
ERROR ESTIMATES FOR NUMERICAL METHODS: PROOFS.

The proofs of the basic error estimates are not hard, relying mainly
on Taylor approximation. We consider time-dependent vector fields f(t, y)
with p components, defined for all y ∈ Rp. The ‘local Lipschitz condition’
is important: f is ‘locally Lipschitz’ if for every R > 0, it is Lipschitz with
constant L > 0 (depending on R) in the ball of radius R:

|z1| ≤ R, |z2| ≤ R⇒ |f(t, z1)− f(t, z2)| ≤ L|z1 − z2|.

It is a standard result that f is locally Lipschitz if it is continuously differ-
entiable (in y) (i.e., of ‘class C1’.)

Theorem 1 (Error estimate for Euler’s method). Consider the
initial-value problem:

y′ = f(t, y), y(t) ∈ Rp, y(a) = y0.

Assume f(t, y) is continuously differentiable in y and that an exact solution
y(t) exists, defined for t ∈ [a, b]. Let N ∈ N, h = (b − a)/N (the step size)
and consider the recursion:

tn+1 = tn + h, t0 = a, yn+1 = yn + f(tn, yn), n = 1, . . . , N − 1.

Let en = y(tn)−yn be the approximation error at tn, n = 0, . . . , N (e0 = 0).
Then there exist constants C > 0 and N0 > 0 so that, for N > N0:

|en| ≤ Ch, n = 0, . . . , N.

Proof. Choose R > 0 so that maxt∈[a,b] |y(t)| ≤ R. Let L > 0 be a
Lipschitz constant for f (in the variable y) in the ball {|y| ≤ 2R}. Then:
By Taylor’s theorem:

y(tn+1) = y(tn) + hy′(tn) + rn, |rn| ≤ ch2,

where c depends on y|[a,b]. Subtracting from this the recursion relation
yn+1 = yn + hf(tn, yn), and using the fact that y(t) is a solution of the
ODE, we have for n = 0, . . . , N − 1:

en+1 − en = h(y′(tn)− f(tn, yn)) + rn = h(f(tn, y(tn))− f(tn, yn)) + rn.

Now assume (inductively) the following hold:

|yn| ≤ 2R, |en| ≤
ch

L
[(1 + hL)n − 1].
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We claim these estimates still hold for yn+1 and en+1. Indeed, since y(tn)
and yn are both in the ball {|y| ≤ 2R}, we may use the Lipschitz condition
to conclude, for n = 0, . . . , N − 1:

|f(tn, y(tn))− f(tn, yn)| ≤ L|y(tn)− yn|,

and hence:
|en+1 − en| ≤ hL|en|+ ch2,

|en+1| ≤ (1+Lh)|en|+ch2 ≤ (1+Lh)
ch

L
[(1+hL)n−1]+ch2 =

ch

L
[(1+hL)n+1−1];

in particular, since:
c

L
(1 + hL)n+1 ≤ c

L
e(n+1)hL ≤ c

L
e(b−a)L := C,

we have |en+1| ≤ Ch, so:

|yn+1| ≤ |y(tn+1)|+ |en+1| ≤ R + Ch ≤ 2R,

provided h < h0, or N > N0, where h0 (or N0) depends on a, b, c, L and
R. This completes the induction step. As just seen, this implies, for n =
0, . . . , N :

|en| ≤ Ch, C =
c

L
e(b−a)L,

as we wished to show.

Remark 1. (Dependence of C and N0.) There are good reasons (other
than OCD personality) to keep track of what constants depend on. From
the proof, we see that C and N0 depend on b− a, L (Lipschitz constant of
f over B2R, a ball containing the solution) and c. It is not hard to see that
c and L are controlled by the ‘C1 norm’ of f over B2R. Similar comments
apply to the constants in theorems 2 and 3 that follow, and will be omitted.
(It is a fact of life that mathematics, done properly, is full of little details
like this- mostly left unwritten, since the people who know enough to care
about them can usually fill in the gaps themselves. It does make things
tricky for beginners, though.)

Remark 2. The one ‘tricky’ point in the proof is guessing the form
of Mn in the bound |en| ≤ Mnh, which is proved inductively based on:
|en+1| ≤ (1 + hL)|en|+ ch2. How did we guess that Mn = [(1 + hL)n − 1] c

L
would work?

The estimate for |en+1| in terms of |en| suggests the recursion relation:

Mn+1 = (1 + hL)Mn + ch, M0 = 0,
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and this leads to the ‘linear difference equation’:

Mn+1 −Mn = hLMn + ch, M0 = 0,

which is completely analogous to a (non-homogeneous) linear first-order DE.
It has a constant solution Mn ≡ −c/L, and the ‘general solution of the
homogeneous equation’ is Mn = C(1+hL)n, so the solution of the difference
equation with IC M0 = 0 is:

Mn = (1 + hL)n c

L
− c

L
,

which is exactly the expression ‘guessed’. This observation will be useful
when we repeat the trick in the next proof.

Theorem 2. (Error estimate for the midpoint Euler method.)
Let f(t, y), y ∈ Rp, be twice continuously differentiable in (t, y) (in particular
the partial derivatives ft and dyf = fy are locally Lipschitz in y). Assume
the initial-value problem:

y′ = f(t, y), y(a) = y0

has a solution defined in the interval [a, b]. Let N ∈ N, h = (b − a)/N and
consider the recurrence relation (‘discrete evolution’): t0 = a,

tn+1 = tn +h, yn+1 = yn +hf(tn +
h

2
, yn +

h

2
f(tn, yn)), n = 0, . . . , N−1.

Let en = y(tn)−yn be the approximation error (n = 0, . . . , N, e0 = 0.) Then
there exist constants C > 0, N0 > 0, so that for N sufficiently large we have:

|en| ≤ Ch2, n = 0, . . . , N.

Proof. Taylor’s theorem applied to the solution y(t) gives:

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
(ft + fy[f ])|(tn,y(tn)) + c1h

3.

We also have the first-order Taylor approximation:

f(tn +
h

2
, yn +

h

2
f(tn, yn)) = f(tn, yn) +

h

2
(ft + fy[f ])|(tn,yn) + c2h

2.
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(Note that the meaning of fy[f ] is dyf [f ], for a time-dependent vector field
f(t, y) in Rp.) Thus:

yn+1 = yn + hf(tn, yn) +
h2

2
(ft + fy[f ])|(tn,yn) + c2h

3.

Subtracting the expression for yn+1 from that for y(tn+1), we obtain:

en+1 = en+h[f(tn, y(tn))−f(tn, yn)]+
h2

2
(ft+fy[f ])|(tn,y(tn))−

h2

2
(ft+fy[f ])|(tn,yn)+(c1−c2)h3.

Denoting by Lft , Lfy [f ] the respective Lipschitz constants (in a ball of radius
2R) of ft, fy[f ], we conclude (assuming, of course, y(tn) and yn are in this
ball):

|en+1 − en| ≤ hLf |en|+
h2

2
(Lft + Lfy [f ])|en|+ ch3,

and with L denoting the sum of the Lipschitz constants:

|en+1| ≤ (1 + hL)|en|+ ch3,

assuming h < 1. Now we’re in the same situation as in the previous proof.
Choose R > 0 so that |y(t)| ≤ R for t ∈ [a, b]. Assuming, for a given
n = 0, . . . , N − 1:

|yn| ≤ 2R, |en| ≤Mnh2, Mn = [(1 + hL)n − 1]
c

L
,

we show the same bounds hold for n + 1. Indeed the bound for |en| implies:

|en+1| ≤ (1+Lh)|en|+ch3 ≤ (1+Lh)
ch2

L
[(1+hL)n−1]+ch3 =

ch2

L
[(1+hL)n+1−1];

in particular:
|en+1| ≤ Ch2, C =

c

L
e(b−a)L,

and this implies:

|yn+1| ≤ |y(tn+1)|+ |en+1| ≤ R + Ch2,

which is smaller than 2R if the step size h is chosen small enough (or N is
chosen large enough). We conclude:

|en| ≤ Ch2, n = 0, . . . , N,

as desired.
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Remark. What makes this proof work? Consider the Taylor expansions
of order two for the exact solution:

y(t + h) = y(t) + hy′(t) +
h2

2
y′′(t) + O(h3)

= y(t) + hf(t, y) +
h2

2
(ft + fy[f ])|(t,y) + O(h3),

and for the approximate solution:

ỹ(t + h) = y(t) + hf(t +
h

2
, y +

h

2
f(t, y))

= y(t) + h[f(t, y) +
h

2
(ft + fy[f ])|(t,y)] + O(h3).

Note that y(t + h) and ỹ(t + h) coincide up to second order in h! (The
approximation ends up being second order, and not third, since the errors
potentially accumulate as we move right along the interval [a, b], leading us
to concede a factor of N = b−a

h .)

In general terms, the idea behind Runge-Kutta methods for ODE (which
date back to the early 1900s) is to devise an approximate solution in which
terms involving partial derivatives of f in the Taylor expansion (in h) of the
exact solution are replaced (in the approximate solution) by ‘nested evalu-
ations’ of f , in such a way that the Taylor expansion of the approximate
solution coincides with that of the exact one, up to a given order.

Classical 4th. order Runge-Kutta.

The fourth-order Runge-Kutta method for the general first-order IVP is
based on the recursion involving an average of four ‘slopes’ mi, themselves
obtained recursively:

tn+1 = tn + h, yn+1 = yn + hm.

m = 1
6(m1 + 2m2 + 2m3 + m4)

m1 = f(tn, yn)
m2 = f(tn + h

2 , yn + h
2m1)

m3 = f(tn + h
2 , yn + h

2m2)
m4 = f(tn + h, yn + hm3)

Prior to proving a theorem on the error estimate for RK4, we examine
how the ‘Taylor series heuristic’ of the last remark extends to suggest this
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method is fourth-order. For simplicity, we deal only with the autonomous
case, y′ = f(y). Consider the fourth-order Taylor expansion of the solution:

y(t + h) = y(t) + hy′(t) +
h2

2
y′′(t) +

h3

6
y(3)(t) +

h4

24
y(4)(t) + O(h5)

:= y(t) + (T4f)(y(t), h) + O(h5).

This defines (T4f)(y, h), whose coefficients are easily found in terms of f :

y′ = f(y)
y′′ = fy[f ]
y(3) = fyy(f, f) + fy[fy[f ]]
y(4) = fyyy(f, f, f) + 3fyy(fy[f ], f) + fy[fyy(f, f)] + fy[fy[fy[f ]]]

We wish to compare this with the Taylor expansion of the approximate
solution, where for the moment we assume the coefficient ci of mi is to be
determined:

ỹ(t + h) = y(t) + h(c1m1 + c2m2 + c3m3 + c4m4)

:= y(t) + T (y(t), h) + O(h5).

This defines implicitly the notation T (y, h), and to compute T (y, h) ex-
plicitly in terms of f we obtain the Taylor approximations of the ‘slopes’
mi(h, y):

m1 = f(y)

m2 = f(y + h
2m1) = f(y) + h

2fy[f ] + (h
2 )2 1

2fyy(f, f) + (h
2 )3 1

6fyyy(f, f, f) + O(h4)

m3 = f(y + h
2m2) = f(y) + h

2fy[f ] + (h
2 )2 1

2fyy(f, f) + h2

4 fy[fy[f ]]
+h3

16fy[fyy(f, f)] + (h
2 )2 h

2fyy(f, fy[f ]) + (h
2 )3 1

6fyyy(f, f, f) + O(h4)

m4 = f(y + hm3) = f(y) + hfy[f ] + h2

2 fy[fy[f ]] + h2

2 fyy[f, f ]
+h3

8 fy[fyy(f, f)] + h3

4 fy[fy[fy[f ]]] + +h3

2 fyy(f, fy[f ]) + h3

6 fyyy(f, f, f) + O(h4)

We would like to choose the ci so that (T4f)(y, h) = T (y, h). Comparing the
coefficients of ‘like terms’ in the two expansions, we arrive at the following
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system (equations listed with corresponding term):

f : c1 + c2 + c3 + c4 = 1
fy[f ] : 1

2c2 + 1
2c3 + c4 = 1

2
fyy(f, f) : 1

4c2 + 1
8c3 + 1

2c4 = 1
6

fy[fy[f ]] : 1
4c3 + 1

2c4 = 1
6

fyyy(f, f, f) : 1
48c2 + 1

48c3 + 1
6c4 = 1

24
fyy(fy[f ], f) : 1

8c3 + 1
2c4 = 1

8
fy[fyy(f, f)] : 1

16c3 + 1
8c4 = 1

24
fy[fy[fy[f ]]] : 1

4c4 = 1
24

This system is over-determined, but one readily checks that c1 = c4 =
1/6, c2 = c3 = 1/3 is a solution. That is, the ‘Simpson rule’ coefficients for
the mi in m are exactly what is needed for the two Taylor expansions to
coincide. And then an argument similar to that previously used proves the
following theorem.

Theorem 3. (Error estimate for 4th order Runge-Kutta, au-
tonomous case.) Let f be a C4 vector field in Rp (in particular, all
partial derivatives of f up to third order are locally Lipschitz). Assume the
initial-value problem: y′ = f(y), y(t) ∈ Rp, y(a) = y0, has a solution
defined for t ∈ [a, b]. Given N ∈ N, h = (b − a)/N , let yn, n = 0, . . . , N ,
yN = b, be generated by the Runge-Kutta recursion: yn+1 = yn + hm,
with m = m(h, yn) as defined above. Let en = y(a + nh) − yn be the error
at the nth. step. Then there exist N0 > 0 and C > 0 (independent of n) so
that for N > N0, we have:

|en| ≤ Ch4, n = 0, . . . , N.

Proof. Let tn = a + nh. We have the Taylor expansions:

y(tn+1) = y(tn + h) = y(tn) + (T4f)(y(tn), h) + c1h
5;

yn+1 = yn + hm(h, yn) = yn + T (yn, h) + c2h
5.

Since, as seen above, T4f(y, h) = T (y, h), we have for the error:

en+1 = en + (T4f)(y(tn), h)− (T4f)(yn, h) + (c1 − c2)h5.

Provided h < 1, and assuming |yn| ≤ 2R (where the ball of radius R contains
y(t), t ∈ [a, b]), this gives an estimate in terms of the Lipschitz constant L
of T4f (as a function of y) in the ball B2R:

en+1 ≤ (1 + Lh)|en|+ ch5.
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As before, this is used to show inductively that |yn| ≤ 2R and:

|en| ≤
ch4

L
[(1 + hL)n − 1] ≤ Ch4,

with C := (c/L) exp((b− a)L).

8


