1) [20 points] Find the remainder of

$$
a=1977 \cdot 2000^{2023}+2046
$$

when divided by 11 .

Solution. We have

$$
\begin{aligned}
& 1977 \equiv 7-7+9-1=8 \quad(\bmod 11), \\
& 2000 \equiv 0-0+0-2=-2 \quad(\bmod 11), \\
& 2046 \equiv 6-4+0-2=0 \quad(\bmod 11) .
\end{aligned}
$$

So,

$$
a \equiv 8 \cdot(-2)^{2023}+0 \quad(\bmod 11)
$$

Now,

$$
2023 \equiv 3 \quad(\bmod 10)
$$

and by Fermat's Little Theorem we have

$$
a \equiv 8 \cdot(-2)^{3}=-64 \equiv 2 \quad(\bmod 11)
$$

2) [20 points] Find all integers x satisfying

$$
\begin{aligned}
& 3 x \equiv 6 \quad(\bmod 14), \\
& 5 x \equiv 3 \quad(\bmod 21)
\end{aligned}
$$

Solution. First note that since $\operatorname{gcd}(3,14)=\operatorname{gcd}(5,21)=1$, both congruences have solutions, so we can attempt to solve the system.

Starting with the first: We have that $5 \cdot 3 \equiv 1(\bmod 14)$, so multiplying the first congruence by 5 we have

$$
x \equiv 30 \equiv 2 \quad(\bmod 14)
$$

So, $x=2+14 k$ from some $k \in \mathbb{Z}$. Substituting in the second, we get

$$
\begin{aligned}
& 5 \cdot(2+14 k) \equiv 3 \quad(\bmod 21) \quad \Longrightarrow \quad 10+70 k \equiv 3 \quad(\bmod 21) \quad \Longrightarrow \\
& 70 k \equiv-7 \quad(\bmod 21) \quad \Longrightarrow \quad 7 k \equiv 14 \quad(\bmod 21) .
\end{aligned}
$$

We have that $\operatorname{gcd}(7,21)=7$ and $7 \mid 14$, so we get

$$
k \equiv 2 \quad(\bmod 3)
$$

We then have $k \equiv 2(\bmod 3)$, i.e., $k=2+3 l$ for $l \in \mathbb{Z}$. Substituting back, we get $x=$ $2+14 k=2+14 \cdot(2+3 l)=30+42 l$ for $l \in \mathbb{Z}$.

Starting with the second: We have that $-4 \cdot 5=-20 \equiv 1(\bmod 21)$. So, multiplying the second congruence by -4 , we get

$$
x \equiv-12 \equiv 9 \quad(\bmod 21) .
$$

So, $x=9+21 k$ from some $k \in \mathbb{Z}$. Substituting in the second, we get

$$
\begin{aligned}
3 \cdot(9+21 k) \equiv 6 \quad(\bmod 14) \Longrightarrow & 27+63 k \equiv 6 \quad(\bmod 14) \Longrightarrow \\
& 63 k \equiv-21 \quad(\bmod 14) \Longrightarrow \quad 7 k \equiv 7 \quad(\bmod 14)
\end{aligned}
$$

We have that $\operatorname{gcd}(7,14)=7$ and $7 \mid 7$, so we get

$$
k \equiv 1 \quad(\bmod 2)
$$

We then have $k=1+2 l$ for $l \in \mathbb{Z}$. Substituting back, we get $x=9+21 k=9+21 \cdot(1+2 l)=$ $30+42 l$ for $l \in \mathbb{Z}$.
3) [20 points] Prove that there are no integers x, y, such that $x^{2}+y^{4}=2023$.

Proof. Consider the equation modulo 4. Since

$$
\begin{aligned}
& x^{2} \equiv 0 \text { or } 1 \quad(\bmod 4), \\
& y^{4} \equiv 0 \text { or } 1 \quad(\bmod 4),
\end{aligned}
$$

we have that

$$
x^{2}+y^{4} \equiv 0,1, \text { or } 2 \not \equiv 3 \equiv 2023 \quad(\bmod 4)
$$

Hence, there can't be $x, y \in \mathbb{Z}$ satisfying the equation.
4) [20 points] Prove that $m \in \mathbb{Z}_{\geq 2}$ is a perfect square if and only if each of its prime factors appears an even number of times in its decomposition.
[Note: This was a HW problem.]

Proof. [\Rightarrow]: If m is a perfect square, then $m=n^{2}$ for some $n \in \mathbb{Z}_{\geq 0}$. Since $m \geq 2$, we can assume that $n \geq 2$. Then, by the Fundamental Theorem of Arithmetic, we have

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}
$$

where the p_{i} 's are distinct primes and $e_{i} \in \mathbb{Z}_{\geq 1}$. Then, the decomposition of $m=n^{2}$ is

$$
m=\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)^{2}=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{n}^{2 e_{n}}
$$

so each prime factor p_{i} appears an even number of times, namely $2 e_{i}$.
$[\Leftarrow]$: Now assume that the decomposition of m is

$$
m=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}
$$

with $f_{i} \geq 1$ even. Then, we have that $f_{i}=2_{i}$ for some $e_{i} \in \mathbb{Z}_{>1}$. Then,

$$
m=p_{1}^{2 e_{1}} p_{2}^{2 e_{2}} \cdots p_{n}^{2 e_{n}}=\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)^{2} .
$$

Since $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \in \mathbb{Z}$, we have that m is a perfect square.
5) [20 points] Prove that if $\operatorname{gcd}(a, m) \nmid b$, then there is no $x \in \mathbb{Z}$ such that

$$
a x \equiv b \quad(\bmod m)
$$

[Hint: This was done in class. Start by converting the congruence into an equality of integers.]

Proof. Suppose there is such an x. Then, the congruence means that

$$
a x=b+k m, \text { for some } k \in \mathbb{Z} .
$$

So,

$$
b=a x-k m
$$

Since $\operatorname{gcd}(a, m)$ is a common divisor of a and m, by the Basic Lemma, it must also divide b, proving the contrapositive (and hence, the original statement).

