MATH 142- EXAM 5-April 22, 2005
Instructions. Justify answers for full credit. Calculators allowed. Time given: 60 minutes.
1.[12] Determine convergence/divergence for the following series. Justify.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{\sin n}{1+n^{2}} \\
\frac{|\sin n|}{1+n^{2}} \leq \frac{1}{1+n^{2}} \leq \frac{1}{n^{2}} \Rightarrow C O N V(\text { comparison }) \\
\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{3^{n}} \\
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{n+1}{3} \rightarrow \infty \Rightarrow D I V(\text { ratio }) \\
\frac{(n+1)^{2}}{n^{3}(n+2)} \sim \frac{n^{2}}{n^{4}}=\frac{1}{n^{2}} \Rightarrow C O N V(\text { limit }- \text { comparison })
\end{gathered}
$$

2. [8] Find the number of terms you need to add to approximate each of the infinite sums below with \mid error $\mid<0.01$:

$$
\begin{gathered}
\text { (a) } \sum_{n=1}^{\infty} \frac{1}{n^{7 / 2}} ; \quad \text { (b) } \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{4^{n}} \\
\int_{N}^{\infty} \frac{d x}{x^{7 / 2}}=\frac{2}{5} N^{-5 / 2}<10^{-2} \Rightarrow 2.5 N^{5 / 2}>100, \quad N \geq 5 \\
\\
\frac{N+1}{4^{N+1}}<10^{-2}, \quad N=4 \text { works }
\end{gathered}
$$

3.[4] Find a representation of the function given below (choose one!) as a power series at 0 , including the radius of convergence:

$$
\begin{gathered}
(a) f(x)=\frac{1}{(x-2)^{2}} \quad(b) f(x)=\frac{x}{x^{2}+4} \\
{\left[\frac{1}{2-x}\right]^{\prime}=\frac{1}{2}\left[\frac{1}{1-\frac{x}{2}}\right]^{\prime}=\frac{1}{2}\left(\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}\right)^{\prime}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{n x^{n-1}}{2^{n}}, \quad R=2 .}
\end{gathered}
$$

$$
\frac{x}{x^{2}+4}=\frac{x}{4} \frac{1}{1+\frac{x^{2}}{4}}=\frac{x}{4} \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{4^{n+1}} \quad R=2
$$

4.[14] Use a power series to approximate to 5 decimal places the definite integral:

$$
\int_{0}^{0.2} \frac{1}{1+x^{5}} d x
$$

(4 steps: (i)[4] expand the integrand as a power series; (ii)[4] compute the definite integral, yielding an alternating series; (iii)[4]use the remainder estimate to compute the number N of terms needed; (iv) [2]compute the partial sum s_{N} of the series to obtain the approximation.)

$$
\begin{gathered}
\int_{0}^{0.2} \frac{d x}{1+x^{5}}=\int_{0}^{0.2} \sum_{n=0}^{\infty}(-1)^{n} x^{5 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{5 n+1}}{5 n+1} 0_{0}^{0.2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(0.2)^{5 n+1}}{5 n+1} . \\
\left|r_{N}\right|<\frac{(0.2)^{5(N+1)+1}}{5(N+1)+1}=\frac{(0.2)^{5 N+6}}{5 N+6}<10^{-5}(\mathrm{~N}=1 \text { works })
\end{gathered}
$$

Approximate value: $0.2-\frac{0.2^{6}}{6}=0.1999893 \ldots$

