MATHEMATICS 435-PROBLEMS-APRIL 25,2002

1. Solve the wave equation in \mathbb{R}^3 with initial data:

$$(i)f = 0, \quad g(x,y,z) = y$$

$$(ii)f = 0, \quad g(x,y,z) = x^2 + y^2 + z^2$$

- **2.** Solve the wave equation with initial data: f = 0; g = A if r < R, g = 0 if r > R. Find the solution in \mathbb{R}^2 and in \mathbb{R}^3 .
- **3.**Solve the 2d wave equation on the unit disk in \mathbb{R}^2 , with Dirichlet boundary conditions and initial data $f = 1 r^2, g \equiv 0$.
- **4.**Solve the 2d heat equation in the annular region $\{1 < r < 2\} \subset \mathbb{R}^2$, with u = B on the boundary and initial condition f(r), f(1) = f(2) = B.
- **5.**Find a harmonic function in the unit ball in \mathbb{R}^3 , with value $g = P_l(\cos \varphi)$ on the boundary (in standard spherical coordinates; P_l is the *l*th Legendre polynomial.
- **6.** Find the solution to the wave equation in the unit ball in \mathbb{R}^3 with Neumann boundary conditions and initial conditions $f = r \cos \varphi$ (in spherical coordinates), g = 0. (*Hint:* $P_1^0(x) = x$.)
- 7. Find the eigenvalues/eigenfunctions of the unit ball in \mathbb{R}^3 with Neumann boundary conditions, and their multiplicities.
- **8.**Solve the exterior Dirichlet problem: u is bounded, harmonic outside the unit ball in \mathbb{R}^3 , with radial derivative equal to $-\cos\varphi$ on the unit sphere.