
SPHERICAL HARMONICS AND HOMOGENEOUS HAR-
MONIC POLYNOMIALS

1. The spherical Laplacean. Denote by S ⊂ R3 the unit sphere.
For a function f(ω) defined on S, let f̃ denote its extension to an open
neighborhood N of S, constant along normals to S (i.e., constant along rays
from the origin). We say f ∈ C2(S) if f̃ is a C2 function in N , and for such
functions define a differential operator ∆S by:

∆Sf := ∆f̃ ,

where ∆ on the right-hand side is the usual Laplace operator in R3. With
a little work (omitted here) one may derive the expression for ∆ in polar
coordinates (r, ω) in R2 (r > 0, ω ∈ S):

∆u = urr +
2
r
ur +

1
r2

∆Su.

(Here ∆Su(r, ω) is the operator ∆S acting on the function u(r, .) in S, for
each fixed r.)

A homogeneous polynomial of degree n ≥ 0 in three variables (x, y, z) is
a linear combination of ‘monomials of degree n’:

xd1yd2zd3 , di ≥ 0, d1 + d2 + d3 = n.

This defines a vector space (over R) denoted Pn. A simple combinatorial
argument (involving balls and separators, as most of them do), seen in class,
yields the dimension:

dn := dim(Pn) =
1
2
(n + 1)(n + 2).

Writing a polynomial p ∈ Pn in polar coordinates, we necessarily have:

p(r, ω) = rnf(ω), f = p|S ,

where f is the restriction of p to S. This is an injective linear map p 7→ f ,
but the functions on S so obtained are rather special (a dn-dimensional
subspace of the infinite-dimensional space C(S) of continuous functions-let’s
call it Pn(S) )

We are interested in the subspace Hn ⊂ Pn of homogeneous harmonic
polynomials of degree n (∆p = 0).
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Lemma. Let p ∈ Pn; write p = rnf(ω), as above. Then:

p ∈ Hn ⇔ ∆Sf + n(n + 1)f = 0.

Proof. Using the above expression for ∆, one finds easily:

∆(rnf(ω)) = n(n + 1)rn−2f(ω) + rn−2∆Sf(ω),

for n ≥ 2 and, for n = 1:

∆(rf(ω)) =
2
r
f(ω) +

1
r
∆Sf(ω).

The restrictions to S of elements ofHn are known as ‘spherical harmonics
of degree n’, and are therefore eigenfunctions of ∆S with eigenvalue n(n +
1), a subspace of C2(S) denoted Hn(S). Thus, restriction to S defines an
injective linear map:

p 7→ Y = f|S , Hn → Hn(S).

(Remark: This map is actually an isomorphism, but this is not obvious.
If you start with a spherical harmonic Y (ω) and set p = rnY (ω) (in polar
coordinates), it is not clear that p is a polynomial- all we know is that it
is a harmonic function in R3 (minus the origin) with ‘growth rate’ rn (that
is, |p(r, ω)| ≤ Crn for some constant C > 0.) And it turns out one can
show that any harmonic function in R3 with this growth rate must be a
polynomial (of degree at most n), but this takes some work!)

2. Orthogonal decompositions. It is easy to write down a basis for
Pn. For instance, for n = 3:

Pn = span{x3, y3, z3, x2y, x2z, xy2, y2z, xz2, yz2, xyz}.

How do we find a basis for Hn? How do we even compute its dimension? It
turns out the answer involves a beautiful application of basic linear algebra.
To start, define an inner product on Pn by:

〈xd1yd2zd3 , xm1ym2zm3〉n := d1!d2!d3! if d1 = m1, d2 = m2, d3 = m3,

and equal to zero otherwise. This just says that the different monomials
that define a natural basis for Pn are taken to be pairwise orthogonal, with
length squared depending on the degrees of each variable. (The occurrence
of factorials is explained in Section 3.)
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Consider the linear map:

T : Pn → Pn+2, T (p) = (x2 + y2 + z2)p.

We also have a linear map going the other way, the Laplacean:

∆ : Pn+2 → Pn, ∆q = qxx + qyy + qzz.

Note that T is injective (i.e., its nullspace is {0}. ) It turns out there is a
surprising connection between these maps.

Theorem. Pn+2 = T (Pn)⊕Hn+2. (orthogonal direct sum, with respect
to the inner product defined above.)

Since T (Pn) is isomorphic to Pn, this gives the dimension of Hn:

Corollary. dimHn = dn − dn−2 = 2n + 1 (for n ≥ 2); dimH1 = 3 is
obvious.)

In particular, assuming the fact about harmonic functions in R3 de-
scribed in the Remark, this is also the dimension of the space Hn(S) of
spherical harmonics, or the multiplicity of n(n + 1) as an eigenvalue of ∆S .

Recall the definition of ‘adjoint map’ from linear algebra: if E, F are
vector spaces endowed with inner products 〈., .〉E , 〈., .〉F and T : E → F is
a linear map, the adjoint T ∗ : F → E is defined by the requirement:

〈T ∗v, w〉E = 〈v, Tw〉F ,

for all vectors v ∈ F, w ∈ E. The theorem follows from the following fact:

Lemma: Let T : Pn → Pn+2 be the linear map defined above. With
respect to the inner products defined earlier on Pn,Pn+2, we have: T ∗ = ∆.

Proof. It is enough to show that, for the basic monomials in x, y, z of
degree n and n + 2:

〈T (xd1yd2zd3
), xm1ym2zm3〉n+2 = 〈xd1yd2zd3

, ∆(xm1ym2zm3)〉n.

This is an easy calculation, left to the reader.

Given the lemma, the theorem follows directly from the well-known result
in linear algebra: if T : E → F is linear,

F = T (E)⊕Ker(T ∗),
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orthogonal direct sum with respect to 〈., .〉F . ‘Ker’ denotes nullspace (or
‘kernel’), in particular Ker(∆) = Hn+2. Applying the theorem repeatedly,
we have the isomorphisms:

Corollary 1.

Pn = Hn ⊕ r2Hn−2 ⊕ r4Hn−4 ⊕ . . . .

(Here we use r2Hn to denote T (Hn).) Restricting to the unit sphere, this
gives:

Corollary 2.

Pn(S) = Hn(S)⊕Hn−2(S)⊕Hn−4(S)⊕ . . . .

(Of course, both direct sums are finite.)
Corollary 1 means any polynomial of degree n in three variables can be

expressed uniquely as a linear combination of terms of the form: r2k times
a harmonic polynomial of degree n− 2k (this generalizes to any number of
variables.)

There is a more important theoretical consequence, but it depends on the
‘Weierstrass density theorem’, which is in the same general circle of ideas.
It says that any continuous function in R3 can be uniformly approximated
(over any given compact set, say the unit ball) by polynomials. This is a
fundamental theorem, so we include a proof in the appendix. Using corollary
2 and the Weierstrass density theorem we conclude:

Corollary 3. Any continuous function on the unit sphere S can be ap-
proximated uniformly on S (and therefore in L2(S)) by spherical harmonics.

In corollary 3, by spherical harmonics we understand restrictions to S
of (not necessarily homogeneous) harmonic polynomials in R3, of increasing
degree.

One needs to be careful here: given any continuous function f ∈ C(S),
one can form its ‘generalized Fourier series’ in terms of eigenfunctions of ∆S

(=spherical harmonics), with coefficients defined by integration in the usual
way. Corollary 3 does not say that the partial sums of this ‘Fourier series’
converge uniformly to S (this would be false for general continuous functions,
just as for periodic functions of 1 variable.) The fact that Corollary 3 is silent
on how an approximation may be found limits its usefulness (for solving PDE
via eigenfunction expansions.)

On a more practical level, the theorem gives an algorithm to obtain a
basis for Hn from a basis of Pn. Consider, for example, the basis given above
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for P3. We know that dimH3 = 7, and four linearly independent elements
can be written down ‘by inspection’:

{xy2 − xz2, x2y − yz2, x2z − y2z, xyz}.

To find three others, the theorem says that if we start from an element of
P3 and subtract from it its orthogonal projection onto T (P1), we get an
element of H3. It is easy to write down an orthogonal basis for T (H1):

T (H1) = span{p1 = x3+xy2+xz2, p2 = x2y+y3+yz2, p3 = x2z+y2z+z3}.

It is easy to see that |p1|2 = |p2|2 = |p3|2 = 10. So the orthogonal projection
of p ∈ P3 onto H3 is given by:

proj(p) = p− 1
10

(〈p, p1〉p1 + 〈p, p2〉p2 + 〈p, p3〉p3).

Consider p = x3. Clearly 〈p, p2〉 = 〈p, p3〉 = 0, while 〈p, p1〉 = 6. Thus:

proj(x3) = x3 − 6
10

(x3 + xy2 + xz2) =
1
5
(2x3 − 3xy2 − 3xz2),

so we find that 2x3 − 3xy2 − 3xz2 ∈ H3 (as the reader may wish to check
directly). Permuting the variables, we complete a basis of H3 with −3x2y +
2y3 − 3yz2 and −3x2z − 3y2z + 2z3.

3. A coordinate-free approach and Legendre polynomials.

Remark. This section is written at a more advanced level than that ex-
pected for the average student in this course; it will be expanded later.

The space Pn is invariant under linear changes of the coordinates (x, y, z),
so we expect it has a coordinate-free description. Indeed, if E is real vector
space we can define Pn(E) as the space of ‘totally symmetric multilinear
forms of degree n’, and this is isomorphic to the space of homogeneous
degree n polynomials, for any fixed linear coordinate system in E.

This description may be used to explain the ‘factorial weights’ in the
definition of inner product on Pn. An inner product on E induces in a
natural way one in the space Ln(E) of multilinear forms of degree n: if (ei)
is an orthonormal basis of E∗, an o.n. basis of Ln is given by the forms
ei1 ⊗ . . . ⊗ ein . We want to use this to define an inner product on Pn(E),
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but there is the problem that the natural projection π from Ln to Pn is not
an isomorphism. The solution is to pick an orthogonal complement S ⊂ Ln

to its kernel and define the inner product on Pn so that π|S is an isometry,
up to a constant C depending only on n. Given an orthonormal basis, there
is a natural way to pick S. For example, if dimE = 3, natural orthonormal
basis vectors for S and their images under π are:

1√
3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1) 7→

√
3e2

1e2;

e1 ⊗ e1 ⊗ e1 7→ e3
1;

1√
6
(e1 ⊗ e2 ⊗ e3 + e3 ⊗ e1 ⊗ e2 + . . .) 7→

√
6e1e2e3.

(There are 6 basis vectors of the first type, 3 of the second and one of the
third. In the third vector, the sum is over all six permutations of e1, e2, e3.)

Since the vectors on the left (in Ln) have length one, we see that the
squared lengths of the vectors on the right (in Pn) must satisfy:

3|e2
1e2|2 = |e3

1|2 = 6|e1e2e3|2 = C.

A natural choice (making all squared lengths integers) is C = 6, and then:

|e2
1e2|2 = 2, |e3

1|2 = 6, |e1e2e3|2 = 1.

In general, the number of vectors in Ln(E) projecting to a given vector
ed1
1 ed2

2 ed3
3 in Pn(E) is: n!/(d1!d2!d3!) (combinatorics again!). This explains

the factorial weights.

Legendre polynomials. Given a particular choice of coordinates in R3,
it is useful for certain applications to be able to write down explicitly a
basis for Hn(S). This is more transparent if we introduce partly complex
coordinates (w, t) in R3, where t ∈ R and w ∈ C, and we think of the
C plane as perpendicular to the t axis. (In terms of the coordinates used
earlier, w = x + iy and t = z.) On the unit sphere, t2 + |w|2 = 1. It turns
out any Y ∈ Hn(S) can be written as a linear combination of the form:

Y (t, w) = c0Pn(t) +
n∑

m=1

(cmwm + c̄mw̄m)Pm
n (t), t2 + |w|2 = 1,

where c0 ∈ R, cm ∈ C. Here Pn(t) and Pm
n (t) are polynomials in t, of degree

n and n − m, respectively, known as ‘Legendre polynomials’. Ordinarily
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they are defined via differential equations. Our next goal is to explain how
the above ‘orthogonal projection method’ can be used to compute these
polynomials explicitly, using only linear algebra.

Another way to put this is that there is a basis of Hn(S) of the form:

{Re[wn], Im[wn], Re[wn−1]Pn−1
n (t), Im[wn−1]Pn−1

n (t), . . . , Re[w]P 1
n(t), Im[w]P 1

n(t), Pn(t)}.

Let’s check this first when n = 2: certainly the functions:

w2, w̄2, wt, w̄t

are in H2(S) (more precisely: their real and imaginary parts are). To form
a basis, we need a fifth element (we know the dimension is 5). In R3 the
polynomial p = 2z2 − (x2 + y2) would do the job; on the unit sphere, this
is is the same as 3z2 − 1 (since x2 + y2 = 1− z2); so P2(t) = 3t2 − 1 is our
fifth basis element, and we may also let P 1

2 (t) = t, P 2
2 (t) = 1.

For n = 3, we need 7 basis elements, and some of them are easy to list:

{w3, w̄3, w2t, w̄2t, wP 1
3 (t), w̄P 1

3 (t), P3(t)}.

From the earlier discussion, we know that p = 2z3−3(x2 +y2)z ∈ H3 in R3.
But on S, this is the same as 5z2 − 3z, so we set:

P3(t) = 5t3 − 3t.

Searching for a basis element linear in x, consider p = x(2x2 − 3y2 − 3z2),
found earlier. The problem is that x2 and y2 have different coefficients; to
remedy that, we add to p the harmonic polynomial x(5y2 − 5z2):

2x3 − 3xy2 − 3xz2 + x(5y2 − 5z2) = 2x(x2 + y2)− 8xz2,

and on the unit sphere this equals 2x(1− z2)− 8xz2, or 2x(1− 5z2). Thus
the remaining elements of the basis of H3(S) are (the real and imaginary
parts of):

(5t2 − 1)w, (5t2 − 1)w̄,

and we may set:
P 1

3 (t) = 5t2 − 1.

Remark: In general, Pm
n (t) is the m− th order derivative of Pn(t) (up to a

constant).
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Exercise. In this exercise, we outline the steps needed to find P4(t)
using the projection method.

The goal is to find the projection of z4 onto H4. Given the orthogonal
decomposition:

P4 = r2H2 ⊕ r4H0,

we see that we only need to consider the polynomials in P4:

p1 = (x2+y2+z2)(z2−x2), p2 = (x2+y2+z2)(z2−y2), q = (x2+y2+z2)2.

(i) Show that |p1|2 = |p2|2 = 56, |q|2 = 120 and 〈p1, p2〉 = 28.

(ii) Apply the Gram-Schmidt orthogonalization method to find the poly-
nomial p̃2 ∈ r2H2 orthogonal to p1:

p̃2 =
1
2
(x2 + y2 + z2)(z2 − 2y2 + x2),

with |p̃2|2 = 42.

(iii) Show that the orthogonal projection of z4 ontoH4 is the polynomial:

h = z4 − 3
7
p1 − 2

7
p̃2 − 1

5
q.

(iv) Verify directly that h is indeed harmonic (first show that ∆p1 =
14(z2 − x2), ∆p̃2 = 7(x2 − 2y2 + z2) and ∆q = 20(x2 + y2 + z2)).

(v) Show that on the unit sphere we have:

h|S = z4 − 2
7
(3z2 − 1)− 1

5
.

Thus we may take for P4(t):

P4(t) = 35t4 − 30t2 + 3.

Remark: Up to a constant, Pn(t) is the n-th derivative of (t2 − 1)n.
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