
1) [20 points] Find the remainder of

a = 1977 · 20002023 + 2046

when divided by 11.

Solution. We have

1977 ≡ 7− 7 + 9− 1 = 8 (mod 11),

2000 ≡ 0− 0 + 0− 2 = −2 (mod 11),

2046 ≡ 6− 4 + 0− 2 = 0 (mod 11).

So,

a ≡ 8 · (−2)2023 + 0 (mod 11).

Now,

2023 ≡ 3 (mod 10),

and by Fermat’s Little Theorem we have

a ≡ 8 · (−2)3 = −64 ≡ 2 (mod 11).
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2) [20 points] Find all integers x satisfying

3x ≡ 6 (mod 14),

5x ≡ 3 (mod 21).

Solution. First note that since gcd(3, 14) = gcd(5, 21) = 1, both congruences have solutions,

so we can attempt to solve the system.

Starting with the first: We have that 5 · 3 ≡ 1 (mod 14), so multiplying the first congruence

by 5 we have

x ≡ 30 ≡ 2 (mod 14).

So, x = 2 + 14k from some k ∈ Z. Substituting in the second, we get

5 · (2 + 14k) ≡ 3 (mod 21) =⇒ 10 + 70k ≡ 3 (mod 21) =⇒

70k ≡ −7 (mod 21) =⇒ 7k ≡ 14 (mod 21).

We have that gcd(7, 21) = 7 and 7 | 14, so we get

k ≡ 2 (mod 3).

We then have k ≡ 2 (mod 3), i.e., k = 2 + 3l for l ∈ Z. Substituting back, we get x =

2 + 14k = 2 + 14 · (2 + 3l) = 30 + 42l for l ∈ Z.

Starting with the second: We have that −4 · 5 = −20 ≡ 1 (mod 21). So, multiplying the

second congruence by −4, we get

x ≡ −12 ≡ 9 (mod 21).

So, x = 9 + 21k from some k ∈ Z. Substituting in the second, we get

3 · (9 + 21k) ≡ 6 (mod 14) =⇒ 27 + 63k ≡ 6 (mod 14) =⇒

63k ≡ −21 (mod 14) =⇒ 7k ≡ 7 (mod 14).

We have that gcd(7, 14) = 7 and 7 | 7, so we get

k ≡ 1 (mod 2).

We then have k = 1+2l for l ∈ Z. Substituting back, we get x = 9+21k = 9+21 · (1+2l) =

30 + 42l for l ∈ Z.
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3) [20 points] Prove that there are no integers x, y, such that x2 + y4 = 2023.

Proof. Consider the equation modulo 4. Since

x2 ≡ 0 or 1 (mod 4),

y4 ≡ 0 or 1 (mod 4),

we have that

x2 + y4 ≡ 0, 1, or 2 ̸≡ 3 ≡ 2023 (mod 4).

Hence, there can’t be x, y ∈ Z satisfying the equation.

4) [20 points] Prove that m ∈ Z≥2 is a perfect square if and only if each of its prime factors

appears an even number of times in its decomposition.

[Note: This was a HW problem.]

Proof. [⇒]: If m is a perfect square, then m = n2 for some n ∈ Z≥0. Since m ≥ 2, we can

assume that n ≥ 2. Then, by the Fundamental Theorem of Arithmetic, we have

n = pe11 pe22 · · · penn ,

where the pi’s are distinct primes and ei ∈ Z≥1. Then, the decomposition of m = n2 is

m = (pe11 pe22 · · · penn )2 = p2e11 p2e22 · · · p2enn ,

so each prime factor pi appears an even number of times, namely 2ei.

[⇐]: Now assume that the decomposition of m is

m = pf11 pf22 · · · pfnn

with fi ≥ 1 even. Then, we have that fi = 2i for some ei ∈ Z>1. Then,

m = p2e11 p2e22 · · · p2enn = (pe11 pe22 · · · penn )2.

Since pe11 pe22 · · · penn ∈ Z, we have that m is a perfect square.
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5) [20 points] Prove that if gcd(a,m) ∤ b, then there is no x ∈ Z such that

ax ≡ b (mod m).

[Hint: This was done in class. Start by converting the congruence into an equality of

integers.]

Proof. Suppose there is such an x. Then, the congruence means that

ax = b+ km, for some k ∈ Z.

So,

b = ax− km

Since gcd(a,m) is a common divisor of a and m, by the Basic Lemma, it must also divide b,

proving the contrapositive (and hence, the original statement).
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