LINEAR ALGEBRA- REVIEW PROBLEMS (Eigenvalues, powers of operators)

1. $A$ is $2 \times 2$ symmetric, with eigenvalues $1 / 2$ and 3 . $E(3)$ is spanned by $(1,2)$. Let $v=x(1,2)+y(-2,1)$. (i) Find $A^{n} v$ ( $n \geq 1$ arbitrary); (ii) What happens to $A^{n} v$ as $n \rightarrow \infty$ ?

Solution: Since $A$ is symmetric, the two eigenspaces are orthogonal, so $E(1 / 2)$ is spanned by (say) $(-2,1)$. Thus $A^{n}(1,2)=3^{n}(1,2)$ and $A^{n}(-2,1)=$ $\left(1 / 2^{n}\right)(-2,1)$. By linearity, $A^{n} v=3^{n} x(1,2)+\left(1 / 2^{n}\right) y(-2,1)$. The component along $(1,2)$ tends to infinity, while the component along $(-2,1)$ tends to zero. Thus $A^{n} v$ approaches the eigenspace $E(3)$ as $n \rightarrow \infty$ (and its length tends to infinity).
2. $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the matrix of orthogonal projection onto the plane $x+2 y+z=0$. (i) Find the eigenvalues and eigenspaces of $P$. (ii) Compute the limit $\lim _{n \rightarrow \infty} P^{n}(1,1,1)$.

Solution. Let $E$ be the given plane, $E^{\perp}$ the orthogonal line. $P v=v$ if $v \in E, P v=0$ if $v \in E^{\perp}$, and $E$ and $E^{\perp}$ together span $\mathbb{R}^{3}$. Hence the eigenvalues are 1 (with eigenspace $E$ ) and 0 (with eigenspace $E^{\perp}$.).(In particular, $P$ is diagonalizable.) The projections of $v=(1,1,1)$ on $E^{\perp}$ and $E$ are (with $u=\frac{1}{\sqrt{6}}(1,2,1)$, the unit normal vector to $E$ )::

$$
P^{\perp} v=\langle v, u\rangle u=\frac{2}{3}(1,2,1), \quad P v=v-P^{\perp} v=(1 / 3,-1 / 3,1 / 3),
$$

and applying $P$ again to $P v$ won't change it, so $P^{n} v=(1 / 3,-1 / 3,1 / 3)$ for all $n \geq 1$.
3.T: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ expands every vector in the plane by a factor of 2 , while rotating it by an angle $\pi / 4$ (counterclockwise). (i) What are the eigenvalues of $T$ ? (ii) Show that $T^{4}$ fixes every line through the origin.

Solution.

$$
T=2 R_{\pi / 4}=\left[\begin{array}{rr}
\sqrt{2} & -\sqrt{2} \\
\sqrt{2} & \sqrt{2}
\end{array}\right],
$$

so the eigenvalues are $\sqrt{2} \pm i \sqrt{2}$. For the 4 th. power $T^{4}$, we have $T^{4}=$ $2^{4} R_{\pi}=-2^{4} I$. Since it is a multiple of the identity, $T^{4}$ fixes every line through 0 .
4.Let $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the rotation matrix with axis spanned by $(1,1,2)$, by an angle $\pi / 3$ (looking down the axis). (i) What are the eigenvalues of $R$ ? (ii) What is the 'standard form' matrix of $R$ ?

Solution. Vectors $v$ on the axis are fixed by $R(R v=v)$, so 1 is an eigenvector with one-dimensional eigenspace spanned by $(1,1,2)$. On the orthogonal plane, $R$ is the rotation matrix:

$$
R_{\Pi / 3}=\left[\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]
$$

with eigenvalues (1/2) $\pm i \sqrt{3} / 2$, which are also (complex) eigenvalues of $R$. The matrix of $R$ in an appropriate basis is given by a rotation block, followed by a 1 on the diagonal:

$$
\Lambda=\left[\begin{array}{rrr}
1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5. Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be reflection on the plane $x+2 y+z-0$. (i) What are the eigenvalues and eigenspaces of $S$ ? (ii)Find $S^{2 n}(1,1,0)$ and $S^{2 n+1}(1,1,0)$, for each $n \geq 1$.

Solution. $S$ fixes vectors on the given plane (call it $E$ ), meaning $S v=v$, and 'flips' vectors on the orthogonal line $E^{\perp}$ (meaning $S v=-v$ ). Hence the eigenvalues are 1 (with eigenspace $E$ ) and -1 (with eigenspace $E^{\perp}$.) To find $S(1,1,0)$, we decompose $v=(1,1,0)$ into components on $E^{\perp}$ (spanned by the unit vector $u=(1 / \sqrt{6}))(1,2,1)$ and on $E$ :

$$
P^{\perp} v=\langle v, u\rangle u=(1 / 2)(1,2,1), \quad P v=v-P^{\perp} v=(1 / 2,0,-1 / 2)
$$

then compute the action of $S$ :

$$
S v=P v-P^{\perp} v=(1 / 2,0,-1 / 2)-(1 / 2,1,1 / 2)=(0,-1,-1)
$$

Reflecting twice (or any even number of times) doesn't move the vector at all (so $S^{2 n} v=v$ for all $n \geq 1$ ), while reflecting an odd number of times is the same as reflecting once, so $S^{2 n+1} v=S v=(0,-1,-1)$ for all $n \geq 1$.

Remark. Here we could have used the standard formula for reflections derived in class, $S v=v-2\langle v, u\rangle u=(1,1,0)-(1,2,1)=(0,-1,-1)$, to find $S v$.

