
MATH 142- EXAM 5-April 22, 2005
Instructions. Justify answers for full credit. Calculators allowed. Time

given: 60 minutes.

1.[12] Determine convergence/divergence for the following series. Jus-
tify.

∞∑

n=1

sinn

1 + n2

| sinn|
1 + n2

≤ 1
1 + n2

≤ 1
n2

⇒ CONV (comparison)

∞∑

n=1

(−1)n n!
3n

|an+1|
|an| =

n + 1
3

→∞⇒ DIV (ratio)

∞∑

n=1

(n + 1)2

n3(n + 2)

(n + 1)2

n3(n + 2)
∼ n2

n4
=

1
n2

⇒ CONV (limit− comparison)

2.[8] Find the number of terms you need to add to approximate each of
the infinite sums below with |error| < 0.01:
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3.[4] Find a representation of the function given below (choose one! ) as
a power series at 0, including the radius of convergence:
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4.[14] Use a power series to approximate to 5 decimal places the definite
integral: ∫ 0.2

0
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(4 steps: (i)[4] expand the integrand as a power series; (ii)[4] compute the
definite integral, yielding an alternating series; (iii)[4]use the remainder esti-
mate to compute the number N of terms needed; (iv) [2]compute the partial
sum sN of the series to obtain the approximation.)
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Approximate value: 0.2− 0.26

6 = 0.1999893...

2


