1.Solve $\Delta u = 0$ in the spherical shell 0 < a < r < b in \mathbb{R}^3 with boundary conditions u = A on r = a, u = B pn r = b, where A and B are constants (look for a solution depending only on r).

2.Solve $\Delta u = 1$ in the annulus a < r < b in \mathbb{R}^2 , with u vanishing on the boundary (that is, u = 0 at r = a and r = b).

3.Show that there are no solutions of:

$$\Delta u = f \text{ in } D, \quad \frac{\partial u}{\partial n} = g \text{ on } \partial D,$$

for $D \subset \mathbb{R}^3$ bounded, unless:

$$\int_D f dvol = \int_{\partial D} g dA.$$

(*Hint*:divergence theorem).

4.Suppose that u is a harmonic function in the disk $D = \{r < 2\} \subset \mathbb{R}^2$ and that $u = 3 + 5\sin(7\theta)$ for r = 2. Without finding the solution, (i)find the maximum value of u in \overline{D} ; (ii)find the value of u at the origin.

5.Solve $\Delta u = 0$ in the disk $\{r < R\} \subset \mathbb{R}^2$, with boundary condition

$$u = 2 + 3\cos(2\theta)$$
 on $r = R$.

6.Solve $\Delta u = 0$ in the exterior $\{r > R\}$ of a disk of radius R in \mathbb{R}^2 , with the boundary condition $u = 1 - 2\sin(5\theta)$ on r = R, and the condition at infinity that u be bounded as $r \to \infty$. Without this condition, is the solution unique?

1