1) [20 points] Use the Extended Euclidean Algorithm to write the GCD of 83 and 61 as a linear combination of themselves. Show work!
[Hint: You should get 1 for the GCD!]

Solution. We have:

$$
\begin{aligned}
& 83=1 \cdot 83+00.61 \\
& 61=0 \cdot 83+\quad 1 \cdot 61 \text { (mult. by }-1 \text {) } \\
& 22=1 \cdot 83+(-1) \cdot 61 \quad \text { (mult. by }-2 \text {) } \\
& 17=(-2) \cdot 83+3 \cdot 61 \quad \text { (mult. by }-1 \text {) } \\
& 5=3 \cdot 83+(-4) \cdot 61 \quad \text { (mult. by }-3) \\
& 2=(-11) \cdot 83+15 \cdot 61 \quad \text { (mult. by }-2) \\
& 1=25 \cdot 83+(-34) \cdot 61 \quad \text { (mult. by }-2) \\
& 0
\end{aligned}
$$

So, $\operatorname{gcd}(83,61)=1=25 \cdot 83+(-34) \cdot 61$.
2) [20 points] Express 2023 in base 5, i.e., write

$$
2023=?+? \cdot 5+? \cdot 5^{2}+? \cdot 5^{3}+\cdots
$$

with the blanks in $\{0,1,2,3,4\}$. Show work!
[Note: Trial and error is not acceptable here! You have to use some algorithm that always works, like the one I showed you in class.]

Solution. We have:

$$
\begin{aligned}
2023 & =5 \cdot 404+3 \\
404 & =5 \cdot 80+4 \\
80 & =5 \cdot 16++0 \\
16 & =5 \cdot 3+1 \\
3 & =5 \cdot 0+3 .
\end{aligned}
$$

So,

$$
2023=3+4 \cdot 5+0 \cdot 5^{2}+1 \cdot 5^{3}+3 \cdot 5^{4} .
$$

3) Prove that for all positive integers n, we have $\operatorname{gcd}(n, n+2)$ is either 1 or 2 .

Proof. Let $d \stackrel{\text { def }}{=} \operatorname{gcd}(n, n+2)$. Then, $d \mid(n+2)-n=2$. So, since $d>0$, we must have that $d=1$ or $d=2$.
4) $[20$ points $]$ Let $a, b \in \mathbb{Z}$. Prove that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a, b^{2}\right)=1$.

Proof. By Bezout's Lemma, we have that there are $u, v \in \mathbb{Z}$ such that $1=a u+b v$. Squaring this expression, we obtain

$$
1=a^{2} u^{2}+2 a b u v+b^{2} v^{2}=a \cdot\left(a u^{2}+2 b u v\right)+b^{2} \cdot v^{2}
$$

Since $a u^{2}+2 b u v, v^{2} \in \mathbb{Z}$, we have that 1 is an (integral) linear combination of a and b^{2}, and thus $\operatorname{gcd}\left(a, b^{2}\right) \mid 1$, and hence $\operatorname{gcd}\left(a, b^{2}\right)=1$.

Alternative proof: Let $d>1$ such that $d \mid a, b^{2}$. [We need to derive a contradiction.] Then there is p prime such that $p \mid d$, and hence $p \mid a, b^{2}$. By Euclid's Lemma we have that $p \mid b$. Hence, we have that $p \mid a, b$ and so $1<p \leq \operatorname{gcd}(a, b)=1$, a contradiction.
5) [20 points] Prove that if $\operatorname{gcd}(a, b)=1, a \mid c$, and $b \mid c$, then $a b \mid c$.
[Hint: This was a HW problem. Carefully state any previous result you use!]

Proof. We have that $n=a a_{1}$ [as $\left.a \mid n\right]$. Since $b \mid n$, we have that $b \mid a a_{1}$, and by Corollary 1.40, we have that $b \mid a_{1}$, i.e., $a_{1}=a_{2} b$. Thus, $n=a b a_{2}$, and therefore $a b \mid n$.

Alternative proof: Since $a \mid c$ and $b \mid c$, we can write, $c=a_{1} a=b_{1} b$ for some $a_{1}, b_{1} \in \mathbb{Z}$. By Bezout's Lemma, there are $u, v \in \mathbb{Z}$ such that $1=u a+v b$. Multiplying by c we have $c=u a c+v b c=u a\left(b b_{1}\right)+v b\left(a a_{1}\right)=a b\left(u b_{1}+v a_{1}\right)$. Since $u b_{1}+v a_{1} \in \mathbb{Z}\left(\right.$ as $\left.u, v, a_{1}, b_{1} \in \mathbb{Z}\right)$, we have that $a b \mid c$.

