FINAL

1. Let T be a linear operator on a vector space V of [finite] dimension n. Suppose that $\operatorname{rank}\left(T^{2}\right)=\operatorname{rank}(T)$. Prove that $\operatorname{ker}(T) \cap \operatorname{im}(T)=\{\overrightarrow{0}\}$.

Proof. First, observe that clearly im $T^{2} \subseteq \operatorname{im} T$. Since $\operatorname{rank}\left(T^{2}\right)=\operatorname{rank}(T)$, we have that $\operatorname{im} T^{2}=\operatorname{im} T$.

Then, we have that

$$
\begin{aligned}
n & =\operatorname{dim} \operatorname{ker}(T)+\operatorname{rank}(T) & & {[\text { Rank-Nullity Theorem for } T] } \\
& =\operatorname{dim} \operatorname{ker}(T)+\operatorname{rank}\left(T^{2}\right) & & {\left[\operatorname{since} \operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)\right] } \\
& =\operatorname{dim} \operatorname{ker}\left(T^{2}\right)+\operatorname{rank}\left(T^{2}\right) & & {\left[\text { Rank-Nullity Theorem for } T^{2}\right] }
\end{aligned}
$$

and hence $\operatorname{dim} \operatorname{ker}\left(T^{2}\right)=\operatorname{dim} \operatorname{ker}(T)$. Now, we also clearly have $\operatorname{ker}(T) \subseteq \operatorname{ker}\left(T^{2}\right)$, we have that $\operatorname{ker}(T)=\operatorname{ker}\left(T^{2}\right)$. So, if $v \in \operatorname{ker}(T) \cap \operatorname{im}(T)$, then $v=T(W)$ for some $w \in V$, and $\overrightarrow{0}=T(v)=T^{2}(w)$. So, $w \in \operatorname{ker}\left(T^{2}\right)=\operatorname{ker}(T)$ and $v=T(w)=\overrightarrow{0}$.
2. Given an example of two real 4×4 nilpotent matrices that have the same minimal and characteristic polynomials, but are not similar. Justify!

Solution. We have that

$$
A \stackrel{\text { def }}{=}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad B \stackrel{\text { def }}{=}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

are both in Jordan form, from which we get that $\chi_{A}=\chi_{B}=x^{4}$, so both are nilpotent, and from the first 2×2 elementary Jordan block, we get that $\mu_{A}=\mu_{B}=x^{2}$, but since they have different Jordan forms they are not similar [or note that the first has rank 2 and the second has rank 1].
3. Let A be a 3×3 matrix over \mathbb{R} with eigenvalues 0,1 , and 2 , and $B \stackrel{\text { def }}{=} A^{2}+I$. Prove that B is invertible.

Proof. Let $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$, where v_{1}, v_{2}, v_{3} are eigenvectors associated to 0,1 , and 2 , respectively. Since A is $3 \times 3, \mathcal{B}$ is a basis of \mathbb{R}^{3}. Then, we have that

$$
\begin{aligned}
& B\left(v_{1}\right)=A^{2}\left(v_{1}\right)+v_{1}=v_{1}, \\
& B\left(v_{2}\right)=A^{2}\left(v_{2}\right)+v_{2}=2 v_{2}, \\
& B\left(v_{3}\right)=A^{2}\left(v_{3}\right)+v_{3}=5 v_{3},
\end{aligned}
$$

and hence $\{1,2,5\} \subseteq \operatorname{spec}(B)$, and since B is 3×3, we have equality. So, $0 \notin \operatorname{spec}(B)$, so $\operatorname{ker}(B)=\{\overrightarrow{0}\}$ and B is invertible.
4. Let A be a 2024×2024 matrix over \mathbb{C} such that $A^{3}=A$ and $\operatorname{tr}(A) \geq 2024$, where $\operatorname{tr}(A)$ is the trace of A [the sum of all entries on the main diagonal of A]. Prove that A is the identity matrix.
[Hint: We showed in the homework that if A and B are similar, then they have the same trace. You can use this result without proving it.]

Proof. We have that $x^{3}-x=x(x-1)(x+1)$ annihilates the matrix, so the minimal polynomial μ_{A} divides $x(x-1)(x+1)$, so it has simple roots, and hence A is diagonalizable, with either 0,1 , or -1 in its diagonal.

If P is an invertible matrix such that $D=P^{-1} A P$ is the diagonal form, then $\operatorname{tr}(A)=\operatorname{tr}(D)$ is a sum of n numbers belonging to $\{0,1,-1\}$, so $\operatorname{tr}(A) \leq n$. Since $\operatorname{tr}(A) \geq n$, we must have the equality and that all diagonal entries of D are 1, i.e., $D=I$, which implies that $A=P D P^{1}=P I P^{-1}=I$.
5. Let A be an $n \times n$ matrix with characteristic polynomial

$$
\chi_{A}=\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \cdots\left(x-c_{k}\right)^{d_{k}}
$$

with c_{i} 's distinct and $d_{i} \geq 1$. Find $\operatorname{det}(A)$ and $\operatorname{tr}(A)$. Justify your answer!
Solution. Since the characteristic polynomial factors as product of linear polynomials, we have a Jordan form. The Jordan block of $\left(x-c_{i}\right)^{d_{i}}$ is upper triangular and has $d_{i} c_{i}$'s in its diagonal. Hence:

$$
\begin{aligned}
\operatorname{det}(A) & =c_{1}^{d_{1}} \cdots c_{k}^{d_{k}} \\
\operatorname{tr}(A) & =d_{1} c_{1}+\cdots+d_{k} c_{k}
\end{aligned}
$$

6. Let A be a Hermetian [i.e., self-adjoint] $n \times n$ matrix with complex entries. Prove that for all $v \in \mathbb{C}^{n}$ [seen as a column vector], we have that $v^{*} A v \in \mathbb{R}$. [As usual, B^{*} denotes the adjoint of B, i.e., the transpose of the complex conjugate of B.] Proof. Since $A^{*}=A$, we have

$$
v^{*} A v=\langle A v, v\rangle=\left\langle v, A^{*} v\right\rangle=\langle v, A v\rangle=\overline{\langle A v, v\rangle} .
$$

Hence, since $v^{*} A v$ is equal to both $\langle A v, v\rangle$ and $\overline{\langle A v, v\rangle}$, it must be real.

