LINEAR ALGEBRA: SUMMARY OF RESULTS

1. BASIC FACTS

Theorem 1. Let V be finite dimensional. Any finite spanning set can be reduced to a
basis.

This follows from the lemma: Given a finite linearly dependent set S, one can remove a
vector from S without changing its linear span.

Theorem 2. Let V be finite dimensional. Given a linearly independent set I and a finite
spanning set S, one always has card(I) < card(S).

Corollary 3. If a vector space W contains an infinite linearly independent set, then W is
infinite dimensional.

Corollary 4. In a finite dimensional vector space V', any linearly independent set is finite,
and can be enlarged to a basis of V. This implies any subspace U C V has a complement:
a subspace W C V such that U @ W = V.

Theorem 5. If V is finite-dimensional and 7" € L(V'), then:
dimKer(T) + dimRan(V) = dimV.

Corollary 6. If dim(V) < dim(W), we have Ran(T) # W for all T € L(V,W) and
Ker(T) # {0} for all T € L(W, V).
Corollary 7. If V is finite-dimensional and 7' € L£(V), then

Ker(T) = {0} & Ran(T) =V < T is invertible.

Theorem 8. (change of basis formula) Let B = {e1,...ep},B' = {f1,... fu} be two
bases of V, and let T" € L(V). Denote by P € M, «, (F) the matrix whose column vectors
are given by [fi]g,i =1,... ,n. Then:

Theorem 9.Let V be a finite dimensional vector space over the complex numbers C,
T € L(V). Then T has an eigenvalue.

Proposition 10.Let I = {v1,... ,v,} be a set of non-zero eigenvectors for T € L(V),
each with a different eigenvalue. Then I is linearly independent.

Corollary 11. Let V be as in theorem 9, 7' € L(V'). Then there exists a basis B of V
so that the matrix [Tz is upper-triangular, and the set of its diagonal entries is the set of
eigenvalues of T

Corollary 12. Let V be finite-dimensional, T € £(V). Then T is diagonalizable if, and
only if, the sum of the dimensions of all its eigenspaces equals the dimension of V.

(This follows from Theorem 5 and Proposition 10.)
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2. STRUCTURE THEORY (V FINITE-DIMENSIONAL)

Proposition 13. Let T € L(V), dim(V) = n. Defining the ‘generalized kernel’ of T' by:
Kyen(T) ={v € V|ij = 0 for some j > 1},

we have: Kgen(T) = Ker(T"); in fact Ker(T™) = Ker(T™ 1) = ... for some ng < n.

Theorem 14. Let T' € L(V), B any basis of V in which [T]z is upper triangular.
Then any eigenvalue A € F occurs on the diagonal of [Tz exactly dim(Egen (X)) times. In
particular, if V is a compler vector space, the sum of the algebraic multiplicities of the
eigenvalues of T' equals the dimension of V.

Definition. Let T € L(V). A chain of length r for an eigenvalue A of T is a finite
sequence (vq,vg,...v,) of vectors in Eg,(A) (the generalized eigenspace for ) such that
Tv; = M +vjy1 fori =1,...r—1 and Tv, = Av,. If A = 0 is an eigenvalue, a chain for
0 is called a ‘null chain’. If the scalar field is R and A = a + ib,b # 0, is an eigenvalue of
the complexification Tc € L(Vc), a real chain of length r for the pair (a,b) is a sequence
(1,y1,--- ,Zr,yr) of vectors z;,y; in V so that:

Tz; = ax;—byi+xi+1, Ty = bxit+ayi+yit1,i =1,... ,vr=1, Tz, = ax,—by,, Ty, = by, +az,.

Theorem 15. Let T € L(V), V a C-vector space. Then V is the direct sum of all the
generalized eigenspaces Egen () of T. Equivalently, one may write T = N + D, where N is
nilpotent, D is diagonalizable and N and D commute. (In fact, N and D are unique, and
are polynomial functions of 7).

Theorem 16.(Ezistence of a Jordan basis) Let T € L(V) be a nilpotent operator. Then
there exists a basis B of V which is a disjoint union of 7 ‘null chains’ for 7. Taking the last
vectors in each null chain, we obtain a basis for Ker(T). The matrix of T in B is said to be
in ‘Jordan form’, and is a direct sum of r ‘elementary nilpotent Jordan blocks of sizes d;’,
with di + ...+ d, = dim(V).

Corollary 17. (Jordan form) Let T' € L(V), where the scalar field is C; let A\ be an
eigenvalue of T'. The generalized eigenspace Ege, (X)) has a basis B which is a disjoint union
of r chains for A, of lengths d; > ... > d,. We have r = dim(E())) (‘geometric multiplicity’)
and dy + ... + d; = dim(Eye,())) (‘algebraic multiplicity’). The matrix of T'g,, () in the
basis B (written in reverse order) is said to be in ‘Jordan form’.

Corollary 18. (Real Jordan form) Let T' € L(V'), where the scalar field is R; let A =
a+1ib € C (b # 0) be an eigenvalue of the complexification T¢ € L(V¢). If (v1,... ,vq) is a
chain of length d for A (with v; € V), then letting z; = (1/2)(v;+v;) and y; = (1/2¢)(v; —v;)
be the real and imaginary parts of v; we obtain a real chain of length d (1, y1, ... %4, yq) for
(a,b). Doing this for each of the r A-chains in a Jordan basis for Ege,(A) C V¢ (Corollary
17), of lengths di,...d,, we obtain a basis B, consisting of r disjoint real (a, b)-chains, for
a T-invariant subspace E(a,b) C V, of dimension 2d; + ... + 2d,. The matrix of T\E(ap) In
the basis B (written in reverse order) is said to be in ‘real Jordan form’. The space V is
the direct sum of the generalized eigenspaces Fgepn(7y) over all real eigenvalues y of 7', and
the spaces E(a;,bj), where a; £ ib; ranges over the non-real complex eigenvalues of 7T'.
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Proposition 19. Let T € L(V) be invertible, where V is a complex vector space. Then,
for each r, T has r ‘r-th. roots’, i.e. operators S € L(V) so that S = T. Each r-th. root
is a polynomial in 7'.

3. NORMED SPACES AND INNER-PRODUCT SPACES

Proposition 20. Any norm in R" defines a continuous function R" — [0, 0o) (for the usual
topology in R". As a corollary, any two norms in R” are equivalent.

Theorem 21. Let 7' € L(R"). The sequence:
iv: l
= !

converges to an operator el € E(V) (in any norm on L(R™)). If T, S are commuting oper-
ators, we have e(T+5) = e TeS = eSel'. If S = P~'TP, then ¢ = P~ el P. The operator-
valued function ®(t) = e is the unique solution of the differential equation ®'(t) = A®(t)
in £(C") satisfying the initial condition ®(0) = I.

Definition 22. A Banach space is a complete normed vector space. Some infinite-
dimensional examples: (i)the sequence spaces IP,1 < p < oo, with the usual [? norms;
(ii)the space [* of bounded sequences, with the sup norm; (iii) the space Cy(R) of contin-
uous, bounded functions R — R, with the sup norm. A Hilbert space is an inner-product
space (with a real or hermitian inner product) which is complete in the corresponding norm.
Example: the sequence space [2 (with the usual inner product).

Proposition 23. A norm (on a real or complex vector space, finite-dimensional) comes
from an inner product if and only if it satisfies the parallelogram law.

Proposition 23b. (Gram-Schmidt) Given any basis {v1,...v,} of an inner product space
V, one may find an orthonormal basis {ei1,...e,} of V so that {e1,...ex} and {v1,...vx}
span the same subspace, for each k =1,... ,n.

Proposition 24. Recall a projection is defined as any operator P such that P? = P, and
an orthogonal projection as a projection P such that, for allv € V, v — Pv € (RanP)
Equivalently, RanP = (KerP)" characterizes orthogonal projections among all projections.
If W C V is a subspace and P € L(V) is orthogonal projection onto W, then w = Pv solves
the problem: minimize ||v — w|| among all w € W.

Proposition 25.1f ¢ : V — F is a linear functional, there exists a unique w € V such that
o(v) = (v,w), forallv € V.

This leads to the definition of adjoint of an operator T', via (Tv,w) = (v, T*w). On any
orthonormal basis B of V', the matrix [T*]z is the conjugate-transpose (‘hermitian adjoint’)
of [T]z. We have Ker(T*) = (RanT)* and Ran(T*) = (KerT)". For two operators T, S,
(ST)* =T*S*.

Definition/proposition 26. An operator T is normal if T*T = TT*, self-adjoint if T = T*.
T is normal if and only if ||Tv|| = ||T*v|| for all v.
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Proposition 27. All eigenvalues of a self-adjoint operator are real. If X € C is an eigenvalue
of a normal operator, then so is A. For any normal operator, eigenspaces corresponding to
distinct eigenvalues are orthogonal.

Theorem 28. (Spectral Theorem I.) Let T be a normal operator on a complez vector
space V (finite-dimensional). Then V admits an orthonormal basis of eigenvectors for 7'
Equivalently, we may write:

r
=1

where \; € C are the eigenvalues of T and P; : V' — E();) is orthogonal projection on the
eigenspace. In particular, P;,P; = 0 if i # j.

Theorem 29. (Spectral Theorem II.) Let T be a self-adjoint operator on a real vector
space V (finite-dimensional). Then the same conclusion as in Theorem 28 holds for T (with
A € ]R).

Remark. In particular, in this situation, given a function f : D(f) — R whose domain
D(f) C R contains the spectrum of 7', we can define f(7T) as the self-adjoint operator given
by the formula:

71) = @ F ()P
=1

For example, one may use this to define a ‘square root’ for any positive operator 7' (in fact,
the unique positive square root).

Definition 30. An isometry of V' is an operator preserving norms: ||Tv|| = ||v||, for all v.
Equivalently (by the polarization identities), T preserves the inner product of two vectors,
or: T*T = TT* = I. In particular, isometries are normal operators. (Any eigenvalue has
modulus one.) The set of isometries of V' is a group (under the operator product), called
the ‘orthogonal group’ O(n) when V' = R", the ‘unitary group’ U(n) when V = C".

Theorem 31. (Polar decomposition) Any operator T' admits a factorization T' = UP,
where U is an isometry and P is positive (in part. self-adjoint.) Necessarily P = vT*T. U
is uniquely defined by T if (and only if) 7' is invertible.

Theorem 32. (Spectral Theorem III) Let T be a normal operator on a real vector space
V. Then V admits an orthonormal basis consisting of eigenvectors of T' (for real eigenvalues)
and ‘eigenpairs’ for T' (for complex conjugate paris of eigenvalues). Equivalently, T' can be
expressed (symbolically) as an orthogonal direct sum of projections:

T S
i1 j=1

where -; are real eigenvalues for T', a; £ ib; are complex eigenvalues of the complexification
Tc, A(aj, b)) is the 2 x 2 matrix
[ aj b

—b; a;

and @ is orthogonal projection on the space of ‘eigenpairs’ for (a;, b;).



