
1) [20 points] Use the Extended Euclidean Algorithm to write the GCD of 83 and 61 as a

linear combination of themselves. Show work!

[Hint: You should get 1 for the GCD!]

Solution. We have:

83 = 1 · 83 + 0 · 61

61 = 0 · 83 + 1 · 61 (mult. by − 1)

22 = 1 · 83 + (−1) · 61 (mult. by − 2)

17 = (−2) · 83 + 3 · 61 (mult. by − 1)

5 = 3 · 83 + (−4) · 61 (mult. by − 3)

2 = (−11) · 83 + 15 · 61 (mult. by − 2)

1 = 25 · 83 + (−34) · 61 (mult. by − 2)

0

So, gcd(83, 61) = 1 = 25 · 83 + (−34) · 61.

2) [20 points] Express 2023 in base 5, i.e., write

2023 = ? + ? · 5 + ? · 52 + ? · 53 + · · ·

with the blanks in {0, 1, 2, 3, 4}. Show work!

[Note: Trial and error is not acceptable here! You have to use some algorithm that always

works, like the one I showed you in class.]

Solution. We have:

2023 = 5 · 404 + 3

404 = 5 · 80 + 4

80 = 5 · 16 + +0

16 = 5 · 3 + 1

3 = 5 · 0 + 3.

So,

2023 = 3 + 4 · 5 + 0 · 52 + 1 · 53 + 3 · 54.
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3) Prove that for all positive integers n, we have gcd(n, n+ 2) is either 1 or 2.

Proof. Let d
def
= gcd(n, n+2). Then, d | (n+2)− n = 2. So, since d > 0, we must have that

d = 1 or d = 2.

4) [20 points] Let a, b ∈ Z. Prove that if gcd(a, b) = 1, then gcd(a, b2) = 1.

Proof. By Bezout’s Lemma, we have that there are u, v ∈ Z such that 1 = au+ bv. Squaring

this expression, we obtain

1 = a2u2 + 2abuv + b2v2 = a · (au2 + 2buv) + b2 · v2.

Since au2 +2buv, v2 ∈ Z, we have that 1 is an (integral) linear combination of a and b2, and

thus gcd(a, b2) | 1, and hence gcd(a, b2) = 1.

Alternative proof: Let d > 1 such that d | a, b2. [We need to derive a contradiction.] Then

there is p prime such that p | d, and hence p | a, b2. By Euclid’s Lemma we have that p | b.
Hence, we have that p | a, b and so 1 < p ≤ gcd(a, b) = 1, a contradiction.

5) [20 points] Prove that if gcd(a, b) = 1, a | c, and b | c, then ab | c.

[Hint: This was a HW problem. Carefully state any previous result you use! ]

Proof. We have that n = aa1 [as a | n]. Since b | n, we have that b | aa1, and by Corollary

1.40, we have that b | a1, i.e., a1 = a2b. Thus, n = aba2, and therefore ab | n.

Alternative proof: Since a | c and b | c, we can write, c = a1a = b1b for some a1, b1 ∈ Z.
By Bezout’s Lemma, there are u, v ∈ Z such that 1 = ua + vb. Multiplying by c we have

c = uac+ vbc = ua(bb1) + vb(aa1) = ab(ub1 + va1). Since ub1 + va1 ∈ Z (as u, v, a1, b1 ∈ Z),
we have that ab | c.
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