MATH 241- EXAM 5-April 22, 2005
Instructions.Justify answers for full credit. Calculators allowed. SOLVE ONLY TWO OF PROBLEMS 5, 6 and 7. Time given: 60 minutes.
1.[7] Show that the line integral below is independent of path and compute its value (C is any path from $(-1,0)$ to $(5,1)$):

$$
\int_{C} 2 x \sin y d x+\left(x^{2} \cos y-3 y^{2}\right) d y
$$

2.[6] Use Green's theorem to compute the line integral:

$$
\int_{C}\left(x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y
$$

where C is the oriented boundary of the region between the curves $x^{2}+y^{2}=$ $1, x^{2}+y^{2}=9$.
3.[7] Find the flux of the vector field $\mathbf{F}=(x y, y z, x z)$ across the surface S, described as follows: S is the part of the paraboloid $z=4-x^{2}-y^{2}$ above the square $0 \leq x \leq 1,0 \leq y \leq 1$, with the upward orientation.
4.[6] Determine whether or not the following vector field in \mathbb{R}^{3} is conservative:

$$
\mathbf{F}=\left(2 x y, x^{2}+2 y z, y^{2}\right)
$$

5.[6] What is an 'orientable surface'? Is a surface given by an equation $F(x, y, z)=0$ always orientable? Why?
6. [6] A thin wire is bent into the shape of a semicircle $x^{2}+y^{2}=4, y \geq 0$. If the linear mass density is constant $(=1)$ and the total mass is 2π, find the coordinates of the center of mass of the wire.
7.[6] Use Green's theorem to find the area of the region enclosed by the hypocycloid, a simple closed curve parametrized by $\mathbf{r}(t)=\left(\cos ^{3} t, \sin ^{3} t\right), 0 \leq$ $t \leq \pi$.

