MATH 251- EXAM 3- November 21, 2005

1. Let R be the rotation in \mathbb{R}^{3} with axis direction $(1,3,1)$, angle $\pi / 4$ (counterclockwise when looking down the axis.)
(a) Find an orthonormal basis $\mathcal{B}=\left\{u, v_{1}, v_{2}\right\}$ of \mathbb{R}^{3}, where u is on the axis and $\left\{v_{1}, v_{2}\right\}$ is an orthonormal basis for the plane orthogonal to the axis;

Pick two vectors in the plane $x_{1}+3 x_{2}+x_{3}=0$ perpendicular to the axis; say, $w_{1}=(3,-1,0)$ and $w_{2}=(1,0,-1)$. Passing to an orthogonal basis, we set $\hat{v_{1}}=w_{1}$ and replace w_{2} by:

$$
\hat{v_{2}}=w_{2}-\frac{\left\langle w_{1}, w_{2}\right\rangle w_{1}}{\left\|w_{1}\right\|^{2}}=(1,0,-1)-\frac{3}{10}(3,-1,0)=\frac{1}{10}(1,3,-10)
$$

Normalizing these vectors we obtain the orthonormal basis:

$$
u=\frac{1}{\sqrt{11}}(1,3,1), \quad v_{1}=\frac{1}{\sqrt{10}}(3,-1,0) \quad v_{2}=\frac{1}{\sqrt{110}}(1,3,-10)
$$

(It is easy to check that, in this order, this basis is positive.)
(b) Write down the matrix $[R]_{\mathcal{B}}$ of R in the basis \mathcal{B}.

$$
[R]_{\mathcal{B}}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & \sqrt{2} / 2 & -\sqrt{2} / 2 \\
0 & \sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]
$$

(c) Find an orthogonal matrix P so that the matrix of R in the standard basis of \mathbb{R}^{3} is $P[R]_{\mathcal{B}} P^{T}$.

$$
P=\left[u\left|v_{1}\right| v_{2}\right] \quad \text { (by columns) }
$$

2. For the matrix A given below, find the eigenspace for the eigenvalue 2 , and explain why A is not diagonalizable.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
5 & 0 & 0 \\
1 & 2 & 0 \\
-2 & 5 & 2
\end{array}\right] . \\
(A-2 I) v=\left[\begin{array}{rrr}
3 & 0 & 0 \\
1 & 0 & 0 \\
-2 & 5 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
3 x \\
x \\
-2 x+5 y
\end{array}\right]=0 .
\end{gathered}
$$

This gives immediately: $x=y=0, z$ arbitrary, so:

$$
E(2)=\{t(0,0,1) ; t \in \mathbb{R}\}
$$

A is triangular, so 5 and 2 are the only eigenvalues, the latter with algebraic multiplicty 2, but only a one-dimensional eigenspace. Since the dimension of $E(5)$ is also $1, \mathbb{R}^{3}$ does not admit a basis consisting of eigenvectors of A.
3. The line $y=a x+b$ is the least-squares fit to the points $(-1,1),(0,2),(1,4),(2,4)$. (a) Write down the 'normal system' for the problem (a 2×2 system for the vector $(b, a))$.

$$
A^{T} A\left[\begin{array}{l}
b \\
a
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
b \\
a
\end{array}\right]=A^{T}\left[\begin{array}{l}
1 \\
2 \\
4 \\
4
\end{array}\right]=\left[\begin{array}{l}
11 \\
11
\end{array}\right]
$$

(A is the 'design matrix' given in part (b))
(b) The 'design matrix' for this problem is: $A=\left[\begin{array}{rr}1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$. Find the orthogonal projection of $(1,2,4,4)$ on the column space of A (Hint: solve the normal system and use the equation of the line.)

Solving the normal system by inverting $A^{T} A$, we find $b=2.2, a=1.1$. Substituting $x=-1,0,1,2$ in the equation $y=1.1 x+2.2$, we find $y=$ 1.1, 2.2, 3.3, 4.4, so the projection is (1.1, 2.2, 3.3, 4.4).
4. The matrix A given below has eigenvalues $2 \pm i$. Find the standard form $\Lambda=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ of A, and a matrix V so that $V^{-1} A V=\Lambda$.

In the usual way, we find the eigenvector $(1,2+i)$ for the eigenvalue $2+i$. Its real and imaginary parts are the column vectors of V :

$$
V=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \quad \Lambda=\left[\begin{array}{rr}
2 & 1 \\
-1 & 2
\end{array}\right]
$$

5. (a) Find a 2×2 matrix P and a diagonal matrix Λ so that $P^{-1} B P=\Lambda$. (B is given below.)

The characteristic polynomial of A is $\lambda^{2}-3 \lambda+2$, with roots 1 and 2 , the eigenvalues of B. Proceeding as usual, we find $(1,1)$ (resp. $(1,2)$) as an
eigenvector for eigenvalue 1 (resp. eigenvalue 2). Thus Λ and P are:

$$
\Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

(b) Find the vector $B^{n}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ explicitly (as a function of n). (Note that $(1,2)$ is an eigenvector of B.)

Since $(1,2)$ is an eigenvector of B with eigenvalue 2 :

$$
\begin{gathered}
B^{n}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=2^{n-1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2^{n-1} \\
2^{n}
\end{array}\right] . \\
A=\left[\begin{array}{rr}
0 & 1 \\
-5 & 4
\end{array}\right]\left(\text { Problem 4) } B=\left[\begin{array}{rr}
0 & 1 \\
-2 & 3
\end{array}\right]\right. \text { (Problem 5). }
\end{gathered}
$$

