MATH 241- EXAM 6-May 2, 2005

Instructions. Justify answers for full credit. Calculators allowed. Time given: 120 minutes.

1.[6] Use Green's theorem to compute the line integral:

$$\int_C ((1+x^2)^{3/2} - 3y)dx + (x+e^{y^3})dy,$$

where C is the oriented boundary of the region between the curves $x^2 + y^2 = 2, x^2 + y^2 = 5.$

2.[6] Show that the following vector field in \mathbb{R}^3 is conservative. Then use this fact to compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where *C* is any curve from (0,0,0) to (1,2,3).

$$\mathbf{F} = (e^y, xe^y + e^z, ye^z).$$

3.[6] Find the center of mass of a thin wire in the shape of a quartercircle $(x^2 + y^2 = 4, x \ge 0, y \ge 0)$, assuming the mass density is constant. (The *length* of the wire, of course, is π .)

4.[6] Evaluate the surface integral:

$$\int \int_{S} (y^2 x + xz^2) dS$$

where S is the part of the plane x = 6 + y + z inside the cylinder $y^2 + z^2 = 9$

5.[7] Use Stokes' theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$:

$$\mathbf{F}(x, y, z) = (x + y^2, y + z^2, z + x^2).$$

C is the triangle with vertices (1,0,0), (0,1,0), (0,0,1), oriented counterclockwise as seen from above.

6.[7] Use the divergence theorem to evaluate the surface integral:

$$\int \int_{S} (y^2 + z^2 + 2x) dS,$$

where S is the sphere $x^2 + y^2 + z^2 = 9$. (*Hint:* write the integrand in the form $\mathbf{F} \cdot \mathbf{N}$, for suitable \mathbf{F} and \mathbf{N}).