MATHEMATICS 251-LINEAR ALGEBRA- FINAL EXAM, 12/15/2005
Instructions. 2h exam- closed book, closed notes. Calculators allowed (but not needed.) No partial credit for answers given without justification, even if correct- show all work! The exam consists of five problems (10pts per item.)

1. The matrix

$$
A=\left[\begin{array}{rrr}
0 & 5 & 0 \\
-2 & 6 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

has $3+i$ as an eigenvalue, with eigenvector $\left[\begin{array}{l}2+i \\ 1+i\end{array}\right]$. (In addition, note $A e_{3}=5 e_{3}$.) Find (i) the 'standard form' Λ of A, and (ii) an invertible matrix P so that $P^{-1} A P=\Lambda$.
2. The characteristic polynomial of the matrix:

$$
B=\left[\begin{array}{rrr}
1 & 12 & 0 \\
-1 & 8 & 0 \\
1 & -3 & 4
\end{array}\right]
$$

is $p(\lambda)=(\lambda-4)^{2}(\lambda-5)$.
(i) Find bases for the eigenspaces of B. (ii) Is B diagonalizable? Justify.
3. The 3×3 matrix P projects vectors in \mathbb{R}^{3} orthogonally onto the plane $x+2 y+3 z=0$.
(i) Find the eigenvalues and eigenspaces of P;
(ii) Find $P^{1357}\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$.
4. A 2×2 symmetric matrix C has eigenvalues $1 / 5$ and 2 . The eigenspace $E(2)$ is spanned by the vector $\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Let $v=a\left[\begin{array}{l}2 \\ 3\end{array}\right]+b\left[\begin{array}{r}-3 \\ 2\end{array}\right]$, where a, b are arbitrary real numbers.
(i) Find $C^{n} v$, for arbitrary $n \geq 0$;
(ii) Describe the behavior of $C^{n} v$ as $n \rightarrow \infty$ (sketch the eigenspaces of C and the vector $C^{n} v$, for large n.)
(Problem 5 is on the back of the page.)
5. (i) Find the maximum and minimum values of the quadratic form in \mathbb{R}^{2} :

$$
Q(x, y)=2 x^{2}+4 x y-y^{2}
$$

on the circle $x^{2}+y^{2}=1$, and the points on the circle where the \max / min values are attained.
(ii) Find a rotation of coordinates that eliminates the $x y$ term in the equation of the conic $2 x^{2}+4 x y-y^{2}=-8$; write the equation of the conic in the new coordinates and identify it (as an ellipse, hyperbola or parabola).
(Hint: Recall the new coordinates $x^{\prime} y^{\prime}$ will be related to the original coordinates $x y$ by:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=R\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

where R is a 2×2 orthogonal matrix that diagonalizes the 2×2 symmetric matrix associated with Q.)

