MATH 251- EXAM 2- October 21, 2005

1. Consider the matrix A given below, and the result A^{\prime} of applying row reduction to A.

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
3 & 4 & 2 & 2 \\
2 & 2 & 2 & 3
\end{array}\right] \longrightarrow A^{\prime}=\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
0 & -2 & 2 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(i) [10] Find the rank of A , and the dimensions of the spaces $\operatorname{Row}(A)$, $N(A), \operatorname{Col}(A), N\left(A^{T}\right)$. Justify.

Since A^{\prime} has two non-zero rows, $\operatorname{rank}(A)=2$, which is the same as the dimensions of $\operatorname{Col}(A)$ and Row (A); then $N(A)$ has dimension $4-2=2$ and $N\left(A^{T}\right)$ has dimension $3-2=1$.
(ii) [10] Write down parametric equations for the spaces $\operatorname{Row}(A)$ and $\operatorname{Col}(A)$.

The first two columns (resp. rows) of $A\left(\right.$ resp. $\left.A^{\prime}\right)$ give bases for $\operatorname{Col}(A)$ (resp. $\operatorname{Row}(A)$), hence:

$$
\begin{gathered}
\operatorname{Row}(A)=\{s(1,2,0,-1)+t(0,-2,2,5) ; s, t \in \mathbb{R}\} \\
\operatorname{Col}(A)=\{u(1,3,2)+v(2,4,2) ; u, v \in \mathbb{R}\}
\end{gathered}
$$

(iii) [20] Write down a system of independent defining equations for the space $N(A)$.

Since $N(A)=N\left(A^{\prime}\right)$, by definition of nullspace we get from the rows of A^{\prime} the equations:

$$
x_{1}+2 x_{2}-x_{4}=0, \quad-2 x_{2}+2 x_{3}+5 x_{4}=0
$$

2.[20] Let W be the subspace of \mathbb{R}^{5} defined as the solution space of the homogeneous system:

$$
\left\{\begin{array}{rllll}
x_{1} & +x_{2} & +x_{3} & +x_{4} & +2 x_{5}
\end{array}=0\right.
$$

Find a basis for the orthogonal complement W^{\perp} of W.
The two equations are linearly independent, so $\operatorname{dim} W=5-2=3$ and $\operatorname{dim} W^{\perp}=5-3=2 . W$ is the nullspace of the 2×5 matrix defining the system, so W^{\perp} is the row space, with a basis given by the coefficient vectors of the two equations:

$$
\mathcal{B}=\{(1,1,1,1,2),(2,-1,-1,0,0)\}
$$

3. [20] Find a defining equation for the subspace of \mathbb{R}^{4} spanned by:

$$
\{(1,0,-1,1),(0,1,1,2),(0,-1,1,0)\}
$$

(Hint: These vectors are linearly independent; the general equation for a three-dimensional subspace of \mathbb{R}^{4} has the form $A x+B y+C z+D w=0$, where you may assume $D=-1$).

As suggested, we write the equation of the subspace as:

$$
A x+B y+C z=w ;
$$

using the coordinates of the given points yields the system:

$$
A-C=1, \quad B+C=2, \quad-B+C=0,
$$

which is easily solved for A, B and C, giving the equation:

$$
2 x+y+z-w=0 .
$$

4. Let \mathcal{B} be the basis of \mathbb{R}^{2} :

$$
\mathcal{B}=\left\{v_{1}, v_{2}\right\}, \quad v_{1}=(1,2), v_{2}=(1,3) .
$$

(i) [10]If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T v_{1}=(1 / 2) v_{1}+v_{2}, \quad T v_{2}=2 v_{1}-v_{2},
$$

find $[T]_{\mathcal{B}}$. From the definition of $[T]_{\mathcal{B}}$, we get immediately:

$$
[T]_{\mathcal{B}}=\left[\begin{array}{rr}
1 / 2 & 2 \\
1 & -1
\end{array}\right] .
$$

(ii) [10] For the same transformation T, find $T(1,0)$ and $T(0,1)$.

Since $(1,0)=3 v_{1}-v_{2}$ and $(0,1)=v_{2}-v_{1}$,
$T(1,0)=3 T v_{1}-T v_{2}=(3 / 2) v_{1}+3 v_{2}-\left(v_{1}+2 v_{2}\right)=(1 / 2) v_{1}+v_{2}=(3 / 2,4)$
$T(0,1)=T v_{2}-T v_{1}=2 v_{1}-v_{2}-\left((1 / 2) v_{1}+v_{2}\right)=(3 / 2) v_{1}-2 v_{2}=(-1 / 2,-3)$

