1. Find a simple formula for the solution of the three-dimensional heat equation $u_t - \Delta u = 0$, with initial condition:

$$f(x, y, z) = xy^2z.$$

Hint: Look for a solution of the form u(x, y, z, t) = xv(t)z, where v(t) solves a first-order ODE, v(0) = y.

- **2.** Find the solution of the heat equation in a half space $\{(x,y,z); z>0\}$ with Neumann boundary condition $\partial u/\partial z=0$ when z=0, and given initial condition u(x,y,z,0)=f(x,y,z). The solution should be an integral involving the heat kernel. *Hint:* Use the method of reflection.
- **3.** Let $D \subset \mathbb{R}^3$ be the ball of radius 1 centered at 0. Consider the nonhomogeneous heat equation $u_t \Delta u = 1$ in D, with u = 0 on the boundary ∂D (all t) and $u \equiv 0$ in D at t = 0.
 - (i) Show the problem has a steady-state solution (i.e., independent of t)

$$u(r) = (1 - r^2)/6.$$

- (ii) Use the maximum principle to show: $u(x,t) \leq (1-||x||^2)/6$ for all t.
- (iii) Find the largest value of a and the largest value of b for which the minimum principle guarantees the inequality:

$$b(1 - e^{-at})\frac{1 - ||x||^2}{6} \le u(x, t),$$

for all $x \in D, t \ge 0$.

4.Show there is at most one solution to the Neummann problem for the heat equation:

$$u_t - \Delta u = h(x, t)$$
 in D , $\partial u/\partial n = 0$ on ∂D , $u(x, 0) = 0$,

for a bounded domain $D \subset \mathbb{R}^3$.

 Hint :Let w be the difference of two solutions. Show that $I(t) = \int_D w^2(x,t) dx$ is non-increasing in t.

- **5.**Find the dimension of each of the following vector spaces:
- (i) The space of all solutions of $u'' + x^2u = 0$, u = u(x);
- (ii) The eigenspace with eigenvalue $(2\pi/L)^2$ of the operator d^2/dt^2 on the interval [-L, L], with periodic boundary consitions;
- (iii) The eigenspace of harmonic functions in the unit disk in \mathbb{R}^2 , with homogeneous Neumann boundary conditions;
- (iv) The eigenspace with eigenvalue $\lambda=25\pi^2$ of Δ in the unit square $[0,1]^2\subset\mathbb{R}^2$, with homogeneous Dirichlet boundary consitions;
 - (v) The space of all solutions of the wave equation $u_{tt} = u_{xx}$ on the real line.

1