1) [20 points] Use the *Extended Euclidean Algorithm* to write the GCD of 83 and 61 as a linear combination of themselves. *Show work!*

[Hint: You should get 1 for the GCD!]

Solution. We have:

$$83 = 1 \cdot 83 + 0 \cdot 61$$

$$61 = 0 \cdot 83 + 1 \cdot 61 \quad (mult. by - 1)$$

$$22 = 1 \cdot 83 + (-1) \cdot 61 \quad (mult. by - 2)$$

$$17 = (-2) \cdot 83 + 3 \cdot 61 \quad (mult. by - 1)$$

$$5 = 3 \cdot 83 + (-4) \cdot 61 \quad (mult. by - 3)$$

$$2 = (-11) \cdot 83 + 15 \cdot 61 \quad (mult. by - 2)$$

$$\boxed{1} = 25 \cdot 83 + (-34) \cdot 61 \quad (mult. by - 2)$$

$$0$$

So, $gcd(83, 61) = 1 = 25 \cdot 83 + (-34) \cdot 61$.

2) [20 points] Express 2023 in base 5, i.e., write

$$2023 = ? + ? \cdot 5 + ? \cdot 5^{2} + ? \cdot 5^{3} + \cdots$$

with the blanks in $\{0, 1, 2, 3, 4\}$. Show work!

[Note: Trial and error is not acceptable here! You have to use some algorithm that always works, like the one I showed you in class.]

Solution. We have:

$$2023 = 5 \cdot 404 + 3$$

$$404 = 5 \cdot 80 + 4$$

$$80 = 5 \cdot 16 + +0$$

$$16 = 5 \cdot 3 + 1$$

$$3 = 5 \cdot 0 + 3.$$

So,

$$2023 = \boxed{3} + \boxed{4} \cdot 5 + \boxed{0} \cdot 5^2 + \boxed{1} \cdot 5^3 + \boxed{3} \cdot 5^4.$$

3) Prove that for all positive integers n, we have gcd(n, n+2) is either 1 or 2.

Proof. Let $d \stackrel{\text{def}}{=} \gcd(n, n+2)$. Then, $d \mid (n+2) - n = 2$. So, since d > 0, we must have that d = 1 or d = 2.

4) [20 points] Let $a, b \in \mathbb{Z}$. Prove that if gcd(a, b) = 1, then $gcd(a, b^2) = 1$.

Proof. By *Bezout's Lemma*, we have that there are $u, v \in \mathbb{Z}$ such that 1 = au + bv. Squaring this expression, we obtain

$$1 = a^{2}u^{2} + 2abuv + b^{2}v^{2} = a \cdot (au^{2} + 2buv) + b^{2} \cdot v^{2}.$$

Since $au^2 + 2buv, v^2 \in \mathbb{Z}$, we have that 1 is an (integral) linear combination of a and b^2 , and thus $gcd(a, b^2) \mid 1$, and hence $gcd(a, b^2) = 1$.

Alternative proof: Let d > 1 such that $d \mid a, b^2$. [We need to derive a contradiction.] Then there is p prime such that $p \mid d$, and hence $p \mid a, b^2$. By *Euclid's Lemma* we have that $p \mid b$. Hence, we have that $p \mid a, b$ and so 1 , a contradiction.

5) [20 points] Prove that if gcd(a, b) = 1, $a \mid c$, and $b \mid c$, then $ab \mid c$.

[Hint: This was a HW problem. Carefully state any previous result you use!]

Proof. We have that $n = aa_1$ [as $a \mid n$]. Since $b \mid n$, we have that $b \mid aa_1$, and by Corollary 1.40, we have that $b \mid a_1$, i.e., $a_1 = a_2b$. Thus, $n = aba_2$, and therefore $ab \mid n$.

Alternative proof: Since $a \mid c$ and $b \mid c$, we can write, $c = a_1 a = b_1 b$ for some $a_1, b_1 \in \mathbb{Z}$. By *Bezout's Lemma*, there are $u, v \in \mathbb{Z}$ such that 1 = ua + vb. Multiplying by c we have $c = uac + vbc = ua(bb_1) + vb(aa_1) = ab(ub_1 + va_1)$. Since $ub_1 + va_1 \in \mathbb{Z}$ (as $u, v, a_1, b_1 \in \mathbb{Z}$), we have that $ab \mid c$.