
Eudoxus’ METHOD OF EXHAUSTION, as used by ARCHIMEDES

Archimedes, MEASUREMENT OF A CIRCLE

Proposition 1. The area of any circle is equal to a right-angled triangle
in which one of the sides about the right angle is equal to the radius, the other
to the circumference, of the circle.

In symbols, if r is the radius and C is the circumference, we wish to show
the area of the circle equals (1/2)rC. Let T denote this number.

1. Starting with an inscribed square and by successive bisection, exhaust
the circle from the inside by a sequence of regular polygons Pn with 2n sides,
n ≥ 1.

Observe that, at each subdivision, the area of the circle still to be ab-
sorbed is less than half the area left to be absorbed at the previous stage:

area(circle)− area(Pn+1) <
1
2
(area(circle)− area(Pn)).

For example, in going from the square ABCD to the octagon, the area of the
triangle AEB is more than half the area of the circular segment AEB, since
the rectangle AFGB, which has area twice that of the triangle, encloses the
circular segment. Thus the sum of the areas of the circular sectors defined
by EB and EA is less than half the area of the sector AEB, as we claimed.
Thus, by Euclid X.1, these ‘errors’ area(circle) − area(Pn) will be smaller
than any preassigned number, if n is large enough.

2. On the other hand, by adding triangles we see that area(Pn) =
(1/2)hnCn, where hn is the distance from the center of the circle to a side
of Pn, and Cn is its perimeter. Since hn < r and Cn < C, it is clear that
area(Pn) < T .

3. But then the area of the circle cannot be greater than T . If it were,
consider the inequalities: area(Pn) < T < area(circle). As observed in 1.,
the gap between area(Pn) and area(circle) can be made arbitrarily small,
so at some point area(Pn) would have to be greater than T , which as seen
in 2. is not possible.

4. We now repeat the argument from the outside, beginning with a cir-
cumscribed square Q1 and obtaining, by successive subdivision, a sequence
Qn of circumscribed polygons with 2n sides. By adding the areas of the
triangles (of height r) making up Qn, we see that area(Qn) = (1/2)rLn,
where Ln is the perimeter of Qn. Since Ln is greater than C, area(Qn) is
certainly greater than T .
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5. Observe that, in moving from the circumscribed square Q1 to the
octagon Q2, we throw away more than half of the excess area area(Q1) −
area(circle). Indeed, consider the triangles TFG and TEH; here FG is a
side of the octagon, touching the circle at A, while TE and TH are contained
in sides of the square. Since the triangle AGT has a right angle at A, TG
is greater than AG; AG being equal to TH, this implies TG is greater than
TH; so twice the area of the triangle TFG is greater than the area of the
triangle TEH, which contains the excess region TEAH. Thus the triangle
TEH, the part of the excess region about to be discarded, is greater in area
than half the excess region; of course, this holds true for all n:

area(Qn+1)− area(circle) < (1/2)(area(Qn)− area(circle));

so again it follows from Euclid X.1 that this ‘error’ can be made arbitrarily
small, for n large enough.

6. But now we see that we can’t have area(circle) < T , either: if this
were true, consider the double inequality area(circle) < T < area(Qn). As
seen in 5., the gap between area(circle) and area(Qn) can be made as small
as desired; so at some point area(Qn) has to drop below T , which as seen
in 4. is not possible. So the only possibility left is area(circle) = T .

Archimedes’ QUADRATURE OF A PARABOLA

Proposition 23. The area of a segment of a parabola bounded by a chord
Qq is equal to four-thirds the triangle with the same base Qq and height as
the parabolic segment.

The vertex of a parabolic segment is the unique point P on the parabola
whose distance to the chord Qq is maximal; equivalently, the tangent to the
parabola at the vertex P of a segment is parallel to the chord Qq defining
the segment. A diameter of the parabolic segment is any line through a
point on the parabola and parallel to the axis of the parabola; the distance
from P to Qq (in general different from the length of PV ) is the ‘height’ of
the parabolic segment.

The proposition states the area of the segment is (4/3) of the area of the
triangle QPq. Let T be this number.

Two facts about parabolas are used in the proof.
Property 1: the diameter through the vertex P bisects the chord Qq (at

the point V );
Property 2: consider any other chord Q1q1, parallel to Qq, and hence

defining a parabolic segment with the same vertex P ; let PV1 be the diameter
through P . The ratio (Q1V1)2/PV1 is constant over all such chords.
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(The reader may wish to think first of a ‘right’ parabolic segment, easier
on Cartesian eyes; then the two properties are evident.)

The proof proceeds by exhausting the area from the inside, by inscribed
polygons. Instead of also approximating from the outside, as for the circle,
Archimedes relies on the fact that the approximating areas are partial sums
of a geometric series with ratio 1/4.

The first inscribed approximant is the triangle P1 = QPq itself.
1. The excess area area(segment) − area(P1) is less than half the area

of the segment. This follows since the parallelogram defined by Qq, the
tangent at P , and the diameters through Q and q has area twice the area
of the triangle, and contains the whole segment; so the area of the triangle
is greater than half the area of the segment.

2. Let R be the midpoint of QV , so the diameter through R defines a
new parabolic segment QQ1P , with vertex Q1; let V1 be the midpoint of the
segment QP . We claim the area of the triangle QQ1P is one-quarter of the
area of the triangle QPV . It suffices to show that Q1V1 = 1

2V1R; for this
shows the area of the triangle PQ1V1 is half the area of the triangle PV1R,
while the area of QV1Q is half that of QV1R; adding these two, we get:

area(∆QQ1P ) =
1
2
area(∆QPR) =

1
4
area(∆QPV ).

Denote by X1, W1 the footpoints on the diameter PV of line segments drawn
from Q1 and V1 (resp.), parallel to Qq. Since Q1X1 is a half-chord parallel
to Qq, Property 2 implies PX1/(Q1X1)2 = PV/(QV )2, hence:

PX1 = (
QX1

QV
)2PV =

1
4
PV,

while W1V = V1R = (1/2)PV , by similarity of triangles. Hence:

Q1V1 = X1W1 = PV −PX1−W1V = PV − 1
4
PV − 1

2
PV =

1
4
PV =

1
2
V1R,

as claimed.
3. We see that, repeating this process, we get a sequence of inscribed

polygons Pn so that: (i) at each stage, the area added is (1/4) of the pre-
ceding area:

area(Pn+1)− area(Pn) =
1
4
area(Pn);

thus area(Pn) is the sequence of partial sums of a geometric sequence with
first term the area of the triangle QPq, ratio 1/4; (ii) at each stage, the area
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left to absorb in the parabolic segment is less than (1/2) the combined area
of the triangles just added:

area(segment− Pn) <
1
2
area(Pn − Pn−1).

(This follows from repeated use of 1.). In particular, by Euclid X.1, this
excess area is smaller than any preassigned magnitude, if n is taken large
enough.

4. Geometric sequences and their sums are addressed in Euclid’s Ele-
ments, so Archimedes knew that if An are terms of a geometric series with
ratio (1/4), then for each n ≥ 1:

A1 + A2 + . . . + An +
1
3
An =

4
3
A1

(exercise.) In particular, in the present case this says:

area(Pn) +
1
3
area(Pn − Pn−1) =

4
3
area(P1) = T,

for each n ≥ 2.
5. Now we see that the area of the segment cannot be greater than T .

If it were, consider the double inequality area(Pn) < T < area(segment),
where the first one follows from 4. We saw in 3. that the gap between
area(Pn) and area(segment) can be made as small as desired, by taking n
large enough; thus for some n we must have area(Pn) > T , contradiction.

6. On the other hand, since area(Pn) − area(Pn−1) is a geometric se-
quence with ratio 1/4, it too can be made as small as desired, so (from
4.) the gap T − area(Pn) becomes as small as desired, as n increases. But
then we can’t have area(segment) < T , for this would imply area(Pn) <
area(segment) < T , while the fact that the gap between area(Pn) and T is
narrowing forces area(Pn) to be eventually greater than the area(segment),
contradiction. So we must have area(segment) = T , as claimed in the
Proposition.
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