al = ayx(7) for all y € I.

Show also that E = F(by,...,b,;) where for all i, b]* € F* for some
n; > 0.

(Alternative approach: assume only the definition of KT and f‘)
(a) Show that
rl fy=1
txr/ k() = {i() | otgerwige.

(b) By evaluating det(txr,k (76)), show that KT is a commutative
separable K-algebra, i.e. KT' = A, (direct sum), where each
A; is a simple ideal; thus, as a K-algebra, each A; = K, since
K is algebraically closed.

(¢) For each i, A; = KT'e; with e; a primitive idempotent; and
show also that e;y = e;x(7y) for some x € I'. Using this equa-
tion and writing e; = >_ a7, show that e; = e,, where e, is
as defined in (A4).

(d) Deduce that |I'| = |T.

(e) If x €I, x # er; then, by evaluating x(o) > x(7), prove that
Y x(y)=0.

(f) Deduce (A10).

(9) Use (A10) to prove that the matrix (x(7))x (x € T, v € )
is invertible.

(h) Deduce (A7) and (A7.a).



