LINEAR TRANSFORMATIONS DEFINED GEOMETRICALLY

1. Introduction. Any $n \times n$ matrix A defines a linear transformation:

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that is, matrices 'act on column vectors by left-multiplication' (move them around). Now we turn things around and ask: suppose we can describe a transformation T of \mathbb{R}^{n} by the geometry of its effect on vectors: T 'rotates vectors by 30 degrees counterclockwise about the axis with direction $(1,1,1)$ ', or 'projects vectors onto the plane (subspace) $x+y+z=0$, parallel to the vector $(2,1,1)^{\prime}$, etc. Suppose we know, in addition, that the transformation T is linear, that is, respects linear combinations:

$$
T\left(c_{1} v_{1}+\ldots+c_{r} v_{r}\right)=c_{1} T\left(v_{1}\right)+\ldots c_{r} T\left(v_{r}\right)
$$

Problem: Can we find an $n \times n$ matrix A_{0} having the same geometric action on vectors as T ?

If we find such a matrix, then we can easily compute the effect of T on any vector in \mathbb{R}^{n}; with the geometric description alone, we can compute easily the action on only a small number of vectors (to be precise: only on special subspaces).

We already know one basic fact to help solve this problem: the columns of a matrix correspond to its action on the vectors e_{i} of the 'standard basis' of \mathbb{R}^{n} :

$$
A_{0}=\left[A_{0} e_{1}\left|A_{0} e_{2}\right| \ldots \mid A_{0} e_{n}\right] \quad \text { (by columns) }
$$

Thus we can find A_{0} if we can compute the action of T on the e_{i}.
Example 1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ projects vectors onto the one-dimensional subspace E spanned by $v_{1}=(2,1)$, parallel to the line K (subspace) spanned by $v_{2}=(1,1)$. Thus we know:

$$
T(2,1)=(2,1), \quad T(1,1)=0
$$

To compute the effect of T on the standard basis of \mathbb{R}^{2}, we note that:
$e_{1}=(1,0)=(2,1)-(1,1)=v_{1}-v_{2} ; \quad e_{2}=(0,1)=2(1,1)-(2,1)=2 v_{2}-v_{1}$.
Thus, by linearity:

$$
T e_{1}=T v_{1}-T v_{2}=(2,1) ; \quad T e_{2}=2 T v_{2}-T v_{1}=(-2,-1)
$$

So A_{0} is the matrix having $(2,1)$ and $(-2,-1)$ as column vectors:

$$
A_{0}=\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right] .
$$

From this we can easily compute the action of T on an arbitrary vector, say: $T(3,5)=(-2,-2)$.
(Note: There is a subtle abuse of notation here- we are identifying the geometrically defined transformation T with a 2×2 matrix A_{0} that has the same action as T on any vector. Soon we'll see that there are many matrices associated with the same (geometrically defined) T; but since we always identify a vector in \mathbb{R}^{n} with its 'coordinates in the standard basis' (see below), identifying T with its 'matrix in the standard basis' A_{0} leads to correct results. This note will become clearer once Definitions 1,2 below have been absorbed.)

Assorted remarks on example 1. (1) Note that the column space of A_{0} is exactly the subspace E, corresponding to the fact that the image of T is E (that is, T maps all of \mathbb{R}^{2} to E); (2) The nullspace (or kernel) of A_{0} has defining equation $x_{1}=x_{2}$, so it coincides with the subspace K; this corresponds to the fact that T maps all of K to the zero vector. (3)Note that, in this case, $N\left(A_{0}\right)$ and $\operatorname{Col}\left(A_{0}\right)$ intersect only at 0 , and together span \mathbb{R}^{2}. This not true for a general T (although the dimensions of $N(T)$ and $\operatorname{Ran}(T)$ always add up to n), but it is always true for projections (as we'll see later). (4) Once you've projected a vector onto E, projecting again won't do anything; that is, it is clear geometrically that $T^{2}(v)=T(v)$, for any $v \in \mathbb{R}^{2}$. On the matrix side, we would expect the corresponding identity: $A_{0}^{2}=A_{0}$, and this is indeed true (check!)

Example 2. Let R_{θ} be the linear transformation of \mathbb{R}^{2} that rotates vectors by θ radians, counterclockwise. From basic trigonometry:

$$
R_{\theta}\left(e_{1}\right)=(\cos \theta, \sin \theta), \quad R_{\theta}\left(e_{2}\right)=(-\sin \theta, \cos \theta),
$$

so we associate to R_{θ} the 'rotation matrix':

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

For example, to compute the effect of rotating $(4,2)$ by 60 degrees (counterclockwise) we use $R_{\pi / 3}$:

$$
\left[\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{r}
2-\sqrt{3} \\
2 \sqrt{3}+1
\end{array}\right] .
$$

To go further, consider Example 1 again: there is a basis of \mathbb{R}^{2} for which we can easily write down the action of T, namely: $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$. Indeed,

$$
T v_{1}=v_{1}=1 v_{1}+0 v_{2}, \quad T v_{2}=0=0 v_{1}+0 v_{2}
$$

That is, the 'coordinate vector of $T v_{1}$ in the basis \mathcal{B} ' is $\left[T v_{1}\right]_{\mathcal{B}}=(1,0)$, and the 'coordinate vector of $T v_{2}$ in the basis \mathcal{B} ' is $\left[T v_{2}\right]_{\mathcal{B}}=(0,0)$. Using these 'coordinate vectors' as columns, we define the matrix of T in the basis \mathcal{B} as:

$$
[T]_{\mathcal{B}}=\left[\left[T v_{1}\right]_{\mathcal{B}} \quad \mid\left[T v_{2}\right]_{\mathcal{B}}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

This is by analogy with the matrix of T in the standard basis $\mathcal{B}_{0}=\left\{e_{1}, e_{2}\right\}$. Above we computed $A_{0}=[T]_{\mathcal{B}_{0}}$, the 'matrix of T in the standard basis'. The point of these contortions is that any projection in the Universe will have the very simple form of $[T]_{\mathcal{B}}$ above if we choose the basis \mathcal{B} appropriately, and then there is a simple formula (given below) to get the matrix of T in the standard basis (the one we really use). Before introducing formal definitions, here is another simple example.

Example 3. T contracts vectors in E (spanned by $v_{1}=(1,1)$) by a factor $1 / 2$, expands vectors in E^{\perp} (spanned by $v_{2}=(1,-1)$) by a factor 3. We want the matrices of T in the basis $\mathcal{B}=\{(1,1),(1,-1)\}$ and in the standard basis. Since, by the definition of T :

$$
T v_{1}=(1 / 2) v_{1}, \quad T v_{2}=3 v_{2}
$$

we have immediately:

$$
[T]_{\mathcal{B}}=\left[\begin{array}{rr}
1 / 2 & 0 \\
0 & 3
\end{array}\right]
$$

We easily find the coordinates of e_{1}, e_{2} in the basis \mathcal{B} :

$$
(1,0)=(1 / 2)(1,1)+(1 / 2)(1,-1), \quad(0,1)=(1 / 2)(1,1)-(1 / 2)(1,-1)
$$

so that:

$$
\begin{aligned}
& T(1,0)=(1 / 2)(1 / 2) v_{1}+(1 / 2) 3 v_{2}=(7 / 4,-5 / 4) \\
& T(0,1)=(1 / 2)(1 / 2) v_{1}-(1 / 2) 3 v_{2}=(-5 / 4,7 / 4)
\end{aligned}
$$

The matrix of T in the standard basis has these two vectors as columns:

$$
A_{0}=[T]_{\mathcal{B}_{0}}=\left[\begin{array}{rr}
7 / 4 & -5 / 4 \\
-5 / 4 & 7 / 4
\end{array}\right]
$$

Remark: A subspace of \mathbb{R}^{n} in which T acts as a pure expansion/contraction (as E and E^{\perp} in this example) is called an 'eigenspace' for T, with 'eigenvalue' given by the expansion/contraction factor ($1 / 2$ and 3 in this example). Precise definitions will be given soon.

2. Coordinate changes.

Any basis $\mathcal{B}=\left\{v_{1}, \ldots v_{n}\right\}$ of \mathbb{R}^{n} determines a coordinate system. From the definition of basis, given any $v \in \mathbb{R}^{n}$ there is a unique expansion as a linear combination:

$$
v=y_{1} v_{1}+y_{2} v_{2}+\ldots+y_{n} v_{n}
$$

Definition 1. The coordinate vector of v in the basis \mathcal{B} (denoted $[v]_{\mathcal{B}}$) is:

$$
[v]_{\mathcal{B}}=\left(y_{1}, \ldots, y_{n}\right), \text { where } v=y_{1} v_{1}+\ldots+y_{n} v_{n}
$$

Given a basis \mathcal{B} and a vector $v=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ (recall vectors are identified with their 'coordinate vectors' in the standard basis), how do we find the coordinates of v in the basis \mathcal{B} ? Define an $n \times n$ matrix B by:

$$
B=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right] \quad \text { (by columns). }
$$

Then B is invertible (why?) and $B e_{i}=v_{i}$ for $i=1, \ldots n$, where $\mathcal{B}_{0}=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis. Thus if $v=y_{1} v_{1}+y_{2} v_{2}+\ldots y_{n} v_{n}$, we find:

$$
B^{-1} v=y_{1} B^{-1} v_{1}+\ldots+y_{n} B^{-1} v_{n}=y_{1} e_{1}+\ldots y_{n} e_{n}=\left(y_{1}, \ldots y_{n}\right)
$$

This means we have the change of coordinates formula (for vectors):

$$
[v]_{\mathcal{B}}=B^{-1}[v]_{\mathcal{B}_{0}}, \quad[v]_{\mathcal{B}_{0}}=B[v]_{\mathcal{B}}
$$

Analogous formulas hold for linear transformations and matrices. Given a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$, we have:

Definition 2. The matrix of T in the basis \mathcal{B} (denoted $[T]_{\mathcal{B}}$) is defined by the relation:

$$
[T v]_{\mathcal{B}}=[T]_{\mathcal{B}}[v]_{\mathcal{B}}
$$

(As with vectors, we identify $[T]_{\mathcal{B}_{0}}$ with T.) To compute what this means, consider the expansions of $T v_{i}$ in the basis \mathcal{B}, for each of the basis vectors v_{1}, \ldots, v_{n} :

$$
T v_{1}=a_{11} v_{1}+a_{21} v_{2}+\ldots+a_{n 1} v_{n}, \ldots
$$

$$
\begin{gathered}
T v_{j}=a_{1 j} v_{1}+a_{2 j} v_{2}+\ldots+a_{n j} v_{n}, \ldots \\
T v_{n}=a_{1 n} v_{1}+a_{2 n} v_{2}+\ldots+a_{n n} v_{n} .
\end{gathered}
$$

That is, with summation notation:

$$
T v_{j}=\sum_{i=1}^{n} a_{i j} v_{i} .
$$

Then if $[v]_{\mathcal{B}}=\left(y_{1}, \ldots, y_{n}\right)$, by linearity of T :

$$
T v=\sum_{j=1}^{n} y_{j} T v_{j}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} y_{j}\right) v_{i} .
$$

By Definition 1, this means:

$$
[T v]_{\mathcal{B}}=\left(\sum_{j=1}^{n} a_{1 j} y_{j}, \ldots, \sum_{j=1}^{n} a_{n j}\right) .
$$

The right-hand side of this equality is exactly the result of multiplying the matrix $A=\left(a_{i j}\right)$ by the (column) vector $\left(y_{1}, \ldots, y_{n}\right)=[v]_{\mathcal{B}}$. We conclude:

$$
[T]_{\mathcal{B}}=A,
$$

where the entries $\left(a_{i j}\right)$ of A are defined above. Note that A is the $n \times n$ matrix whose columns are given by the coordinate vectors of $T v_{i}$ in the basis \mathcal{B} :

$$
A=[T]_{\mathcal{B}} \Leftrightarrow A=\left[\left[T v_{1}\right]_{\mathcal{B}}|\ldots|\left[T v_{n}\right]_{\mathcal{B}}\right] \text { (by columns). }
$$

From the change of coordinates formula for vectors follows one for matrices. Since, for any $v \in \mathbb{R}^{n}$:

$$
[v]_{\mathcal{B}}=B^{-1}[v]_{\mathcal{B}_{0}} \quad \text { and }[T v]_{\mathcal{B}}=B^{-1}[T v]_{\mathcal{B}_{0}}=B^{-1}[T]_{\mathcal{B}_{0}}[v]_{\mathcal{B}_{0}},
$$

it follows that:

$$
[T v]_{\mathcal{B}}=B^{-1}[T]_{\mathcal{B}_{0}} B[v]_{\mathcal{B}} .
$$

Using Definition 2, we obtain the change of coordinates formula for matrices:

$$
[T]_{\mathcal{B}}=B^{-1}[T]_{\mathcal{B}_{0}} B, \quad[T]_{\mathcal{B}_{0}}=B[T]_{\mathcal{B}} B^{-1}
$$

(This is one of the most useful formulas in Mathematics.)

Remark. Although this formula was derived for \mathcal{B}_{0} thought of as the 'standard' basis, the same formula relates the matrices of a linear transformation T in two arbitrary bases $\mathcal{B}, \mathcal{B}_{0}$, as long as the 'change of basis matrix' B has as its column vectors the $\left[v_{i}\right]_{\mathcal{B}_{0}}$, where $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$:

$$
B=\left[\left[v_{1}\right]_{\mathcal{B}_{0}} \mid \ldots\left[v_{n}\right]_{\mathcal{B}_{0}}\right] .
$$

Example 3.-Projections. Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear operator that projects vectors onto the plane (subspace) $E=\left\{x ; x_{1}+x_{2}+x_{3}=0\right\}$, parallel to the subspace F spanned by $(1,2,2)$ (a line). This means $v-P v=$ $c(1,1,2)$, for some constant c.

To compute the matrix of P in the standard basis, we first find the matrix in a basis $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ adapted to the situation: $v_{1}=(1,1,2)$ and $\left\{v_{2}, v_{3}\right\}$ is a basis of E. For example, we may take $v_{2}=(1,0,-1), v_{3}=(0,1,-1)$. We clearly have (since v_{2} and v_{3} are in E):

$$
P v_{1}=0, \quad P v_{2}=v_{2}=0 v_{1}+1 v_{2}+0 v_{3}, \quad P v_{3}=v_{3}=0 v_{1}+0 v_{2}+1 v_{3}
$$

which gives the columns of the matrix of P in the basis \mathcal{B} :

$$
[P]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The 'change of basis' matrix B and its inverse are:

$$
B=\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
2 & -1 & -1
\end{array}\right], \quad B^{-1}=\frac{1}{4}\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & -1 & -1 \\
-1 & 3 & -1
\end{array}\right]
$$

and the change of basis formula gives the matrix of P in the standard basis:

$$
[P]_{\mathcal{B}_{0}}=B[P]_{\mathcal{B}} B^{-1}=\frac{1}{4}\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-2 & -2 & 2
\end{array}\right]
$$

Example 4.-Eigenvalues Using the same line F and plane E as in the previous example, let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation which contracts vectors by $1 / 2$ in E, and expands vectors by 5 in F. Formally:

$$
T v=(1 / 2) v, \quad v \in E ; \quad T v=5 v, \quad v \in F
$$

This means 5 and $1 / 2$ are eigenvalues of T, with 'eigenspaces' F and E (respectively).

Using the same basis \mathcal{B} as in example 3 , we clearly have:

$$
[T]_{\mathcal{B}}=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Using B and B^{-1} given above, we find the matrix of T in the standard basis:

$$
[T]_{\mathcal{B}_{0}}=B[T]_{\mathcal{B}} B^{-1}=\frac{1}{8}\left[\begin{array}{rrr}
13 & 9 & 9 \\
9 & 13 & 11 \\
21 & 18 & 20
\end{array}\right]
$$

3. Direct sums and projections. In all the examples above we have two subspaces E and F which together span all of \mathbb{R}^{n}, and in each of which a linear transformation T acts in a simple way. This is a common situation. In fact, given two subspaces E, F of \mathbb{R}^{n}, the following two conditions are equivalent:

1- Any $v \in \mathbb{R}^{n}$ can be written (in a unique way) as a $\operatorname{sum} v=u+w$, where $u \in E, w \in F$;
$2-\operatorname{dim} E+\operatorname{dim} F=n$ and $E \cap F=\{0\}$ (that is, E and F intersect only at the origin.)

Whenever this happens, we say ' \mathbb{R}^{n} is the direct sum of subspaces E and F^{\prime}, denoted:

$$
\mathbb{R}^{n}=E \oplus F
$$

(Note: in general E and F need not be orthogonal). In this situation, we may define $P=P_{E, F}$, the linear operator 'projection on E along F ', by the rule:

$$
P v=u, \text { if } v=u+w \text { as in (1) }
$$

or equivalently:

$$
P v=v \text { if } v \in E ; \quad P v=0 \text { if } v \in F
$$

Of course, $P_{F, E}$ is similarly defined- it projects onto F along E - and, from (1), for all $v \in \mathbb{R}^{n}$:

$$
v=P_{E, F} v+P_{F, E} v
$$

that is to say, we have a relation between these two operators:

$$
P_{E, F}+P_{F, E}=I d_{n}
$$

the identity operator in \mathbb{R}^{n}. As seen in the example below, this is more useful than it sounds.

Let $P=P_{E, F}$. The following facts are completely obvious: (i) $P^{2}=P$ (projecting again doesn't do anything new); (ii) $\operatorname{Ran}(\mathrm{P})=\mathrm{E}$; (iii) $\operatorname{Kernel}(\mathrm{P})=\mathrm{F}$. Conversely, given any linear operator $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, if $P^{2}=P$ it is not hard to show that $\operatorname{Kernel}(P) \cap \operatorname{Ran}(P)=\{0\}$, and their dimensions add up to n (good exercise for the theoretically minded). That is, any operator satisfying $P^{2}=P$ is automatically the projection onto its range, parallel to its kernel (as constructed above).

Definition 3. A linear operator in \mathbb{R}^{n} is a projection if $P^{2}=P$.
Example 5. Consider again the subspaces E and F of Example 3 above. Let $v=(1,2,3)$. Find the projections of v onto $E($ along $F)$ and onto F (along E).

First solution: using the matrix of $P_{E, F}$ already computed, we find $u=$ $P_{E, F} v:$

$$
u=\frac{1}{4}\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-2 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
0
\end{array}\right] .
$$

And then $w=P_{F, E} v$ is obtained by taking the difference:

$$
w=v-u=(3 / 2,3 / 2,3)
$$

Second solution: Without using the change of coordinates formula, note that all we need to find are numbers c, w_{1} and w_{2} so that:

$$
(1,2,3)=c(1,1,2)+u_{1}(1,0,-1)+u_{2}(0,1,-1)
$$

That is, we need to solve the linear system:

$$
c+u_{1}=1, \quad c+u_{2}=2, \quad 2 c-u_{1}-u_{2}=3
$$

Proceeding in the usual way, we find the unique solution:

$$
c=3 / 2, \quad u_{1}=-1 / 2, \quad u_{2}=1 / 2
$$

which gives:
$u=u_{1}(1,0,-1)+u_{2}(0,1,-1)=(-1 / 2,1 / 2,0), \quad w=c(1,1,2)=(3 / 2,3 / 2,3)$.

