MATH 241- EXAM 6-May 2, 2005
Instructions. Justify answers for full credit. Calculators allowed. Time given: 120 minutes.
1.[6] Use Green's theorem to compute the line integral:

$$
\int_{C}\left(\left(1+x^{2}\right)^{3 / 2}-3 y\right) d x+\left(x+e^{y^{3}}\right) d y
$$

where C is the oriented boundary of the region between the curves $x^{2}+y^{2}=$ $2, x^{2}+y^{2}=5$.
2.[6] Show that the following vector field in \mathbb{R}^{3} is conservative. Then use this fact to compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any curve from $(0,0,0)$ to $(1,2,3)$.

$$
\mathbf{F}=\left(e^{y}, x e^{y}+e^{z}, y e^{z}\right)
$$

3. [6] Find the center of mass of a thin wire in the shape of a quartercircle $\left(x^{2}+y^{2}=4, x \geq 0, y \geq 0\right)$, assuming the mass density is constant. (The length of the wire, of course, is π.)
4. [6] Evaluate the surface integral:

$$
\iint_{S}\left(y^{2} x+x z^{2}\right) d S
$$

where S is the part of the plane $x=6+y+z$ inside the cylinder $y^{2}+z^{2}=9$
5.[7] Use Stokes' theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$:

$$
\mathbf{F}(x, y, z)=\left(x+y^{2}, y+z^{2}, z+x^{2}\right)
$$

C is the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$, oriented counterclockwise as seen from above.
6. [7] Use the divergence theorem to evaluate the surface integral:

$$
\iint_{S}\left(y^{2}+z^{2}+2 x\right) d S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=9$. (Hint: write the integrand in the form $\mathbf{F} \cdot \mathbf{N}$, for suitable \mathbf{F} and \mathbf{N}).

