MATH 241- EXAM 3-March 16, 2005

Instructions: Time given $=60 \mathrm{~min}$; calculators allowed.

1. [4] Let $f(x, y)=x^{2} y^{2}, x(s, t)=e^{s} \cos t, y(s, t)=e^{s} \sin t$. Compute the gradient vector $\nabla u=\left(u_{s}, u_{t}\right)$ of the composition:

$$
u(s, t)=f(x(s, t), y(s, t))
$$

2. [5,5,3,3] For the function of two variables

$$
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}:
$$

(a) Find all the critical points of f;
(b) Classify the critical points (x, y) with $y>0$ (as local maxima, local minima or saddle points);
(c) Choose one of the critical points found in (b) and write the second order Taylor approximation of $f(x, y)$ near that point;
(d) For each critical point in part (b), sketch the approximate diagram of level sets of f, in a neighborhood of that critical point.
3.[10] Find the absolute maximum and minimum values of the function of three variables:

$$
f(x, y, z)=x y+z^{2}
$$

under the constraint $x^{2}+y^{2}+z^{2}=4$.
4. $[4,4]$ Consider the double integral:

$$
\int_{0}^{1} \int_{x^{2}}^{1} x^{2} \sin \left(y^{3}\right) d y d x
$$

(i) Sketch the region of integration;
(ii) Compute the value of the integral (change the order of integration, if necessary).

