FINAL

M559 - LINEAR ALGEBRA - MAY 10TH, 2024

1. Let T be a linear operator on a vector space V of [finite] dimension n. Suppose that $\operatorname{rank}(T^2) = \operatorname{rank}(T)$. Prove that $\ker(T) \cap \operatorname{im}(T) = \{\vec{0}\}$.

Proof. First, observe that clearly im $T^2 \subseteq \operatorname{im} T$. Since $\operatorname{rank}(T^2) = \operatorname{rank}(T)$, we have that $\operatorname{im} T^2 = \operatorname{im} T$.

Then, we have that

$n = \dim \ker(T) + \operatorname{rank}(T)$	[Rank-Nullity Theorem for T]
$=\dim \ker(T) + \operatorname{rank}(T^2)$	[since $\operatorname{rank}(T) = \operatorname{rank}(T^2)$]
$= \dim \ker(T^2) + \operatorname{rank}(T^2)$	[Rank-Nullity Theorem for T^2]

and hence dim ker (T^2) = dim ker(T). Now, we also clearly have ker $(T) \subseteq$ ker (T^2) , we have that ker(T) = ker (T^2) . So, if $v \in$ ker $(T) \cap$ im(T), then v = T(W) for some $w \in V$, and $\vec{0} = T(v) = T^2(w)$. So, $w \in$ ker $(T^2) =$ ker(T) and $v = T(w) = \vec{0}$. \Box

2. Given an example of two real 4×4 nilpotent matrices that have the same minimal and characteristic polynomials, but are not similar. Justify!

Solution. We have that

are both in Jordan form, from which we get that $\chi_A = \chi_B = x^4$, so both are nilpotent, and from the first 2×2 elementary Jordan block, we get that $\mu_A = \mu_B = x^2$, but since they have different Jordan forms they are not similar [or note that the first has rank 2 and the second has rank 1]. **3.** Let A be a 3×3 matrix over \mathbb{R} with eigenvalues 0, 1, and 2, and $B \stackrel{\text{def}}{=} A^2 + I$. Prove that B is invertible.

Proof. Let $\mathcal{B} = \{v_1, v_2, v_3\}$, where v_1, v_2, v_3 are eigenvectors associated to 0, 1, and 2, respectively. Since A is 3×3 , \mathcal{B} is a basis of \mathbb{R}^3 . Then, we have that

$$B(v_1) = A^2(v_1) + v_1 = v_1,$$

$$B(v_2) = A^2(v_2) + v_2 = 2v_2,$$

$$B(v_3) = A^2(v_3) + v_3 = 5v_3,$$

and hence $\{1, 2, 5\} \subseteq \operatorname{spec}(B)$, and since B is 3×3 , we have equality. So, $0 \notin \operatorname{spec}(B)$, so $\ker(B) = \{\vec{0}\}$ and B is invertible.

4. Let A be a 2024×2024 matrix over \mathbb{C} such that $A^3 = A$ and $tr(A) \ge 2024$, where tr(A) is the *trace* of A [the sum of all entries on the main diagonal of A]. Prove that A is the identity matrix.

[Hint: We showed in the homework that if A and B are similar, then they have the same trace. You can use this result without proving it.]

Proof. We have that $x^3 - x = x(x - 1)(x + 1)$ annihilates the matrix, so the minimal polynomial μ_A divides x(x - 1)(x + 1), so it has simple roots, and hence A is diagonalizable, with either 0, 1, or -1 in its diagonal.

If P is an invertible matrix such that $D = P^{-1}AP$ is the diagonal form, then $\operatorname{tr}(A) = \operatorname{tr}(D)$ is a sum of n numbers belonging to $\{0, 1, -1\}$, so $\operatorname{tr}(A) \leq n$. Since $\operatorname{tr}(A) \geq n$, we must have the equality and that all diagonal entries of D are 1, i.e., D = I, which implies that $A = PDP^1 = PIP^{-1} = I$.

5. Let A be an $n \times n$ matrix with characteristic polynomial

$$\chi_A = (x - c_1)^{d_1} (x - c_2)^{d_2} \cdots (x - c_k)^{d_k},$$

with c_i 's distinct and $d_i \ge 1$. Find det(A) and tr(A). Justify your answer!

Solution. Since the characteristic polynomial factors as product of linear polynomials, we have a Jordan form. The Jordan block of $(x - c_i)^{d_i}$ is upper triangular and has $d_i c_i$'s in its diagonal. Hence:

$$\det(A) = c_1^{d_1} \cdots c_k^{d_k},$$
$$\operatorname{tr}(A) = d_1 c_1 + \cdots + d_k c_k.$$

6. Let A be a Hermetian [i.e., self-adjoint] $n \times n$ matrix with complex entries. Prove that for all $v \in \mathbb{C}^n$ [seen as a *column* vector], we have that $v^*Av \in \mathbb{R}$. [As usual, B^* denotes the adjoint of B, i.e., the transpose of the complex conjugate of B.]

Proof. Since $A^* = A$, we have

$$v^*Av = \langle Av, v \rangle = \langle v, A^*v \rangle = \langle v, Av \rangle = \overline{\langle Av, v \rangle}.$$

Hence, since v^*Av is equal to both $\langle Av, v \rangle$ and $\overline{\langle Av, v \rangle}$, it must be real.