LINEAR ALGEBRA- REVIEW PROBLEMS (Eigenvalues, powers of operators)

1. A is 2×2 symmetric, with eigenvalues 1/2 and 3. E(3) is spanned by (1,2). Let v = x(1,2) + y(-2,1). (i) Find $A^n v$ $(n \ge 1$ arbitrary); (ii) What happens to $A^n v$ as $n \to \infty$?

Solution: Since A is symmetric, the two eigenspaces are orthogonal, so E(1/2) is spanned by (say) (-2, 1). Thus $A^n(1, 2) = 3^n(1, 2)$ and $A^n(-2, 1) = (1/2^n)(-2, 1)$. By linearity, $A^n v = 3^n x(1, 2) + (1/2^n)y(-2, 1)$. The component along (1, 2) tends to infinity, while the component along (-2, 1) tends to zero. Thus $A^n v$ approaches the eigenspace E(3) as $n \to \infty$ (and its length tends to infinity).

2. $P : \mathbb{R}^3 \to \mathbb{R}^3$ is the matrix of orthogonal projection onto the plane x + 2y + z = 0. (i) Find the eigenvalues and eigenspaces of P. (ii) Compute the limit $\lim_{n\to\infty} P^n(1,1,1)$.

Solution. Let E be the given plane, E^{\perp} the orthogonal line. Pv = vif $v \in E$, Pv = 0 if $v \in E^{\perp}$, and E and E^{\perp} together span \mathbb{R}^3 . Hence the eigenvalues are 1 (with eigenspace E) and 0 (with eigenspace E^{\perp} .).(In particular, P is diagonalizable.) The projections of v = (1, 1, 1) on E^{\perp} and E are (with $u = \frac{1}{\sqrt{6}}(1, 2, 1)$, the unit normal vector to E)::

$$P^{\perp}v = \langle v, u \rangle u = \frac{2}{3}(1, 2, 1), \quad Pv = v - P^{\perp}v = (1/3, -1/3, 1/3),$$

and applying P again to Pv won't change it, so $P^nv = (1/3, -1/3, 1/3)$ for all $n \ge 1$.

 $\mathbf{3.}T: \mathbb{R}^2 \to \mathbb{R}^2$ expands every vector in the plane by a factor of 2, while rotating it by an angle $\pi/4$ (counterclockwise). (i) What are the eigenvalues of T? (ii) Show that T^4 fixes every line through the origin.

Solution.

$$T = 2R_{\pi/4} = \left[\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{array} \right],$$

so the eigenvalues are $\sqrt{2} \pm i\sqrt{2}$. For the 4th. power T^4 , we have $T^4 = 2^4 R_{\pi} = -2^4 I$. Since it is a multiple of the identity, T^4 fixes every line through 0.

4.Let $R : \mathbb{R}^3 \to \mathbb{R}^3$ be the rotation matrix with axis spanned by (1, 1, 2), by an angle $\pi/3$ (looking down the axis). (i) What are the eigenvalues of R? (ii) What is the 'standard form' matrix of R?

Solution. Vectors v on the axis are fixed by R (Rv = v), so 1 is an eigenvector with one-dimensional eigenspace spanned by (1, 1, 2). On the orthogonal plane, R is the rotation matrix:

$$R_{\Pi/3} = \left[\begin{array}{cc} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{array} \right],$$

with eigenvalues $(1/2) \pm i\sqrt{3}/2$, which are also (complex) eigenvalues of R. The matrix of R in an appropriate basis is given by a rotation block, followed by a 1 on the diagonal:

$$\Lambda = \left[\begin{array}{rrr} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

5. Let $S : \mathbb{R}^3 \to \mathbb{R}^3$ be *reflection* on the plane x + 2y + z - 0. (i) What are the eigenvalues and eigenspaces of S? (ii)Find $S^{2n}(1,1,0)$ and $S^{2n+1}(1,1,0)$, for each $n \geq 1$.

Solution. S fixes vectors on the given plane (call it E), meaning Sv = v, and 'flips' vectors on the orthogonal line E^{\perp} (meaning Sv = -v). Hence the eigenvalues are 1 (with eigenspace E) and -1 (with eigenspace E^{\perp} .) To find S(1,1,0), we decompose v = (1,1,0) into components on E^{\perp} (spanned by the unit vector $u = (1/\sqrt{6}))(1,2,1)$ and on E:

$$P^{\perp}v = \langle v, u \rangle u = (1/2)(1, 2, 1), \quad Pv = v - P^{\perp}v = (1/2, 0, -1/2),$$

then compute the action of S:

$$Sv = Pv - P^{\perp}v = (1/2, 0, -1/2) - (1/2, 1, 1/2) = (0, -1, -1).$$

Reflecting twice (or any even number of times) doesn't move the vector at all (so $S^{2n}v = v$ for all $n \ge 1$), while reflecting an odd number of times is the same as reflecting once, so $S^{2n+1}v = Sv = (0, -1, -1)$ for all $n \ge 1$.

Remark. Here we could have used the standard formula for reflections derived in class, $Sv = v - 2\langle v, u \rangle u = (1, 1, 0) - (1, 2, 1) = (0, -1, -1)$, to find Sv.