MATH 251- EXAM 1- September 16, 2005

1. For the matrix A and vector b given below:
(i) Find the general solution (in vector parametric form) of the system $A x=b, x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$;
(ii) Find the general solution (in vector parametric form) of the homogeneous system $A x=0$ (i.e., the nullspace of A.)

$$
\begin{gathered}
b=(4,-1,3,-5) \\
A=\left[\begin{array}{rrrr}
1 & 2 & -3 & 1 \\
-2 & 1 & 2 & 1 \\
-1 & 3 & -1 & 2 \\
4 & -7 & 0 & 5
\end{array}\right]
\end{gathered}
$$

Row reduction of the augmented matrix $[A \| b]$ yields:

$$
\left[\begin{array}{rrrrr}
1 & 2 & -3 & 1 & 4 \\
0 & 5 & -4 & 3 & 7 \\
0 & 0 & 0 & 10 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the resulting system by back-substitution gives the general solution in parametric form:

$$
x=(6 / 5,7 / 5,0,0)+t(7 / 5,4 / 5,1,0), \quad t \in \mathbb{R}
$$

In particular, the general solution of the homogeneous system is:

$$
x_{h}=t(7,4,5,0), \quad t \in \mathbb{R}
$$

2. Determine whether $b=(1,2,3,-1)$ is in the column space of A and if so express b as a linear combination of the columns of A.

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 2 & 1 \\
1 & 3 & 2 & 2 \\
0 & 1 & 2 & 2
\end{array}\right]
$$

Row-reducing the augmented matrix $[A \| b]$, we find:

$$
\left[\begin{array}{rrrrr}
1 & 2 & 0 & 1 & 1 \\
0 & 1 & 2 & 1 & 2 \\
0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solving the reduced system by back-substitution yields the general solution $\mathrm{x}=(-6+2 \mathrm{t}, 5-2 \mathrm{t}, \mathrm{t},-3)$. Setting $\mathrm{t}=0$ we find:

$$
(1,2,3,-1)=-6(1,0,1,0)+5(2,1,3,1)-3(1,1,2,2)
$$

(Other answers possible, depending on the choice of t)
3. Find parametric equations (in vector form) for the line of intersection of the planes $2 x+3 y-z=1$ and $x+y-2 z=2$.

Again by Gaussian elimination, we find that the system given by these two equations has as general solution:

$$
(x, y, z)=(5+5 t,-3 t-3, t)=(5,-3,0)+t(5,-3,1)
$$

This is the desired parametric equation for the line of intersection.
4. Let k be an arbitrary non-zero real number. Find the inverse of the 4X4 matrix (include all the steps for credit):

$$
A=\left[\begin{array}{cccc}
k & 0 & 0 & 0 \\
1 & k & 0 & 0 \\
0 & 1 & k & 0 \\
0 & 0 & 1 & k
\end{array}\right]
$$

Answer:

$$
A^{-1}=\frac{1}{k^{2}}\left[\begin{array}{rrrr}
k & 0 & 0 & 0 \\
-1 & k & 0 & 0 \\
1 / k & -1 & k & 0 \\
-1 / k^{2} & 1 / k & -1 & k
\end{array}\right]
$$

5. Find the conditions the b_{i} must satisfy for the system to be consistent:

$$
\left\{\begin{array}{rll}
x_{1} & -2 x_{2}+5 x_{3} & =b_{1} \\
4 x_{1} & -5 x_{2}+8 x_{3} & =b_{2} \\
-3 x_{1} & +3 x_{2} & -3 x_{3}
\end{array}=b_{3} .\right.
$$

Row-reducing $[A \| b]$ for a general vector b, we find:

$$
\left[\begin{array}{rrrl}
1 & -2 & 5 & b_{1} \\
0 & 3 & -12 & b_{2}-4 b_{1} \\
0 & 0 & 0 & -b_{1}+b_{2}+b_{3}
\end{array}\right]
$$

Thus the condition is: $b_{1}=b_{2}+b_{3}$ (Incidentally, this is a defining equation for $\operatorname{Ran}(A)$.)

