
1) [13 points] Let A 6= ∅ and f : A→ A [so, the codomain is A itself] and assume that for

all functions g : A → A we have that f ◦ g = f . Prove that f is a constant function [i.e.,

there is a0 ∈ A such for all a ∈ A we have that f(a) = a0].

[Hint: What happens if g is constant?]

Proof. Since A 6= ∅, we have that there is a ∈ A. Let g be the function constant equal to a,

i.e., g(x) = a for all x ∈ A. Then, for all x ∈ A, we have that (f◦g)(x) = f(g(x)) = f(a) ∈ A.

On the other hand, (f ◦ g)(x) = f(x) by assumption. So, for every x ∈ A we have that

f(x) = f(a). [So, the a0 is the element f(a) ∈ A.]

2) [24 points] Let A,B 6= ∅ and f : A→ B. For X ⊆ A, define

f(X) = {f(x) | x ∈ X}.

[Note: From this definition we have that f(∅) = ∅.]

(a) Prove that if X, Y ⊆ A, then f(X ∩ Y ) ⊆ f(X) ∩ f(Y ).

Proof. Let b ∈ f(X ∩ Y ). Then, there is a ∈ X ∩ Y , i.e., a ∈ X and a ∈ Y , such that

b = f(a). Since a ∈ X, we have that b = f(a) ∈ f(X) and since a ∈ Y , we have that

b = f(a) ∈ f(Y ). So, f(X ∩ Y ) ⊆ f(X) ∩ f(Y ).

(b) Give an example for which f(X∩Y ) 6= f(X)∩f(Y ). [Hint: There are many examples

that work here, but one can make a very simple one where A = B = {1, 2}. Also, by

part (c), note that your example cannot be one-to-one!]

Proof. Let f : {1, 2} → {1, 2} given by f(1) = f(2) = 1. Let X = {1} and Y = {2}.
Then, f(X ∩ Y ) = f(∅) = ∅ and f(X) ∩ f(Y ) = {1} ∩ {1} = {1} 6= ∅.

(c) Prove that if f is one-to-one, then f(X ∩ Y ) = f(X) ∩ f(Y ).

Proof. Since from part (a) we already have f(X ∩Y ) ⊆ f(X)∩ f(Y ), suffices to prove

the other inclusion. So, let b ∈ f(X) ∩ f(Y ). Hence, there is b ∈ f(X), i.e., there is

x ∈ X such that b = f(x), and b ∈ f(Y ), i.e., there is y ∈ Y such that b = f(y). Since

f is one-to-one and f(x) = f(y), we must have x = y. Since x ∈ X and x = y ∈ Y ,

we have x ∈ X ∩ Y . Since also b = f(x), we have b ∈ f(X ∩ Y ).
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3) [13 points] Let f : A→ B be a one-to-one and onto function, f−1 : B → A be its inverse

and C ⊆ A, with C 6= ∅. Prove that f |C : C → f(C) [with f |C as in Problems 5.1.7

and 5.1.9 and f(C) as in Problem 2 above] is also one-to-one and onto and its inverse is

(f−1)|f(C).

[Hint: This is a very simple problem if you can unravel the notation. Just try to not let it

overwhelm you!]

Proof. [One-to-one.] Let c, c′ ∈ C and suppose f(c) = f(c′). But, since f is one-to-one, we

have that c = c′.

[Onto.] Let b ∈ f(C). Then, there exists c ∈ C such that b = f(c). So, f in onto.

[Inverse.] Let b ∈ f(C). Then, there is c ∈ C such that b = f(c). Since f is invertible, we have

then that c = f−1(b). So, ((f−1)|f(C))(b) = f−1(b) = c. Hence, [(f |C) ◦ ((f−1)|f(C))](b) =

(f |C)(c) = b, i.e., [(f |C) ◦ ((f−1)|f(C))] = iB.

Also, if c ∈ C, then (f |C)(c) = f(c) and ((f−1)|C)(f(c)) = f−1(f(c)) = c, and so

[((f−1)|f(C)) ◦ (f |C)] = iC .

4) [16 points] Prove that for all n ∈ N, we have that 5 | (n5 − n).

Proof. We prove it by induction on n.

[Base case.] For n = 0, we have that 5 | 0 = 05 − 0.

[Induction step.] Assume now that 5 | n5−n for some n ≥ 0, i.e., assume that there is k ∈ Z
such that n5 − n = 5k. [Need to prove that 5 | (n + 1)5 − (n + 1).] We have:

(n + 1)5 − (n + 1) = n5 + 5n4 + 10n3 + 10n2 + 5n + 1− n− 1

= (n5 − n) + 5n4 + 10n3 + 10n2 + 5n

= 5k + 5(n4 + 2n3 + 2n2 + n)

= 5(k + n4 + 2n3 + 2n2 + n)

Since (k + n4 + 2n3 + 2n2 + n) ∈ Z, we have that 5 | (n + 1)5 − (n + 1).
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5) [17 points] Prove that for all n ∈ Z≥1, we have that 5n ≥ 2n + 3n.

Proof. We prove it by induction on n.

[Base case.] We have that 51 = 2 + 3 ≥ 21 + 31.

[Induction step.] Assume now that 5n ≥ 2n + 3n for some n ≥ 1. Then,

5n+1 = 5 · 5n

≥ 5 · (2n + 3n) [by IH]

= 5 · 2n + 5 · 3n

≥ 2 · 2n + 3 · 3n [5 ≥ 2 and 5 ≥ 3]

= 2n+1 + 3n+1.

6) [17 points] Consider the sequence a0, a1, a2, . . . given by the recursive formula:

a0 = 1

a1 = 1

an = 2an−1 + 3an−2, for n ≥ 2.

Prove that for all n ∈ N, we have that an = (3n + (−1)n)/2.

Proof. We prove it by induction on n.

[Base cases.] We have a0 = 1 = (30 + (−1)0)/2. Also, a1 = 1 = (31 + (−1)1)/2.

[Induction step.] Assume now that from some n ≥ 1 we have that for all k ∈ {0, 1, . . . , n}
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that ak = (3k+ + (−1)k)/2. Then,

an+1 = 2an + 3 · an−1

= 2 · 3n + (−1)n

2
+ 3 · 3n−1 + (−1)n−1

2

=
2 · [3n + (−1)n] + 3 · [3n−1 + (−1)n−1]

2

=
[2 · 3n + 3 · 3n−1] + [2 · (−1)n + 3 · (−1)n−1]

2

=
[2 · 3n + 3n] + (−1)n−1[2 · (−1) + 3]

2

=
[3 · 3n] + (−1)n−1

2

=
3n+1 + (−1)n+1

2
.
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