## FINAL

M559 - LINEAR ALGEBRA - MAY 10TH, 2024

Solve all problems in class. [I hope you can do all of this in class, as it is comparable to a diagnostic exam.] Then, you may take this sheet home and solve all remaining problems, or problems that you think you've missed, upload it to Canvas by Sunday (05/12) by 11:59pm. I will consider it for some partial credit. [At most half of the original number of points you've missed in the question.]

Important: After you take them home, you should treat these problems as a take-home exam, not as a homework. So, you should not discuss anything about these problems with anyone (except me), nor use any texts or the internet.

1. Let $T$ be a linear operator on a vector space $V$ of [finite] dimension $n$. Suppose that $\operatorname{rank}\left(T^{2}\right)=\operatorname{rank}(T)$. Prove that $\operatorname{ker}(T) \cap \operatorname{im}(T)=\{\overrightarrow{0}\}$.
2. Given an example of two real $4 \times 4$ nilpotent matrices that have the same minimal and characteristic polynomials, but are not similar. Justify!
3. Let $A$ be a $3 \times 3$ matrix over $\mathbb{R}$ with eigenvalues 0,1 , and 2 , and $B \stackrel{\text { def }}{=} A^{2}+I$. Prove that $B$ is invertible.
4. Let $A$ be a $2024 \times 2024$ matrix over $\mathbb{C}$ such that $A^{3}=A$ and $\operatorname{tr}(A) \geq 2024$, where $\operatorname{tr}(A)$ is the trace of $A$ [the sum of all entries on the main diagonal of $A$ ]. Prove that $A$ is the identity matrix.
[Hint: We showed in the homework that if $A$ and $B$ are similar, then they have the same trace. You can use this result without proving it.]
5. Let $A$ be an $n \times n$ matrix with characteristic polynomial

$$
\chi_{A}=\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \cdots\left(x-c_{k}\right)^{d_{k}},
$$

with $c_{i}$ 's distinct and $d_{i} \geq 1$. Find $\operatorname{det}(A)$ and $\operatorname{tr}(A)$. Justify your answer!
6. Let $A$ be a Hermetian [i.e., self-adjoint] $n \times n$ matrix with complex entries. Prove that for all $v \in \mathbb{C}^{n}$ [seen as a column vector], we have that $v^{*} A v \in \mathbb{R}$. [As usual, $B^{*}$ denotes the adjoint of $B$, i.e., the transpose of the complex conjugate of $B$.]

