MATH 241- EXAM 4-April 8, 2005

Instructions: Time given $=50 \mathrm{~min}$; calculators allowed.
For full credit, calculations must be performed to the end- i.e. your answer should be a real number, NOT a one-variable integral; you may use your calculator.

1. [4,4] For the double integral below: (i) sketch the region of integration, including the 'slicing' implicit in the given order of integration; (ii) reverse the order of integration and evaluate the integral.

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

2.[9] Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $x+z=1, x=0, z=-1$ (sketch given). Hint: set up a double integral for the volume and compute it in polar coordinates.
3.[9] Find the z coordinate of the center of mass of a solid hemisphere of radius $R\left(x^{2}+y^{2}+z^{2} \leq R^{2}, z>0\right)$ if the mass density at any point is given by its distance z to the base. Given: total mass $M=(\pi / 6) R^{4}$. (Hint: this is easier in spherical coordinates (ρ, θ, ϕ), with $z=\rho \cos \phi)$.
4. $[6,6]$ Consider the vector field in \mathbb{R}^{2} :

$$
\mathbf{F}(x, y)=\left(4 x y, 2 x^{2}+y\right)
$$

(i) Show that \mathbf{F} is conservative, and find a potential function for \mathbf{F}.
(ii) Let C be the arc of the parabola $y=x^{2}$ from the origin to $(2,4)$. Find the value of the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Use either the definition of line integral or the answer of part (i)).

