Chapter I

1. Let N denote a finite extension field of a field L, and let σ_i $(i = 1, \ldots, n)$ denote distinct embeddings of N, over L, into an algebraic closure of L. Show that the σ_i are linearly independent over L, i.e. if $\sum l_i m^{\sigma_i} = 0$ with $l_i \in L$ given, and for all $m \in N$; then the l_i are all zero.

If now N/L is finite and separable, deduce that $t_{N/K}$ maps onto L.

2. Let N denote a finite Galois extension of F, with $\Gamma = \operatorname{Gal}(N/F)$. Let E, L be subextensions of N which are Galois over F, let $\Delta = \operatorname{Gal}(N/E)$, $\Sigma = \operatorname{Gal}(N/L)$, and let M denote the compositum of E and L in N. Show that the map $e \otimes l \to (el, \ldots, e^{\gamma}l, \cdots)$ induces an isomorphism

$$E \otimes_F L \cong \prod_{\gamma} M$$

where the γ run over a set of representatives of $\Gamma/\Delta\Sigma$.

- 3. Let N/K be a finite Galois extension of degree n with Galois group $\Gamma = \{\gamma_i \mid i = 1, \dots, n\}$ and suppose K is infinite.
 - (a) If $f \in N[X_1, ..., X_n]$ has the property that $f(a^{\gamma_1}, ..., a^{\gamma_n}) = 0$ for all $a \in N$; show that f = 0.

[Hint: For a basis $\{b_i\}$ of N/K set

$$g(Y_1,\ldots,Y_n)=f(\sum Y_ib_i^{\gamma_1},\ldots,\sum Y_ib_i^{\gamma_n});$$

deduce that g=0; and then use the invertibility of the matrix $(b_i^{\gamma_j})$ to show f=0.

- Write $X_i = X(\gamma_i)$, and set $f(X_1, ..., X_n) = \det(X(\gamma_i \gamma_i))$. (b) Show $f(1,0,\ldots,0)\neq 0$ and use part (a) to show that there exists $c \in N$ such that $\det(c^{\gamma_i \gamma_j}) \neq 0$. Show that c has the property that $\{c^{\gamma_i} \mid i=1,\ldots,n\}$ is a K-basis of N. [Hence N is a free $K\Gamma$ -module on c; such a basis $\{c^{\gamma}\}$ is called a normal basis of N/K.
- Prove that a finite field k of q elements has an extension k_m of degree 4. m for every positive integer m. Show that for given m, k_m is unique to within isomorphism over k. Show that k_m/k is a Galois extension with cyclic Galois group generated by the Frobenius automorphism $x \to x^q$.
- 5. Let k be a field with q elements, and let l denote an extension of kof degree m. Show that for $x \in l$

 - (a) $t_{l/k}(x) = \sum_{i=0}^{m-1} x^{q^i}$ (b) $N_{l/k}(x) = x^{q^m 1/q 1}$.

Hence deduce that both $t_{l/k}$ and $N_{l/k}$ map onto k.

- 6. Show that any unique factorisation domain is integrally closed.
- Let m be an integer, which is not a square, and with the property 7. that $m \equiv 1 \mod (4)$. Show that $\mathbb{Z}[\sqrt{m}]$ is not a principal ideal domain.

[Hint: A principal ideal domain is integrally closed.]

- If o is a Noetherian ring, show that the formal power series ring $\mathfrak{o}[[x]]$ is also a Noetherian ring.
- 9. Show that the following algebraic numbers are all algebraic integers
 - (a) $\sqrt[3]{15}(\sqrt[39]{7} + \sqrt[7]{39})$
 - (b)
 - $(1+i)/\sqrt{2}$ $\frac{1}{3}(1+\sqrt[3]{10}+\sqrt[3]{100}).$
- 10. (Burnside) Let $\zeta^n = 1$ and assume that $\frac{1}{m}(\sum_{i=1}^m \zeta^{k_i})$ is an algebraic integer. Show that either $\sum_{i=1}^m \zeta^{k_i} = 0$ or $\zeta^{k_1} = \zeta^{k_2} = \cdots = \zeta^{k_m}$.
- 11. Let \mathfrak{o} be an integrally closed integral domain, and let f and g be monic polynomials in $\mathfrak{o}[x]$. Prove that $\mathrm{Disc}(f).\mathrm{Disc}(g)$ divides $\mathrm{Disc}(f.g)$.

Chapter II

Let K be a perfect field and L denote an extension of K of degree 1. 3. Let d(L/K) denote the field discriminant of L/K, d(L/K) =

 $\det(\operatorname{Tr}_{L/K}(x_ix_j))$ for a K-basis $\{x_i\}$ of L. By considering the action of the embeddings over K on a square root of d(L/K), show that L/K is Galois iff d(L/K) is a square in K^* .

- 2. Determine the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ and hence calculate $d_{\mathbb{Q}(\sqrt[3]{2})}$.
- 3. Let m be a negative, square-free integer which has at least two distinct prime factors. Show that $\mathbb{Z}[\sqrt{m}]$ is not a principal ideal domain.
- 4. Let K be the subfield of \mathbb{R} obtained by adjoining to \mathbb{Q} the positive numbers α_n where $\alpha_n^{2^n} = 3$ (n = 1, 2, 3, ...). Show that the ring \mathfrak{o} of algebraic integers in K is integrally closed and that every prime ideal of \mathfrak{o} is maximal. By considering the ideal of \mathfrak{o} generated by all the α_n , or otherwise, prove that \mathfrak{o} is not Noetherian.
- Let Z[X] denote the ring of polynomials in an indeterminate X over
 Show that Z[X] is Noetherian, is integrally closed in its field of fractions, but is not a Dedekind domain.
- 6. Let R be a subring of the ring of algebraic integers $\mathfrak o$ of an algebraic number field K. Establish the equivalence of the following conditions:
 - (a) As a subgroup of the additive group \mathfrak{o} , R is of finite index, $[\mathfrak{o}:R]=f$, say.
 - (b) R contains a basis of K over \mathbb{Q} .
 - (c) The field of fractions of R is K.

Now assume these conditions to hold; prove

- (i) R is Noetherian
- (ii) Every prime ideal of R is maximal
- (iii) If $R \neq \mathfrak{o}$, then R is not integrally closed in K.
- (iv) If $R \neq \mathfrak{o}$, then R has a non-zero ideal which is not invertible.

Every ideal of R which is also an ideal of \mathfrak{o} has this property.

Rings satisfying conditions (a)-(c) are called *orders* in K. If K is a quadratic field show that the orders in K are in bijection with the natural numbers via $f \to R_f$, where $R_f = \mathbb{Z} + f\mathfrak{o} = \{x \in K \mid x = y + fz, y \in \mathbb{Z}, z \in \mathfrak{o}\}.$

- 7. Show that \mathbb{Q}_p has no continuous automorphisms, apart from the identity map.
- 8. Show that $\alpha \in \mathbb{Q}_p$ is a unit iff $X^n = \alpha$ is soluble in \mathbb{Q}_p for infinitely many integers n. Deduce that any automorphism of \mathbb{Q}_p must take units to units. Hence show that the identity is the only field automorphism of \mathbb{Q}_p .

- 9. Show that \mathbb{Q}_p is uncountable.
- 10. Describe the group $\mathbb{Q}_p^*/\mathbb{Q}_p^{*2}$ when (a) $p \neq 2$ (b) p = 2.
- 11. If p and q are distinct primes, then show that \mathbb{Q}_q and \mathbb{Q}_p are not isomorphic.
- 12. Show that the congruence $X^8 \equiv 16 \mod (p)$ is soluble for each prime number p.
- 13. Show that k((1/T)), the ring of finitely tailed Laurent series in 1/T with coefficients in k, is the completion of k(T) with respect to a discrete absolute value associated with the valuation v_{∞} of k(T).
- 14. If (K, u) is a valued field with completion $(\overline{K}, \overline{u})$, show that u is an ultrametric iff \overline{u} is an ultrametric.
- 15. If o is a unique factorisation domain and if π is an irreducible element of o, show that the rule v(x) = n, where n is the highest power of π dividing x, induces a valuation on the field of fractions K. Now let F be a field, let o = F[X, Y], for algebraically independent indeterminates X, Y and let v be the valuation associated with X, as above. Show that with the notation of §2, o/p_v ≅ F[Y], o_v/p_v ≅ F(Y).
- 16. Let \mathbb{Q}_p^c be an algebraic closure of \mathbb{Q}_p and let \mathbb{Z}_p^c be the integral closure of \mathbb{Z}_p in \mathbb{Q}_p^c . Show that \mathbb{Z}_p^c is integrally closed and has exactly one (non-zero) prime ideal, which is therefore maximal; show \mathbb{Z}_p^c is not Noetherian, by proving that the maximal ideal is not finitely generated.

Let $a \in \mathbb{Q}_p^{c*}$, so that a belongs to some finite extension, K say, of \mathbb{Q}_p . Define $|a| = p^{-v/e}$, where $v = v_{\mathfrak{p}_K}(a)$ for $v_{\mathfrak{p}_K}$ the valuation of K, and where $e = e(K/\mathbb{Q}_p)$ is the ramification index. Prove that this definition is independent of the choice of K (within the stated conditions). Show that |.| is both an ultrametric and a non-discrete absolute value on \mathbb{Q}_p^c , and that

$$\mathbf{Z}_p^c = \{ x \in \mathbf{Q}_p^c \mid |x| \le 1 \}.$$

For each non-negative real ρ , define

$$I_{\rho} = \{ x \in \mathbb{Q}_p^c \mid |x| < \rho \}.$$

Prove that the map $\rho \to I_{\rho}$ is a bijection from the non-negative reals to the set of non-finitely generated ideals of \mathbb{Z}_p^c . For each non-negative rational r, define

$$P_r = \{ x \in \mathbb{Q}_p^c \mid |x| \le r \}.$$

Prove that $r \to P_r$ is a bijection from the set of non-negative ratio-

nals to the set of finitely generated ideals of \mathbb{Z}_p^c , and show that in fact these are all principal.

17. Show that the series

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

converges on $p\mathbb{Z}_p$ with respect to $|.|_p$. Show that for any positive integer n, $v_p(n!) < n/p - 1$ and hence show that

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges on $p\mathbb{Z}_p$ if p > 2 (resp. on $4\mathbb{Z}_2$ if p = 2). Hence show that $(1 + p\mathbb{Z}_p)^{\times} \cong (p\mathbb{Z}_p)^+$ if p > 2, and that $(1 + 4\mathbb{Z}_2)^{\times} \cong (4\mathbb{Z}_2)^+$ if p = 2.

- 18. Let L denote a finite extension of the p-adic field \mathbb{Q}_p . Let v denote the valuation associated with L, let n denote a positive integer and let t = v(n). Show that for i > t, raising to the nth power induces an isomorphism $U^{(i)} \cong U^{(i+t)}$. Let V denote an open subgroup of the units of \mathfrak{o}_L . Show that $\{u^n \mid u \in V\}$ is open. Show also that N_{L/\mathbb{Q}_p} is continuous on L^* , and that it is an open map.
- 19. Let \mathfrak{o} be a ring and let M be a finitely generated \mathfrak{o} module. Show that the following conditions are equivalent:
 - (a) M is isomorphic to a direct summand of a finitely generated free \mathfrak{o} -module.
 - (b) For every surjective map of \mathfrak{o} -modules $\pi: P \to M$, there exists an \mathfrak{o} -module homomorphism $i: M \to P$ such that $\pi \circ i = \mathrm{id}_M$.
 - (c) Given homomorphisms of \mathfrak{o} -modules $M \xrightarrow{f} T$, $S \xrightarrow{g} T$ with g surjective; then there exists an \mathfrak{o} -module homomorphism $M \xrightarrow{h} S$ such that $g \circ h = f$.
- 20. (Harley Flanders). Let \mathfrak{o} be a Dedekind domain with field of fractions K and let F = K(X) be the rational function field over K in an indeterminate X. Extend the definition of the content ideal \mathfrak{a}_f to rational functions f by

$$\mathfrak{a}_{g/h} = \mathfrak{a}_g \cdot \mathfrak{a}_h^{-1}$$

if $g, h \in K[X]$, $h \neq 0$, and $\mathfrak{a}_0 = (0)$. Prove that $\mathfrak{a}_{g/h}$ only depends on g/h. If \mathfrak{b} is a fractional \mathfrak{o} ideal define

$$\overline{\mathfrak{b}} = \{ f \in F \mid \mathfrak{a}_f \subset \mathfrak{b} \}.$$

Prove that $\bar{\mathfrak{o}}$ is a principal ideal domain with field of fractions F and that the map $\mathfrak{b} \to \bar{\mathfrak{b}}$ defines an isomorphism $I_{\mathfrak{o}} \cong I_{\bar{\mathfrak{o}}}$, with inverse

- $\overline{\mathfrak{b}} \to \overline{\mathfrak{b}} \cap K$. Show that $\overline{\mathfrak{p}}$ is a prime ideal of $\overline{\mathfrak{o}}$ iff \mathfrak{p} is a prime ideal of \mathfrak{o} .
- 21. Show $x^4 + 1$ is reducible in \mathbb{Q}_p for all primes p > 2.

Chapter III

- 1. Find the ring of integers of $\mathbf{\Phi}(\theta)$ when
 - $(a) \quad \theta^3 + \theta + 1 = 0;$
 - (b) $\theta^3 2\theta + 2 = 0$;
 - (c) $\theta^3 + \theta^2 2\theta + 8 = 0$.
- 2. (a) Calculate the ring of integers of $\mathbb{Q}(\zeta)$, where ζ denotes a primitive pth root of unity.
 - (b) By considering ramification, show that $\mathbb{Q}(\sqrt{\left(\frac{-1}{p}\right)p})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta)$.
- 3. Let N/K denote an extension of number fields. Show that \mathfrak{o}_K is a \mathfrak{o}_K -direct summand of \mathfrak{o}_N . Suppose now that K is a quadratic imaginary number field, and let N/K denote a non-ramified quadratic extension of K. If $\{\pm 1\}$ are
- 4. Show how ideals generated by 2, 3, 5, 7 and 11, each factorise in $\mathbb{Q}(\sqrt[3]{6})$ and $\mathbb{Q}(\sqrt[3]{10})$.

the only roots of unity in N, show that \mathfrak{o}_N is not free over \mathfrak{o}_K .

- 5. Show that no prime number p stays prime in $\mathbb{Q}(\omega, \sqrt[3]{2})$, where $\omega^3 = 1$, $\omega \neq 1$:
 - (a) by considering the decomposition group;
 - (b) by factoring $x^3 2 \mod (p)$.
- 6. Let L/K denote an extension of algebraic number fields. If \mathfrak{o}_L is a free \mathfrak{o}_K -module, show that the discriminant $\mathfrak{d}(L/K)$ is \mathfrak{o}_K -principal. Conversely, if K has odd class number, show that \mathfrak{o}_L is \mathfrak{o}_K -free if $\mathfrak{d}(L/K)$ is \mathfrak{o}_K -principal.
- 7. Let $\mathfrak o$ be a Dedekind domain with field of fractions K; let L/K be a finite separable extension and let $\mathfrak o_L$ denote the integral closure of $\mathfrak o$ in L. If $\mathfrak P$ is a tamely ramified prime ideal of $\mathfrak o_L$ in L/K, show $t_{L/K}(\mathfrak P) = \mathfrak P \cap \mathfrak o$. Give an example of a wildly ramified prime ideal which has this property.
- 8. If N and L are linearly disjoint finite Galois extensions of a number field K, and if there is a prime ideal \mathfrak{P} of \mathfrak{o}_{NL} which ramifies in both

NL/L and NL/N; show that $\mathfrak{o}_N \otimes_{\mathfrak{o}_K} \mathfrak{o}_L$ identifies with a proper subring of \mathfrak{o}_{NL} .

- 9. Let K denote a finite extension of the rational p-adic field and let L/K denote a finite field extension. Let \mathfrak{P} resp. \mathfrak{p} denote the unique maximal ideal of \mathfrak{o}_L resp. \mathfrak{o}_K ; let $U_L^{(i)} = 1 + \mathfrak{P}^i$, $U_K^{(i)} = 1 + \mathfrak{p}^i$ for i > 0 and put $U_L^{(0)} = U_L$, $U_K^{(0)} = U_K$.
 - (a) If L/K is non-ramified, show that, for all $i \geq 0$, $t_{L/K}(\mathfrak{P}^i) = \mathfrak{p}^i$ and $N_{L/K}(U_L^{(i)}) = U_K^{(i)}$.
 - (b) If L/K is at most tamely ramified, with ramification index e, show that $N_{L/K}(U_L^{(ei)}) = U_K^{(i)}$ for all $i \geq 1$.

Chapter IV

- 1. Show that $\mathbb{Z}[\sqrt{2}]$, $\mathbb{Z}[\sqrt{3}]$ are both Euclidean domains. (Hint: embed $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^2$).
- 2. Let K be an algebraic number field. Show that \mathfrak{o}_K is a principal ideal domain iff for every $\alpha \in K$, with $\alpha \notin \mathfrak{o}_K$, there exists $\beta, \gamma \in \mathfrak{o}_K$ such that $0 < |N_{K/\Phi}(\alpha\beta \gamma)| < 1$.
- 3. Using the Minkowski bound show that: $\mathbb{Q}[\sqrt{-23}]$ has class number 3; $\mathbb{Q}[\sqrt{-47}]$ has class number 5; $\mathbb{Q}[\sqrt{-14}]$ has class number 4; $\mathbb{Q}[\sqrt{-41}]$ has class number 8.
- 4. Show that $\mathbf{Q}(\sqrt[3]{2})$ has class number 1.
- 5. Let θ denote a root of $X^3 X 4$ and let $K = \mathbb{Q}(\theta)$. Show that \mathfrak{o}_K has \mathbb{Z} -basis 1, θ , $\frac{\theta + \theta^2}{2}$ and that

$$\mathfrak{o}_K = \mathbb{Z}[\frac{\theta + \theta^2}{2}];$$

hence show that K has class number 1.

[Hint: Show that $(\theta + \theta^2)/2$ is an algebraic integer and consider the square factors of the discriminant of $X^3 - X - 4$.]

- 6. Let θ denote a root of $X^3 X + 2$ and let $K = \mathbb{Q}(\theta)$. Show that $\mathfrak{o}_K = \mathbb{Z}[\theta]$ and that K has class number 1. [Hint: Consider the square factors of the discriminant of $X^3 X + 2$ and show that $\frac{1}{2}(a + b\theta + c\theta^2)$ is an algebraic integer iff a, b and c are all even.]
- 7. Suppose $\theta^3 7\theta^2 + 14\theta 7 = 0$, and put $K = \mathbb{Q}(\theta)$. Show that K/\mathbb{Q} is Galois, that $\mathfrak{o}_K = \mathbb{Z}[\theta]$ and that K has class number 1. Show that $e_7(K/\mathbb{Q}) = 3$, and that every element of \mathfrak{o}_K , which is coprime to 7, has norm congruent to $\pm 1 \mod (7)$. Deduce that a prime number p different from 7 stays prime in K unless $p \equiv \pm 1 \mod (7)$.

- 8. (Hermite). Let K denote a number field of degree n over \mathbb{Q} . Given $1 \le k \le s + t$ show that
 - (a) If $k \leq s$, then there exists non-zero $x \in \mathfrak{o}_K$ with

$$|x^{\sigma_j}| \le \frac{1}{2} \qquad 1 \le j \le s+t, \ j \ne k$$
$$|x^{\sigma_k}| \le 2^{n-t} |d_K|.$$

(b) If k > s, then there exists non-zero $x \in \mathfrak{o}_K$ with

$$|x^{\sigma_j}| \le \frac{1}{2}$$
 $1 \le j \le s+t, \ j \ne k$
 $|\operatorname{Re} x^{\sigma_k}| \le \frac{1}{2}$ $|\operatorname{Im} x^{\sigma_k}| \le 2^{n-t} |d_K|.$

Show that $K = \mathbb{Q}(x)$, and hence deduce that for any given real number N there are only finitely many algebraic number fields K of degree n, whose discriminant d_K satisfies $|d_K| \leq N$. Now use the proof of Theorem 36 to show that there are only finitely many algebraic number fields whose discriminant has absolute value less than or equal to N.

- 9. If S is a closed, bounded, convex, symmetric set in \mathbb{R}^n with $\operatorname{vol}(S) \ge m2^n$, then show that S contains at least m pairs of points in \mathbb{Z}^n (other than the origin).
- 10. Let B denote a closed, bounded, convex region in \mathbb{R}^n .
 - (a) If B has no interior points, show that B is Jordan measurable with content zero.
 - (b) Suppose B has an interior point $\mathbf{0}$. Show that the projection map from a large sphere S centre $\mathbf{0}$ into the boundary ∂B defines a homeomorphism between S and ∂B . Use this map to show that ∂B has content zero, so that B is Jordan measurable.
- 11. Let r > 1 and let q denote a prime number. Show that

$$\frac{T^{q^r} - 1}{T^{q^{r-1}} - 1} = (T^{q^{r-1}} - 1)^{q-1} + \sum_{n=1}^{q-1} \binom{q}{n} (T^{q^{r-1}} - 1)^{n-1}.$$

By putting $T = (a^{q^r} - 1)/(a^{q^{r-1}} - 1)$ and considering divisors of this number, show that for a given integer a > 1, there exists a prime p such that a has order $q^r \mod (p)$.

12. If p = 4n - 1 > 7, show that $K = \mathbb{Q}(\sqrt{-p})$ has class number one iff $m^2 + m + n$ is prime for all $m: 0 \le m \le n - 2$.

[Since $\mathbb{Q}(\sqrt{-163})$ has class number one, we obtain the remarkable fact, observed by Euler, that $X^2 + X + 41$ takes on prime values for $X = 1, 2, \dots, 39$.]

Chapter V

- Find the ring of integers, the class number and a fundamental unit of 1. $\mathbf{\Phi}(\theta)$ when (a) $\theta^3 + \theta + 1 = 0$ (b) $\theta^3 - 2\theta + 2 = 0$ (c) $\theta^3 + \theta^2 - 2\theta + 8 = 0$.
- Let a and b be positive integers which are not squares. Show that 2. every unit of $\mathbb{Z}[\sqrt{a}, \sqrt{-b}]$ is a unit of $\mathbb{Z}[\sqrt{a}]$.
- Show that $2 \sqrt[3]{7}$ is a fundamental unit in $\mathbf{\Phi}(\sqrt[3]{7})$. 3.
- By first observing that $\sqrt[3]{5}-2$ has norm -3 or otherwise, show that 4. $41 + 24\sqrt[3]{5} + 14\sqrt[3]{25}$ is a fundamental unit of $\mathbb{Q}(\sqrt[3]{5})$.
- By first observing that $2 \sqrt[3]{14}$ has norm -6 or otherwise, show 5. that $29 + 14\sqrt[3]{14} + 5\sqrt[3]{196}$ is a fundamental unit of $\mathbf{Q}(\sqrt[3]{14})$.
- In each of the following cases show that the algebraic number given 6. is a fundamental unit of the given biquadratic field:
 - (a)
 - $\begin{array}{l} \frac{(1+\sqrt{-1})(1+\sqrt{3})}{2} \text{ in } \mathbb{Q}(\sqrt{-1},\sqrt{3}), \\ \frac{10\sqrt{-3}-4\sqrt{-19}}{2} \text{ in } \mathbb{Q}(\sqrt{-3},\sqrt{-19}), \\ \frac{\sqrt{-11}+\sqrt{-7}}{2} \text{ in } \mathbb{Q}(\sqrt{-7},\sqrt{-11}). \end{array}$ (b)
- Determine the fundamental unit of: 7.
 - (a) $\mathbb{Q}(\sqrt{-1}, \sqrt{-7})$ (b) $\mathbb{Q}(\sqrt{-1}, \sqrt{-19})$ (c) $\mathbb{Q}(\sqrt{-3}, \sqrt{-23})$.
- Given any $c \in C_K^+$ and an ideal \mathfrak{f} of \mathfrak{o}_K , show that there is an ideal 8. \mathfrak{a} of \mathfrak{o}_K with class c which is coprime to \mathfrak{f} .

Chapter VI

- Let l, p be odd primes, with $l \equiv 1 \mod (3)$. By considering the 1. factorisation of p in the cubic subfield L of $\mathbf{Q}[l]$, show that l splits completely in $\mathbf{\Phi}(\sqrt[3]{p})$ iff p splits completely in L.
- Let p be a prime number and let ζ denote a primitive p^n th root of 2. unity for $n \geq 1$; let N_n and t_n denote the norm and trace from $\mathbb{Q}(\zeta)$ to $\mathbf{Q}(\zeta^p)$. Show that
 - $t_n(\mathbf{Z}[\zeta]) = \begin{cases} p\mathbf{Z}[\zeta^p] & \text{if } n > 1\\ \mathbf{Z} & \text{if } n = 1\\ \text{for } x, y \in \mathbf{Z}[\zeta], \text{ and for } n > 1, \end{cases}$

$$N_n(x+y) \equiv N_n(x) + N_n(y) \bmod p \mathbb{Z}[\zeta^p].$$

Deduce that $N_n(x) \equiv x^p \mod p \mathbb{Z}[\zeta]$.

- (Liang) Let ζ denote a root of unity and let $K = \mathbb{Q}(\zeta + \zeta^{-1})$. Show 3. that $\mathfrak{o}_K = \mathbb{Z}[\zeta + \zeta^{-1}].$
- Let p be a fixed prime. By considering the behaviour of prime 4.

divisors of numbers of the form $N^{p-1} + N^{p-2} + \ldots + N + 1$ in $\mathbb{Q}[p]$, show that there are an infinite number of primes q such that $q \equiv 1 \mod (p)$.

5. Let P=(x,y), P'=(x',y') denote two finite points on an elliptic curve $Y^2=X^3+aX^2+bX+c$, with $a,b,c\in K$. If $x\neq x'$, show that P+P' has x and y-coordinates

$$x(P+P') = \left(\frac{y-y'}{x-x'}\right)^2 - a_2 - x - x'$$
$$y(P+P') = -\left(\frac{y-y'}{x-x'}\right)x(P+P') - \left(\frac{yx'-y'x}{x'-x}\right).$$

- 6. For an elliptic curve E, as in (5), show that the group of points of order less than or equal to two in $E(\mathbb{C})$, is isomorphic to $C_2 \times C_2$.
- 7. Let N/K denote an extension of number fields, with abelian Galois group $\Gamma = \operatorname{Gal}(N/K)$. Suppose that there exists $a \in \mathfrak{o}_N$ such that $(a^{\gamma})_{\gamma \in \Gamma}$ is an \mathfrak{o}_K -basis of \mathfrak{o}_N . Use the Frobenius determinant formula (A14) to show that

$$\delta(N/K) = \prod_{\chi \in \hat{\Gamma}} \left(\sum a^{\gamma} \chi(\gamma^{-1}) \right)^2 \mathfrak{o}_K.$$

Use this decomposition to determine the discriminant of $\mathbb{Q}[p]$.

8. For a primitive quadratic residue class character λ , define the normalised Gauss sum by

$$\tau(\lambda) = \sum \lambda(x) \exp\left(\frac{2\pi i x}{f}\right)$$

 $f=f(\lambda)$ its conductor and the sum extending over a complete system of prime residues $x \mod (f)$. Assuming Theorem 50, prove that

$$\tau(\lambda) = \begin{cases} +\sqrt{f} & \text{if } \lambda(-1) = 1\\ i\sqrt{f} & \text{if } \lambda(-1) = -1 \end{cases}$$

where $+\sqrt{f}$ is the positive square root. (Hint: Proceed by induction on the number of distinct primes dividing f, using the expression for $\tau(\lambda_1\lambda_2)$ in terms of $\tau(\lambda_1)$, $\tau(\lambda_2)$, where λ_1,λ_2 have coprime conductors.)

9. Let l denote an odd prime and let \mathfrak{p} denote a prime ideal in $\mathbb{Q}[l]$ not dividing l. Given $a \in \mathbb{Z}[l]$, the ring of integers in $\mathbb{Q}[l]$, with $a \not\equiv 0 \mod \mathfrak{p}$, prove that there exists an lth root of unity $\left(\frac{a}{\mathfrak{p}}\right)_l \in \mu_l$,

so that

$$a^{(N\mathfrak{p}-1)/l} \equiv \left(\frac{a}{\mathfrak{p}}\right)_l \bmod \mathfrak{p}.$$

Show that this determines $\left(\frac{a}{\mathfrak{p}}\right)_I$ uniquely. Show also that

- (a) $\left(\frac{a}{\mathfrak{p}}\right)_l \left(\frac{b}{\mathfrak{p}}\right)_l = \left(\frac{ab}{\mathfrak{p}}\right)_l \text{ for } \mathfrak{p} \nmid a, b \in \mathbf{Z}[l].$
- (b) $\left(\frac{a}{\mathfrak{p}}\right)_l = 1 \iff \text{there exists } b \text{ so that } a \equiv b^l \mod \mathfrak{p}.$
- (c) If $a \in \mu_l$, then $\left(\frac{a}{\mathfrak{p}}\right)_l = a^{(N\mathfrak{p}-1)/l}$.

Now suppose that p is a prime number, $p \equiv 1 \mod (l)$. Establish a bijection from the set of prime ideal divisors of p in $\mathbb{Q}[l]$ onto the set of primitive lth power residue class characters χ of \mathbb{F}_p^* so that for all $a \in \mathbb{Z}$, $l \nmid a$, we have

$$\chi(a) = \left(\frac{a}{\mathfrak{p}}\right)_l$$

if $\mathfrak{p} \leftrightarrow \chi$.

- 10. Let m be an integer, m > 2, and let p be a prime number with $p^r \equiv 1 \mod (m)$ for some odd integer r. Let \mathfrak{p} be a prime ideal dividing p, in the maximal real subfield K of $\mathbb{Q}[p^n m]$ for given $n \geq 1$. Prove that $K_{\mathfrak{p}} \cong \mathbb{Q}_p[p^n m]$.
- 11. Let p_1, p_2 be distinct odd prime numbers, and let $d \mid (p_1 1, p_2 1)$. Show that $\mathbb{Q}[p_1 p_2]$ has a subfield L so that
 - (a) $(\mathbf{Q}[p_1p_2]:L)=d.$
 - (b) $\mathbb{Q}[p_1p_2]/L$ is non-ramified, i.e. for all prime ideals \mathfrak{p} of \mathfrak{o}_L , $e_{\mathfrak{p}}(\mathbb{Q}[p_1p_2]/L) = 1$.
- 12. Suppose $m \geq 2$ and put E = Q[4]. Let $K = \mathbb{Q}[2^m]$, let $L = \mathbb{Q}[2^m]_+$ denote the maximal real subfield of K and let $\rho \in \operatorname{Gal}(K/\mathbb{Q})$ denote complex conjugation. Show that if $u \in U_K$ does not lie in $\mu_K U_L$, then $u^{1-\rho} = \zeta$ say, is a primitive 2^m th root of unity. Prove that $U_K = \mu_K U_L$ by showing that $N_{K/E} \zeta$ is a primitive fourth root of unity, while $N_{K/E}(u)^{1-\rho}$ must be ± 1 .

Chapter VII

- 1. Let k be a finite field, and let $d \in k$, $c \in k$. Show that there exist x, y in k such that $x^2 + dy^2 = c$.
- 2. What integers can be expressed in the form (a) $X^2 5Y^2$, (b) $X^2 6Y^2$, for integral X, Y?

- 3. Find all integral solutions to $3X^2 4Y^2 = 11$.
- 4. Solve the following equations for integral X, Y
 - (a) $X^3 = Y^2 + 2$
 - (b) $X^5 = Y^2 + 19$
 - (c) $X^3 = Y^2 + 54$
 - (d) $X^3 = Y^2 + 200$.
- 5. Solve $4X^3 = Y^2 + p$ for integral X, Y when $p \equiv 3 \mod (4), p \neq 3$, and when 3 does not divide the class number of $\mathbb{Q}(\sqrt{-p})$.
- 6. What integers can be expressed in the form (a) x^2+5y^2 ; (b) x^2+15y^2 ; (c) x^2-23y^2 ; (d) x^2+23y^2 for integral x,y?
- 7. Let m be an even, square-free positive integer, and suppose that $\mathbb{Q}(\sqrt{-m})$ has class number which is not divisible by 3. Show that $X^3 = Y^2 + m$ has at most one solution in natural numbers.
- 8. Show that $\mathbb{Z}[\sqrt[3]{6}]$ has class number 1; hence show that $X^3 + 6Y^3 = 10Z^3$ has no non-trivial integer solutions.

Chapter VIII

1. Using the results of Ex.6 of Ch.V show that

$$\mathbb{Q}(\sqrt{-1}, \sqrt{3})$$

$$\mathbb{Q}(\sqrt{-3}, \sqrt{-19})$$

$$\mathbb{Q}(\sqrt{-7}, \sqrt{-11})$$

all have class number 1.

- 2. Show that $\mathbb{Q}(\sqrt{5}, \sqrt{13})$ has class number 2, and that $\mathbb{Q}(\sqrt{-3}, \sqrt{-23})$ has class number 3.
- 3. Let χ be the primitive residue class character with conductor $f(\chi) = 4$. Prove that $L(x,\chi) > 0$ for all x > 0.
- 4. Let K be a cyclotomic field of odd prime degree l over \mathbb{Q} . Let $f = \prod p_i$ denote the product of primes p_i which ramify in K, with all $p_i \equiv 1 \mod (l)$. For the units $\omega_{f,a}$ defined in (5.6), write $\omega_{K,a} = N_{\mathbb{Q}[f]_+/K}(\omega_{f,a})$, and let Ω_K denote the subgroup of K^* generated by the $\omega_{K,a}$. Prove that Ω_K is a subgroup of finite index in the group U_K of units of K and that

$$[U_K:\Omega_K]=h_K.$$

5. For a non-zero real number x define s(x) by $x/|x| = (-1)^{s(x)}$, viewing s(x) as an element of the field \mathbb{F}_2 of two elements. Call a sub-

group V of the group of units U_K of a totally real algebraic number field K full if $[V:V^2]=2^{(K:\mathbb{Q})}$. Suppose V is full. For a set of elements $\{v_j\}$ of V whose classes $\operatorname{mod} V^2$ form a basis of V/V^2 over \mathbb{F}_2 , consider the matrix $A_V=(s(v_j^{\sigma_k}))$, where σ_k ranges over the embeddings $K\to\mathbb{R}$. Prove that the rank $r(A_V)$ of A_V depends only on V, and show that, with h_K^+ as defined in $(V,\S 1)$,

(a)
$$2^{r(A_V)}h_K^+ \mid h_K 2^{(K:\mathbb{Q})}$$

with equality for $V = U_K$.

Now let K be a cyclotomic field of odd prime degree l, and let V be the group generated by Ω_K and -1. Prove that if $r(A_V) = (K : \mathbb{Q})$, then h_K^+ is odd. (Hasse) State and prove analogues for $K = \mathbb{Q}[p]_+$, p an odd prime.

- 6. A prime ideal \mathfrak{p} of \mathfrak{o}_K is said to have degree 1 if $N\mathfrak{p}$ is a prime number. By considering the behaviour of $\zeta_K(x)$ as $x \to 1+$, show that \mathfrak{o}_K always has an infinite number of degree 1 prime ideals.
- 7. Suppose that N/\mathbb{Q} is Galois with Galois group A_4 , the alternating group on 4 elements. Express $\zeta_N(x)$ in terms of Dedekind zeta functions of proper subfields of N.
- 8. (Brauer) With the notation of Theorem 73, let $W_{N_a}^{(p)}$ denote the exact power of p dividing W_{N_a} (the number of roots of unity in N_a). Show that if p > 2 then

$$\prod_a W_{N_a}^{(p)} = \prod_b W_{N_b}^{(p)}$$

but that the above equality fails to hold in general when p = 2.

[Hint: Let $W_N^{(p)}=p^m$. Note that for p>2, $\operatorname{Gal}\left(\mathbb{Q}[p^n]/\mathbb{Q}\right)=\Gamma_n$ is always cyclic. For $n\leq m$, let χ_n denote a faithful abelian character of Γ_n , which can then also be viewed as a character of Γ , via the surjection $\Gamma \to \Gamma_n$. Show that $W_{N_a}^{(p)}=p^t$ where

$$t = (\rho_a, \sum_{n=1}^m \chi_n)$$

where ρ_a denotes the character of $\mathbb{C}(\Lambda_a \backslash \Gamma)$ and where (,) denotes the standard inner product of character theory.]

Appendix A

(The notation here is that of Appendix A.)

1. Let Γ denote a finite abelian group, let $M = (\chi(\gamma))_{\gamma,\chi}$ for $\gamma \in \Gamma$,

 $\chi \in \hat{\Gamma}$, and let $M^* = (\chi^{-1}(\gamma))_{\chi,\gamma}$. Show that

$$MM^* = \operatorname{diag} \left(egin{array}{ccc} |\Gamma| & & & \\ & \ddots & & \\ & & |\Gamma| \end{array}
ight);$$

hence deduce that $\det(M)^2 = (-1)^N |\Gamma|^{|\Gamma|}$ where 2N denotes the number of elements in Γ with order greater than 2.

- 2. Let V be a finitely generated $K\Gamma$ -module. Show that V is the direct sum of the K spaces Ve_{χ} ($\chi \in \hat{\Gamma}$); furthermore, given another such module V', then V and V' are isomorphic $K\Gamma$ -modules iff $\dim_K(Ve_{\chi}) = \dim_K(V'e_{\chi})$ for all $\chi \in \hat{\Gamma}$.
- 3. Let E/F be a Galois extension of algebraic number fields with abelian Galois group Γ , viewed as contained in the algebraically closed field K. Suppose that F contains all the values $\chi(\gamma)$ ($\chi \in \hat{\Gamma}$, $\gamma \in \Gamma$). Using Ex 3 of Chapter I, prove that E has an F-basis $\{a_{\chi}\}$ ($\chi \in \hat{\Gamma}$) such that

$$a_{\chi}^{\gamma} = a_{\chi}\chi(\gamma)$$
 for all $\gamma \in \Gamma$.

Show also that $E = F(b_1, \ldots, b_r)$ where for all $i, b_i^{n_i} \in F^*$ for some $n_i > 0$.

- 4. (Alternative approach: assume only the definition of $K\Gamma$ and $\hat{\Gamma}$.)
 - (a) Show that

$$t_{K\Gamma/K}(\gamma) = \left\{ \begin{matrix} |\Gamma| & \text{if } \gamma = 1_{\Gamma} \\ 0 & \text{otherwise}. \end{matrix} \right.$$

- (b) By evaluating $\det(t_{K\Gamma/K}(\gamma\delta))$, show that $K\Gamma$ is a commutative separable K-algebra, i.e. $K\Gamma = \sum A_i$ (direct sum), where each A_i is a simple ideal; thus, as a K-algebra, each $A_i \cong K$, since K is algebraically closed.
- (c) For each i, $A_i = K\Gamma e_i$ with e_i a primitive idempotent; and show also that $e_i \gamma = e_i \chi(\gamma)$ for some $\chi \in \hat{\Gamma}$. Using this equation and writing $e_i = \sum a_{\gamma} \gamma$, show that $e_i = e_{\chi}$, where e_{χ} is as defined in (A4).
- (d) Deduce that $|\hat{\Gamma}| = |\Gamma|$.
- (e) If $\chi \in \hat{\Gamma}$, $\chi \neq \epsilon_{\Gamma}$; then, by evaluating $\chi(\sigma) \sum_{\gamma} \chi(\gamma)$, prove that $\sum_{\gamma} \chi(\gamma) = 0$.
- (f) Deduce (A10).
- (g) Use (A10) to prove that the matrix $(\chi(\gamma))_{\chi,\gamma}$ $(\chi \in \hat{\Gamma}, \gamma \in \Gamma)$ is invertible.
- (h) Deduce (A7) and (A7.a).