TRANSCENDENCE OF e.

Theorem. (Hermite 1873). The number e, the base of natural loga-
rithms, is transcendental.

Proof. (1) Use integration by parts on the integral [} e~ f(t)dt and
multiply the resulting equality by e* to obtain:

e’ /90 e tf(t)dt = e f(0) — f(x) + €” /$ e tf(t)dt
0 0

Note that the integral on the right-hand side is obtained from the one on
the left-hand side by replacing f by f’. This means that if we write the
same identity for successive derivatives f’, f”, f"”, etc. in place of f and add
the results, there will be cancellations. In particular, assume now f is a

polynomial. Define:
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which is a finite sum for polynomial f. Then (after cancellation) the result

of adding the identities above for the functions f, f/, f”, etc. can be written
using F' in the form:

e’ /Ox e tf(t)dt = e*F(0) — F(x). (%)

What are we using about e here? The fact that the function e” has the value
1 at = 0 and is equal to its own derivative. (It is the only differentiable
function with this property.)

(2) Now assume (by contradiction) e is algebraic. By definition, this
means there is a polynomial p(t) with integer coefficients a; (ag # 0) and
degree n > 1 so that p(e) = 0:

ao + are + ase® + ...+ ape” = 0. (1)

(Note we allow n = 1, so in particular we are not assuming a priori that e is
irrational, a fact which had been proved by Liouville about 20 years earlier.)

Write the identity (*) for x = k =0,1,2,...,n, multiply by a; and add
the results. We obtain:

zn:akek/ _tf Zake — Z%F
k=0

0



Using the equation (1), we may re-write this in the form:
n n k
Z%F(k‘) =— Zakek/ e tf(t)dt.  (x%)
k=0 k=0 0

(3) Note that, so far, we are still free to choose the polynomial f(¢). The
idea of the proof now is to choose f so that the left-hand side of (**) is
a non-zero integer (hence greater than or equal to one in absolute value),
while the right-hand side is small, giving a contradiction. Hermite’s inspired
choice for f is:

1
f(t) =
O= -1
and p is a prime number that we’re free to choose as large as needed. Denote
by A the maximum absolute value of tg(t), over the interval [0,n]. Then we
have for the right-hand side of (**) the bound:

tr~Lg(t)?, where g(t) = (t —1)(t—2)...(t —n) (2)

n k n
|Zak6k/0 ] < ! i e
k=0 k=0
(where AP/(p — 1)! is an upper bound for the integrand over the interval of
integration [0,n]). On the right-hand side of this estimate, the coefficients
ag, the degree n and the number A are fixed, independent of p. Since the
factorial function grows faster than any exponential, this implies the right-

hand side of (**) can be made as small as desired (say, less than 1/2), by
choosing the prime p large enough.

(4) To conclude the proof, we just need to check that > ;_,arF(k) is
a nonzero integer. Here F'(k) is the sum of the values of f and all its
derivatives at an integer k, and the polynomial g has integer coefficients, so
the denominator (p —1)! in f is our potential problem. We first check what
happens at £k = 0. Since t = 0 is a zero of f(¢) of multiplicity p — 1, the
Taylor expansion of f at ¢ = 0 (which is really a finite sum, since f is a
polynomial) has the form:

1
(p =Dt
Clearly f)(0) = 0 for j < p — 1, and comparing coefficients of =1 in (2)

and (3) we see that fP~1)(0) is the p"* power of the constant term in the
polynomial g(t):

f(t) = FPD )Pt 4 ;'tpf(p)(o)tp 4.+ ;'f(j)(())tj +-- (3)

FPI0) = [(=1) ).



So f=1)(0) is an integer. At this point we impose the last largeness require-
ments on p: p > nand p > |ag|. (The reason for the second requirement will
be seen below.) Since p is a prime number greater than n, it does not occur
in the prime factorization of n!. Hence we know that the integer f®~1(0)
is not a multiple of p. As for the higher-order derivatives of f at zero, again
comparing coefficients of powers of ¢ in (2) and (3) we see that, for j > p:

) 1 .
F9(0) = ( J i x ( coefficient of =P~V in g(t)P),
p—1)!
and the quantity in parenthesis is certainly an integer. Since j > p, the
number j!/(p — 1)! is also an integer, and a multiple of p. This shows F'(0)
is a non-zero integer (since it is the sum of integers, only one of which is not
a multiple of p), and likewise for agF'(0).

(5)The proof that F'(k) is an integer for k = 1,2,...n is similar, but
considering Taylor expansions at k. Take, for example, k = 2 (if n > 2).
Since 2 is a zero of f with multiplicity p, certainly fU)(2) = 0 for j < p, and
we have:

1

ft) = Hf<p>(2)(t—2)p+...+ 1f(j)(2)(t—2)j+...(4).

il

Comparing coefficients in (2) and (4), we find, for j > p:

. 1 )
F92) = ﬁ x coefficient of (t —2)77P in tP~1g(t)?.

(By a change of variable, we can always express the polynomial tP~!g(¢)P
in terms of powers of (¢ — 2), instead of powers of ¢.) Note that, for j > p,
this clearly shows f()(2) is an integer, and a multiple of p. So F(2) is also
an integer, and multiple of p; and likewise for k£ = 1,3,...n, showing that
> p_q apE'(k) is an integer, and multiple of p; and recalling the result of
part (4) we even have that the sum starting at zero, S = > ), arF(k), is
an integer. Can it be zero? Well, the only one of its terms that is potentially
not a multiple of p is agF'(0). We established in (4) that F(0) is not a
multiple of p, and since p is a prime, if S were zero this would force ag to
be a multiple of p. Aaahhh...that’s why we imposed the condition p > |ag]|-
to make this impossible. This concludes the proof!

(Proof based on the book by A.O. Gelfond, ‘Transcendental and algebraic
numbers’ (Dover 1960), pp. 42-44, with cosmetic changes by A.F.)



EXERCISES (due Friday, 7/7)

1. Show, using Hermite’s theorem, that the natural logarithm of a pos-
itive integer (different from 1) cannot be a rational number.

2. Recall that an irrational number is said to be constructible (with ruler
and compass) if it can obtained from positive integers by iterated applica-
tion of field operations and taking square roots. Explain why constructible
numbers are algebraic, and give an example of an algebraic number that is
not constructible.

The following problems refer to chapter 9 in [Dunham] (Weierstrass)

3. Explain, as precisely as possible and based only on the definition of
uniform convergence and/or Fig 9.6, why the sequences of functions in Fig
9.2/3 and Fig 9.4/5 do not converge uniformly.

4. The Weierstrass example shows that, even if a sequence f, of dif-
ferentiable functions converges uniformly to f, it does not follow that the
derivatives of f,, converge to the derivative of f. But there are simple ways
to give such an example.

(i)Show that the sequence of functions f,(z) = 2?"(1 — 2?") does not
converge uniformly in [0, 1] (Hint: find the maximum of f, in [0, 1].)

x2n+l x4n+1

(ii) Show that the sequence gn(z) = 5 73 — %77 converges uniformly
to g = 0 in [0, 1], but that its derivatives converge to a discontinuous, non
constant function. Thus, in this case, limg/, # (limg,)’, even though g,
converges uniformly.




