
THE ONE-DIMENSIONAL HEAT EQUATION.

1. Derivation. Imagine a dilute material species free to diffuse along
one dimension; a gas in a cylindrical cavity, for example. To model this
mathematically, we consider the concentration of the given species as a
function of the linear dimension and time: u(x, t), defined so that the total
amount Q of diffusing material contained in a given interval [a, b] is equal
to (or at least proportional to) the integral of u:

Q[a, b](t) =

∫ b

a
u(x, t)dx.

Then the conservation law of the species in question says the rate of change
of Q[a, b] in time equals the net amount of the species flowing into [a, b]
through its boundary points; that is, there exists a function d(x, t), the
‘diffusion rate from right to left’, so that:

dQ[a, b]

dt
= d(b, t)− d(a, t).

It is an experimental fact about diffusion phenomena (which can be under-
stood in terms of collisions of large numbers of particles) that the diffusion
rate at any point is proportional to the gradient of concentration, with the
right-to-left flow rate being positive if the concentration is increasing from
left to right at (x, t), that is: d(x, t) > 0 when ux(x, t) > 0. So as a first
approximation, it is natural to set:

d(x, t) = kux(x, t), k > 0 (‘Fick’s law of diffusion’ ).

Combining these two assumptions we have, for any bounded interval [a, b]:

d

dt

∫ b

a
u(x, t)dx = k(ux(b, t)− ux(a, t)).

Since b is arbitrary, differentiating both sides as a function of b we find:

ut(x, t) = kuxx(x, t),

the diffusion (or heat) equation in one dimension.

(In the case of heat we take u(x, t) to be the temperature, and assume
there is a function c(x) > 0 throughout the conducting medium so that the
thermal energy dQ added to the system by a ‘lump’ of material of mass
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ρ(x)dx (where ρ(x) is the mass density) at temperature u(x, t) is dQ =
c(x)ρ(x)u(x, t)dx. Taking c, ρ to be constant, we are back in the earlier
situation.)

We’ll consider four types of problems for the heat equation:
(i) The Cauchy problem for the equation on the whole real line, where

the initial temperature (or concentration) u0(x) is given and we seek u(x, t),
the solution giving its evolution in time;

(ii) Boundary-value problems on the half-line x > 0, where we assume
either the temperature is held constant at x = 0 (so heat flows in or out of
the system at the origin), or that there is no diffusion of heat at x = 0 (so
ux = 0 at the origin.)

(iii) Boundary-value problems on a bounded interval [0, L], or periodic
boundary conditions on [−L,L].

(iv) Non-homogeneous problems, corresponding to a heat source inside
the conducting material: ut − kuxx = f(x, t), on the whole line or on an
interval.

Basic observations: (i) The time-independent solutions of the heat equa-
tion are linear functions, u = Ax+B. By subtracting an appropriate linear
function, for the boundary condition where u is held constant at the end-
points we can always assume the constants are zero (Dirichlet BC).

For Neumann-type boundary conditions ux = 0, or periodic, the con-
stants are always solutions.

(iii) In general we expect the equation to gradually ‘smoothe out’ any
oscillations in u0 and drive it towards the simplest time-independent solution
consitent with the boundary conditions (linear, or a constant.) If the limit
as t→∞ is a constant, it has to be zero for Dirichlet BC, and the average
value of the initial data u0, for Neumann or periodic BC on a bounded
interval. The reason is that the integral of u over the whole interval (and
therefore its average value) is constant in time (under these BC):

d

dt

∫ L

0
u(x, t)dx =

∫ L

0
ut(x, t)dx = k

∫ L

0
uxx(x, t)dx = k(ux(L, t)−ux(0, t)) = 0,

under Neumann BC, and similarly under periodic BC.

(iv) Scaling. The change of variables t 7→ s = kt, x 7→ x changes the
equation ut = kuxx to us = uxx; the change of variables t 7→ t, x 7→ y =

√
kx

changes it to ut = uyy. The simultaneous change t 7→ s = λt, x 7→ y =
√
λx

(with λ > 0) leads back to the original equation: us = kuyy (verify these
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statments). Thus we see that “one time dimension corresponds to two space
dimensions”, in the sense that any scaling of the variables that doesn’t
change the ratio x/

√
t also leaves the equation unchanged.

We also see that one can always assume the constant k equals one, by
rescaling the time variable. We will usually do that, and the correct expres-
sions for the equation with general k > 0 can be recovered simply by making
the change t→ kt.

2. The heat kernel on the real line.

2.1 Derivation. To look for exact solutions of ut = uxx on R (for t > 0),
we remember the scaling fact just observed and try to find solutions of the
form:

u(x, t) = p(
x√
t
), p = p(y).

The heat equation quickly leads to the ODE for p(y):

p′′(y) = −y
2
p′(y),

and setting q(y) = p′(y), we find a first-order linear ODE with an easily
derived general solution:

q′(y) = −y
2
q(y) −→ q(y) = Ce−y

2/4, C > 0, y ∈ R.

Thus the function P (x, t) below is a solution of the heat equation on the
real line:

P (x, t) =

∫ x/
√
T

0
e−

2/4dy =
1

2

∫ x/
√
4t

0
e−p

2
dp.

Now recall the well-known fact from Calculus:∫ ∞
0

e−p
2
dp =

√
π

2

and the related definition of the “Error Function”:

ERF (z) =
1

2
+

1√
π

∫ z

0
e−p

2
dp, z ∈ R.

This function has the properties:

lim
z→−∞

ERF (z) = 0, lim
z→∞

ERF (z) = 1, ERF (0) =
1

2
, ERF (z)−1

2
is an odd function of z.
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And so instead of using P (x, t) we define:

H(x, t) = ERF (
x√
4t

),

a solution of the heat equation ut − uxx = 0. The normalization constants
are chosen so that the limit of this solution as t → 0+ is (pointwise in x)
the (discontinuous!) function θ(x) defined by:

θ(x) = 0, x < 0; θ(0) = ERF (0) =
1

2
, θ(x) = 1, x > 0.

(Engineers will recognize this as “Heaviside’s unit step function at zero”.)

Unfortunately we only found an exact solution of the heat equation given
as an integral, so just in case we check whether u(x, t) = exp(−x2/4t) is a
solution of ut = uxx and find that it is not. Computing its integral over the
whole real line, we find (check!):∫ ∞

−∞
e−

x2

4t dx =
√

4πt.

This moves us to consider the function:

h(x, t) =
1√
4πt

e−
x2

4t ,

and it turns out this one works (and is called the heat kernel on the real
line):

Exercise: Show that h(x, t) is a solution of ut = uxx for x ∈ R, t > 0,
and satisfies:

∫∞
−∞ h(x, t)dx = 1.

2.2 Relation with the normal distribution. To understand the behavior
of h(x, t), we note that its graph is an even “bell-shaped curve” centered at 0
and with “thickness” of the peak apparently related to t (sharper peak, the
smaller t > 0 is.) Recall the “standard normal probability density function”
from Probability:

p(x; 0, 1) =
1√
2π
e−

x2

2 ,

as well as the more general “normal probability density function with mean
value µ ∈ R and standard deviation σ > 0”:

p(x;µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .
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Its graph is the “bell-shaped curve” with peak value at x = µ and peak
width proportional to σ. Its integral over the whole real line is one, for all
µ ∈ R, σ > 0.

If you’ve studied some probability (and you should), you’ll recall that
for a normally distributed random variable X taking values on R, with
expected value (mean) µ and standard deviation σ (or variance σ2), we
have the probabilities:

Prµ,σ[a ≤ X ≤ b] =

∫ b

a
p(x;µ, σ)dx.

The cumulative distribution function for p(x; 0, 1) is exactly ERF !

Pr0,1[X ≤ z] =

∫ z

−∞
p(x; 0, 1)dx = ERF (z),

and with mean µ and standard deviation σ:

Prµ,σ[X ≤ x] =

∫ x

−∞
p(y;µ, σ)dy = ERF (

x− µ
σ
√

2
).

The connection with the heat equation then is: we have the correspondence
σ2 ↔ 2t (time corresponds to variance). For the heat kernel and normal
probability density function.:

p(x; 0, 1) = h(x,
1

2
); p(x;µ, σ) = h(x− µ, σ

2

2
).

For the integrated solution H(x, t) and normal cumulative distribution func-
tion:

ERF (z) = H(z,
1

2
); ERF (

x− µ
σ
√

2
) = H(x− µ, σ

2

2
).

2.3 Solutions for step-function initial data.
It is easy to use linearity and the ‘translation invariance’ (u(x − a, t) is

a solution of the heat equation if u(x, t) is) to write down the solutions of
ut = uxx with for simple discontinuous initial data. For example, consider
the function:

θa,b(x) = 0, x < a, θa,b(x) = 1, a < x < b, θa,b(x) = 0, x > b, θa,b(a) = θa,b(b) =
1

2
.
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Then θa,b(x) = θa(x) − θb(x), where θa(x) = θ(x − a) is the Heaviside unit
step function with jump discontinuity at x = a. It is easy to see that:

Ha,b(x, t) = H(x− a, t)−H(x− b, t) = ERF (
x− a√

4t
)− ERF (

x− b√
4t

)

is a solution of ut− uxx = 0 on the real line, converging pointwise to θa,b(x)
as t → 0+. This generalizes to arbitrary ‘step functions’: take a partition
a1 ≤ a2 ≤ . . . ≤ aN ≤ aN+1 of the interval [a1, aN+1] into N adjacent
sub-intervals, and given real constants c1, . . . , cN define:

u0(x) =

N∑
i=1

ciθai,ai+1(x).

This is a piecewise-constant function with jump discontinuities at the ai,
and vanishing outside [a1, aN+1]. The solution of the heat equation with
this initial function is simply:

u(x, t) =

N∑
i=1

ciHai,ai+1(x, t) =

N∑
i=1

ci(ERF (
x− ai√

4t
)− ERF (

x− ai+1√
4t

)).

Exercise: Show that for each i = 2, . . . , N , we have: limt→0+ u(ai, t) =
ci−1+ci

2 .
3. Solution of the Cauchy problem.

We first recall some basic definitions in Analysis. Let f : I → R be a
function, where I ⊂ R is an open interval.

Definition. Let x ∈ I. f is continuous at x ∈ I if:

(∀ε > 0)(∃δ > 0)(|x− y| < δ, y ∈ I ⇒ |f(x)− f(y)| < ε).

Note that, in general, δ depends both on ε and on x.
f is uniformly continuous on I if:

(∀ε > 0)(∃δ > 0)(∀x, y ∈ I)(|x− y| < δ ⇒ |f(x)− f(y)| < ε).

In contrast, in this case δ depends only on ε; the same δ works for all x and
y.

It follows from the Mean Value Theorem that if f ′ is continuous and
bounded in I, then f is uniformly continuous on I. (If you’ve studied some
Analysis, you can easily verify this.)
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We say f(x, t) → f0(x) pointwise on I as t → 0+ if, for each x ∈ I, we
have limt→0+ f(x, t) = f0(x). This means:

(∀x ∈ I)(∀ε > 0)(∃τ > 0)(0 < t < τ ⇒ |f(x, t)− f0(x)| < ε).

Here τ in general depends both on ε and on x.

We say f(x, t)→ f0(x) uniformly on I if limt→0+ ||f(x, t)− f0(x)|| = 0,
where we use the ‘sup norm’ for bounded functions on I (that is, ||g|| is the
smallest positive M so that |g(x)| ≤M for all x ∈ I.) Equivalently, uniform
convergence means:

(∀ε > 0)(∃τ > 0)(0 < t < τ ⇒ (∀x ∈ I)(|f(x, t)− f0(x)| < ε)).

Here τ depends on ε, but not on the point x in I.

Theorem. Let u0 be a continuous, bounded function on R. Denoting by
h(x, t) the heat kernel on R, consider the function u defined by an improper
integral:

u(x, t) =

∫ ∞
−∞

h(x− y, t)u0(y)dy.

We have:
(i) If u0 is continuous at x ∈ R, then u(x, t)→ u0(x) as t→ 0+ (pointwise

convergence.)
(ii) If u0 is uniformly continuous on R, then u(x, t)→ u0(x) as t→ 0+,

uniformly on R.
(iii) We have, for each x ∈ R:

ux(x, t) =

∫ ∞
−∞

hx(x− y, t)u0(y)dy.

The same holds for uxx and ut. Since ht(x − y, t) = hxx(x − y, t) for each
y, t, it follows that ut = uxx, so u is a solution of the heat equation.

(iv) The function (x, t) 7→ u(x, t) is smooth in R × R+ (that is, has
continuous partial drivatives of all orders in x and t, for any (x, t) with
t > 0), even if u0 is just continuous.

Important Remark. Part (iv) is saying that even if the graph of u0
is “jagged” (non-differentiable)–in fact even if it has jump discontinuities,
though we won’t prove this–the graph of u(·, t) is smooth for any t > 0. This
instantaneous smoothing property is in stark contrast to what we observed
for the WE, which propagates the singularities of the initial data for all time
(alng characteristic lines.)
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Corollary. Suppose there exist constants M,N ∈ R so that, for all x ∈ R,
we have N ≤ u0(x) ≤M . Then the same inequalities hold at any time t > 0:

N ≤ u(x, t) ≤M, for all t > 0.

Proof. Just note that, since the heat kernel integrates to one over the whole
real line, we have:

u(x, t)−N =

∫ ∞
−∞

h(x− y, t)(u0(y)−N)dy,

and this must be greater than or equal to zero, since h(x − y, t) > 0 and
u0(y)−N ≥ 0. the other inequality is proved in the same way. In particular,
we have the stability estimate for the ‘sup norm’:

||u(·, t)|| ≤ ||u0||,

for each t > 0.

Convergence of improper integrals. The theorem deals with improper
integrals depending on a parameter, of the type:∫ ∞
−∞

f(x, t, y)dy, f : R× R→ R smooth , (x, t) ∈ R ⊂ R× R+, a rectangle.

We recall some definitions and theorems used in the proof. An improper
integral of this type converges absolutely for a given (x, t) ∈ R if:

lim
A,B→∞

[

∫ −A
−B
|f(x, t, y)|dy +

∫ B

A
|f(x, t, y)|dy] = 0,

or equivalently if, at the given (x, t):

(∀ε > 0)(∃A > 0)(∀B > A)

∫ −A
−B
|f(x, t, y)|dy +

∫ B

A
|f(x, t, y)|dy < ε.

Here A depends on ε, and in general also on the point (x, t). (The adjective
‘absolutely’ refers to the absolute value, so it is automatic if the integrand is
positive.) On the other hand, we say the integral converges absolutely and
uniformly in R if:

(∀ε > 0)(∃A > 0)(∀B > A)(∀(x, t) ∈ R)

∫ −A
−B
|f(x, t, y)|dy+

∫ B

A
|f(x, t, y)|dy < ε.
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That is, in this case the same A works for all (x, t) ∈ R: how far out we
have to take the ‘tail’ parts of the graph of y 7→ f(x, t, y) to be ε-close to
the value of the integral depends only on ε, not on (x, t).

It is a theorem of Analysis that if f(x, t, y) and fx(x, t, y) are continuous
in R×R, and if the improper integrals

∫∞
−∞ f(x, t, y)dx and

∫∞
−∞ fx(x, t, y)dx

converges absolutely and uniformly in R, then the function in R taking (x, t)
to

∫∞
−∞ f(x, t, y)dx is continuously differentiable in R, and:

∂

∂x

∫ ∞
−∞

f(x, t, y)dx =

∫ ∞
−∞

fx(x, t, y)dx.

Proof of Theorem. For (i) and (ii), given ε > 0 (and also x ∈ R in case
(i)) we must find τ > 0 so that |u(x, t) − u0(x)| < ε if 0 < t < τ , where
τ may depend on x in case (i), but depends only on ε in case (ii). Choose
δ > 0 so that |u0(x + z) − u0(x)| < ε/2 if |z| < δ. Note δ depends on x
and ε in case (i), but only on ε if u0 is uniformly contiuous (case (ii)). Now
split the integral defining u(x, t) into two parts (with the change of variable
y → z = y − x, using also that h(x, t) is even in x):

u(x, t)−u0(x) =

∫ ∞
−∞

h(x−y, t)[u0(y)−u0(x)]dy =

∫ ∞
−∞

h(z, t)(u0(x+z)−u0(x))dz

= (

∫
|z|>δ

+

∫ δ

−δ
)h(z, t)(u0(x+ z)− u0(x))dz = A+B,

and from the choice of δ the second integral may be estimated by:

|B| ≤ ε

2

∫ δ

−δ
h(z, t)dz <

ε

2
for any t > 0,

since
∫∞
−∞ h(z, t)dz = 1 (and h(z, t) > 0 for all z, t). To estimate the integral

A, observe that: ∫
|z|>δ

h(z, t)dz =
1√
4πt

∫
|z|>δ

e−z
2/4tdz

=
1√
π

∫
|y|> δ√

4t

e−y
2
dy = 2(1− ERF (

δ√
4t

))

(the reader should verify the last equality), so that:

|A| ≤ 4||u0||(1− ERF (
δ√
4t

)),
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and this will be smaller than ε/2 for any 0 < t < τ , provided we choose τ
so that:

(1− ERF (
δ√
4τ

)) =
ε

8||u0||
.

(This is possible since limz→∞ERF (z) = 1.) We see that τ depends only
on ε, ||u0|| and δ (hence on ||u0|| and ε in case (ii), and additionally on x in
case (i).)

This concludes the proofs of parts (i) and (ii) of the Theorem. To prove
part (iii) using the differentiability criterion recalled above, we just have to
show that the integral:∫ ∞

−∞
|hx(x− y, t)u0(y)|dy =

1

2t
√

4πt

∫ ∞
−∞
|x− y|e−(x−y)2/4t|u0(y)|dy

is uniformly convergent for (x, t) ∈ R × [τ,∞), for any τ > 0. Making the
change of variable y → z = (y − x)/

√
4t, this equals:

1

2t
√
π

∫ ∞
−∞
|z|e−z2 |u0(x+ z

√
4t)|dz < ||u0||

2τ
√
π

∫ ∞
−∞
|z|e−z2dz

for t > τ . Now, since
∫∞
−∞ |z|e

−z2dz is convergent, given ε > 0 we may
choose A > 0 (depending on τ and ||u0||) so that, for any B > A:

(

∫ −A
−B

+

∫ B

A
)|z|e−z2dz < 2τ

√
π||u0||−1ε,

and then the sum of the ‘tail ends’ of the previous integral (defined by limits
of integration z = −A,−B and z = A,B) will be smaller than ε, for any
x ∈ R and any t > τ . This concludes the proof of uniform convergence of
the integral. The proofs for uxx and ut follow the same model, using the
convergence of the integral ∫ ∞

−∞
z2e−z

2
dz.

This concludes the proof of of part (iii) of the theorem.
For part (iv), the argument showing existence and continuity of higher-

order partial derivatives of u(x, t) in the open half-plane {(x, t); t > 0} is
completely analogous. For instance, showing the existence and continuity
of the partial derivative of order k in x involves (in the same way as above)
the convergence of the improper integral:∫ ∞

−∞
|z|ke−z2dz.
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4. The Maximum Principle.

It is physically reasonable that, since temperature tends to become more
uniform under the usual boundary conditions, the maximum and minimum
temperatures sould be attained either at time zero or on the boundary. This
is reflected in an important property of solutions of the heat equation, the
maximum principle. At the most basic level, it is a consequence of the
“second derivative test” for functions of two variables. In the following by
upper half plane we mean the set {(x, t);x ∈ R, t ≥ 0}.

Calculus maximum principle. A solution of the heat equation cannot
have a nondegenerate local maximum or minimum in any open region of the
upper half-plane.

Proof. At a nondegenerate local max (resp. min) we have ut = 0 and
uxx < 0 (resp. uxx > 0), and this is incompatible with the equation ut =
kuxx.

LetR = [a, b]×[0, T ] be a rectangle in the upper half-plane. The parabolic
boundary of R is the usual boundary of R, except for the top edge:

∂pR = [a, b]× {0} ∪ {a, b} × [0, T ].

Maximum principle. Let u(x, t) be a solution of the heat equation ut =
kuxx in a rectangle [0, L]×[0, T ] in the upper half-plane. Then the maximum
and the minimum values of u in R are attained on the parabolic boundary
∂pR. In other words:

max
(x,t)∈R

u(x, t) = max
(x,t)∈∂pR

u(x, t), min
(x,t)∈R

u(x, t) = min
(x,t)∈∂pR

u(x, t).

Proof. Let C > 0 be arbitrary, and define v(x, t) = u(x, t) + Cx2. Then
v satisfies in R:

vt − kvxx = ut − kuxx − 2kC = −2kC < 0.

Thus the maximum value of v in R cannot be attained at an interior point of
R (at such an interior max, we’d have vt = 0, vxx ≤ 0, hence vt− kvxx ≥ 0).
Note that now we don’t have to assume the max is nondegenerate! If it is
attained at a point (x0, T ) of the top edge t = T , we still have vxx(x0, T ) ≤ 0,
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and v(x0, t) ≤ v(x0, T ) for t < t0, so vt(x0, T ) ≥ 0. But then vt − kvxx ≥ 0
at (x0, T ), again a contradiction.

Thus maxR v = max∂pR v ≤ max∂pR u+CL2. Since maxR u = maxR(v−
Cx2) ≤ maxR v, we conclude maxR u ≤ max∂pRu + CL2. Now let C → 0
to conclude maxR u ≤ max∂pR u. The opposite inequality is clear, since
∂pR ⊂ R. Hence they are equal.

A similar proof applies to the minimum.

The maximum principle leaves open the possibility that the maximum
(or minimum) values of u are attained not just on the parabolic boundary,
but also elsewhere on R. This in fact cannot happen (unless u is constant
in R), but is harder to prove.

Strong maximum principle. If u is a solution of the heat equation in a
rectangle R on the upper half-plane, the maximum and minimum values of
u in R are attained only on ∂pR, unless u is constant on R.

For a proof, see [Protter-Weinberger].

Application. The maximum principle immediately implies uniqueness of
solutions of the non-homogeneous Dirichlet problem in [0, L]:

ut−kuxx = f(x, t) in R = [0, L]×[0, T ], u(0, t) = g(t), u(L, t) = h(t), u(x, 0) = u0(x).

Just observe tht if u1 and u2 are two solutions of this problem in [0, L], their
difference w = u1 − u2 is a solution of wt = kwxx in the same interval, with
zero boundary conditions and zero initial condition. Thus its maximum
and minimum values on ∂pR are both zero, so w ≡ 0 on ∂pR, and by the
maximum/minimum principle it follows that w ≡ 0 in R, so u1 ≡ u2 in R.

Question: How would you use the Maximum Principle to show unique-
ness for the non-homogeneous Neumann problem in [0, L]? (That is, ux(0, t) =
g(t), ux(L, t) = h(t)). Note that ux is also the solution of a non-homogeneous
heat equation, if u is.
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PROBLEMS.
1. Solve the heat equation ut − uxx = 0 on the real line, with initial

exponential initial data u0(x) = eax, where a ∈ R is a constant. (Answer:
eta

2+ax)
Hint: In the integral with the heat kernel, complete squares to obtain:

(x− y)2

4t
− ay = (

x− y√
4t

+
√
ta)2 − ta2 − ax,

then make the change of variables z = x−y√
4t

+
√
ta.

2. Solve the heat equation ut − uxx = 0, for the following two initial
conditions:

(i) u0(x) = 1 for x > 0 and u0(x) = −2 for x < 0.
(ii) u0(x) = x, x < 0 or x > 4;u0(x) = x + 2, 0 < x < 4. (Hint: write

u0(x) = x+ 2(θa(x)− θb(x)) for suitable a and b, then use linearity.)
3. [Strauss] Consider the solution 1 − x2 − 2t of ut − uxx = 0. Find

the locations of its maximum and minimum points in the closed rectangle
{0 ≤ x ≤ 1, 0 ≤ t ≤ T}.

4.[Strauss] Consider the diffusion equation ut = uxx on the interval [0, 1],
with initial condition u0(x) = 4x(1− x) and boundary conditions u(0, t) =
u(1, t) = 0.

(i) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.
(ii) Show that u(x, t) = u(1 − x, t) for all t ≥ 0 and x ∈ [0, 1]. (Hint:

uniqueness.
(iii) Use the energy method to show that

∫ 1
0 u

2dx is a strictly decreasing
function of t.

5. [Strauss] Solve the diffusion equation ut = uxx on the real line, with
initial condition:

u0(x) = eax, x > 0;u0(x) = 0, x < 0.

Hint: Use the same trick as in problem 1. Answer:eta
2+axERF ( x√

4t
−
√
ta).

6.[Strauss] Solve the diffusion equation ut−uxx = 0 on the real line with
initial condition:

u0(x) = x2 − 3x+ 7.

Hint:Show that uxxx solves the heat equation with initial data zero, hence
(by uniqueness) is the identically zero function for each t > 0. This means:

u(x, t) = A(t)x2 +B(t)x+ C(t).

Now substitute back in the equation to find the coefficients A(t), B(t), C(t).
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Remark. Clearly this method applies to any initial condition that is a
polynomial function of x. In fact, you can show that if u0(x) is a polynomial
of degree d, then so is u(x, t), for each t > 0.

5. Stability and energy.

5.1 Norms in function spaces. A norm in a vector space V is an as-
signment v 7→ ||v|| of a nonnegative real number to each vector in v ∈ V ,
satisfying: (i) ||v|| = 0 only when v = 0; ||cv|| = |c|||v||, for each v ∈ V
and each c ∈ R; (iii) ||v + w|| ≤ ||v|| + ||w||, for each v, w ∈ V (triangle
inequality.)

Examples. In finite dimensions (that is, in Rn), the best-known example
is the euclidean norm || · ||2: if v = (x1, . . . , xn) ∈ Rn:

||v||2 = (x21 + . . .+ x2n)1/2.

For any p > 0, we can define analogously:

||v||p = (|x1|p + . . .+ |xn|p)1/p

(why do we need the absolute values?) It turns out the || · ||p are norms, but
only for p ≥ 1 (the problem is the triangle inequality.) The following is also
a norm in Rn:

||v||∞ = max{|x1|, . . . , |xn|}.

Exercise. For any norm, we have the ‘unit ball’: B = {v ∈ V ; ||v|| ≤ 1}.
Sketch the unit balls for the norms in R2: || · ||1, || · ||2, || · ||3 and || · ||∞.

Exercise. Show that in Rn: limp→∞ ||v||p = ||v||∞. (This explains the nota-
tion.)

Remark. It is a fact of Analysis that, in a finite-dimensional vector space
V , any two norms || · || and || · ||′ are equivalent, in the sense that there exists
a constant C > 1 so that:

∀v ∈ V :
1

C
||v||′ ≤ ||v|| ≤ C||v||′.

(In particular, convergence of a sequence to a given limit is independent of
the choice of norm.) This is definitely false in infinite dimensions. (A simple
example is given below.)

Here we are primarily concerned with infinite-simensional vector spaces
of functions, for the moment subspaces of the space of piecewise continuous,
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bounded functions on the real line or on an interval. On Cb(R) or Cb([a, b])
(continuous and bounded, or even piecewise continuous and bounded) we
have the ‘uniform norm’:

||f ||∞ = sup
x∈I
|f(x)|,

where I = R or I = [a, b], and sup (‘supremum’) is the smallest M > 0 so
that |f(x)| ≤ M for all x ∈ I (often, but not always, this is the maximum
of |f(x) in I).

We also have the ‘Lp norms’ on the space of piecewise continuous func-
tions on a bounded interval [a, b]:

||f ||p = (

∫ b

a
|f |p(x)dx)1/p, p ≥ 1.

Of these by far the most important is the L2 norm, which is associated to
the L2 inner product:

||f ||2 = 〈f, f〉1/2, where 〈f, g〉 =

∫ b

a
f(x)g(x)dx.

Remark. (i) Something is being ‘swept under the rug’ here. If a piecewise
continuous function has zero Lp norm, it is not quite true that it is the zero
function (it could be nonzero at finitely many points in [a, b]. If we consider
only continuous functions (one-sided continuous at a and b), this problem
disappears (but this solution is less satisfying than it looks.)

(ii) Note that for any continuous function f in [a, b] we have:

||f ||2 = (

∫ b

a
f2(x)dx)1/2 ≤ (b− a)1/2||f ||∞.

However, we don’t have an inequality in the other direction. For the se-
quence fn(x) = xn in [0, 1], we have ||fn||2 = (2n + 1)−1/2 → 0 but
||fn||∞ = 1 for all n. This shows these two norms in C[0, 1] are not equiva-
lent.

5.2 First energy argument. We show the L2 norm of solutions of the heat
equation is decreasing in time. Let u(x, t) be a solution of ut − kuxx = 0
in the usual spaces VD[0, L], VN [0, L], Vper[−L,L]. Integrating by parts we
find:

d

dt

∫ L

0
u2dx = 2

∫ L

0
uutdx = 2k

∫ L

0
uuxxdx = −

∫ L

0
u2xdx+ uux|L0 ,
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and the last term is zero in any of the usual spaces. This shows
∫ L
0 u2dx is

decreasing in time, unless u is a constant solution. This implies the following
stability estimate for solutions u1, u2 of the heat equation in VD, VN or Vper
with initial conditions u10, u

2
0 (resp.):

||u1(·, t)− u2(·, t)||2 ≤ ||u10 − u20||2.

(Recall a stability estimate for a PDE shows that if the data of the problem
are ‘close’ (in a given norm), then the solutions are also ‘close’, for any given
t > 0.)

Exercise. Can you use this method to show the Lp norms of the solution
(for p ≥ 2) are also decreasing in time?

5.3 Second energy argument. One way to define an “energy” for a func-
tion on an interval is to measure the deviation from being a constant. A
simple way to do this is to set:

E[f ] =
1

2

∫ b

a
(fx)2dx, f ∈ C1

pw[a, b].

(C1
pw: continuous, with piecewise continuous derivative). Thus E[f ] = 0

exactly if f is constant. Let’s compute the time derivative of the energy for
a solution of the heat equation ut − kuxx = 0 in an interval [a, b], in one of
the usual spaces VD, VN , Vper:

dE[u]

dt
=

∫ b

a
uxuxtdx = −

∫ b

a
uxxutdx+ uxut|x=bx=a

= −k
∫ b

a
(uxx)2dx ≤ 0,

since the boundary term uxut|ba vanishes for u in VD, VN or Vper. Thus the
energy is decreasing in time (unless u is constant, in which case its energy
is zero).

One might be tempted to use the energy to define a norm, but that
doesn’t work, since the constant functions have zero energy. It would work
as a norm in VD, since zero is the only constant in VD. One option is to add
the L2 integral to the energy; this defines the ‘H1 norm’:

||f ||H1 = (

∫ b

a
f2dx+

∫ b

a
f2xdx)1/2.
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This norm is associated to the H1 inner product in C1
pw[a, b]:

〈f, g〉H1 =

∫ b

a
fgdx+

∫ b

a
fxgxdx.

It then follows from the above that the H1 norm is decreasing in time for
solutions of the heat equation, in particular:

||u(·, t)||H1 ≤ ||u0||H1 .

This is a different ‘stability estimate’ for the heat equation.

Important Remark. There is a deeper connection between the energy
E[f ] and the heat equation. Consider a one-parameter family of functions
in a vector space V [a, b] in the interval [a, b], with ‘initial velocity’ g ∈ V [a, b]:

f(·, s) ∈ V [a, b], s ∈ I ⊂ R,
d

ds
fs|s=0 = g ∈ V [a, b].

Then:
d

ds
E[fs]|s=0 =

∫ b

a
f0xgxdx = −

∫ b

a
f0xxgdx+ f0xg|ba.

If we take V of Dirichlet, Neumann or periodic type, the boundary term
vanishes. Endowing V with the L2 inner product, we may write this as:

d

ds
E[fs]|s=0 = −〈f0xx, g〉L2 = 〈L[f0], g〉.

By analogy with finite-dimensional vector calculus, we may say that the
left-hand side is the directional derivative of E at f0 in the direction given
by g. Since g is arbitrary in V , we could say the “gradient vector” of E at
f0 is −f0xx = L[f0]. Thus the heat equation ut = uxx corresponds to the
gradient flow:

ut = −grad E(u) = −L[u]

Recalling the usual interpretation of gradient flows, this suggests the heat
equation decreases the energy of a function at the fastest possible rate. (All
of this can be made rigorous.)
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6. The heat equation with boundary conditions.

We consider first the case of Dirichlet, Neumann or periodic bound-
ary conditions on a bounded interval, corresponding to the function spaces
VD[0, L], VN [0, L], Vper[−L,L]. Denote by V any of these spaces, endowed
with the L2 inner product. Given u0 ∈ V , we consider the problem:

ut − kuxx = 0, u(·, t) ∈ V, u(x, 0) = u0(x).

We suppose V admits an orthonormal basis ϕn of eigenfunctions of the
differential operator L[f ] = −fxx. As for the wave equation, eigenfunctions
evolve by multiplication by a function of t:

L[ϕ] = λϕ, u(x, 0) = ϕ(x)⇒ u(x, t) = A(t)ϕ(x), A(0) = 1.

and the heat equation implies A(t) solves an ODE:

A′(t)ϕ(x) = ut = uxx = −L[u] = −A(t)L[ϕ] = −λA(t)ϕ⇒ A′(t) = −λA(t).

Thus A(t) = e−λt and u(x, t) = e−λtϕ(x).

A general initial condition u0 ∈ V admits a (formal) expansion in terms
of eigenfunctions:

u0(x) ∼
∞∑
n=1

Anϕn(x), L[ϕn] = λnϕn,

where:
An = 〈u0, φn〉.

The corresponding solution of the heat equation then has the (formal) ex-
pansion:

u(x, t) ∼
∞∑
n=1

Ane
−λntϕn(x).

Using the definition of the L2 inner product, we find (if the interval is [0, L],
say):

u(x, t) ∼
∞∑
n=1

∫ L

0
e−λntu0(y)ϕn(y)ϕn(x)dy,

and assuming integration and infinite sum may be interchanged, we write
this in familiar form:

u(x, t) ∼
∫ L

0

∞∑
n=1

e−λntϕn(x)ϕn(y)u0(y)dy =

∫ L

0
hV (x, y, t)u0(y)dy,
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where we have set:

hV (x, y, t) =
∞∑
n=1

e−λntϕn(x)ϕn(y),

the ‘formal heat kernel’ in the function space V .
We’ll develop this explicitly for VD[0, L] and Vper[−L,L], leaving the case

of VN for the exercises. In VD[0, L], the eigenfunction expansion corresponds
to the Fourier sine series:

u0(x) ∼
∞∑
n=1

bn sin(
nπx

L
), bn =

2

L

∫ L

0
u0(y) sin(

nπy

L
)dy.

Since the eigenvalues are λn = (nπ/L)2, the solution is:

u(x, t)
∞∑
n=1

bne
−n

2π2

L2 t sin(
nπx

L
)

∼
∫ L

0

2

L

∞∑
n=1

e−
n2π2

L2 t sin(
nπx

L
) sin(

nπy

L
)u0(y)dy

=

∫ L

0
hD(x, y, t)u0(y)dy,

where hD(x, y, t), the ‘formal heat kernel in [0, L]’, is given by:

hD(x, y, t) =
2

L

∞∑
n=1

e−
n2π2

L2 t sin(
nπx

L
) sin(

nπy

L
).

In fact, using sin a sin b = 1
2 [cos(a− b)− cos(a+ b)] we have:

hD(x, y, t) = kD(x−y, t)−kD(x+y, t), kD(x, t) =
1

L

∞∑
n=1

e−
n2π2

L2 t cos(
nπx

L
).

(Compare with the Dirichlet kernel for the half-line, described below.) Ob-
serve the following:

(i) hD(x, y, t) = hD(y, x, t);
(ii)hD(x, ·, t) ∈ VD[0, L] for all (x, t) in the upper half-plane {t > 0}.

(Also hD(·, y, t) ∈ VD[0, L], for each (y, t).)
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Turning to periodic boundary conditions, we consider the evolution of
u0 ∈ Vper[−L,L] under ut − uxx = 0. The eigenfunction expansion corre-
sponds to the full Fourier series of u0:

u0(x) ∼ a0
2

+

∞∑
n=1

an cos(
nπx

L
) + bn sin(

nπx

L
),

where:

an =
1

L

∫ L

−L
cos(

nπy

L
)u0(y)dy, n ≥ 0; bn =

1

L

∫ L

−L
sin(

nπy

L
)u0(y)dy, n ≥ 1.

(Note the constant term a0/2 is the average value of u0 over [−L,L].)

The formal Fourier series of the solution is then:

u(x, t) ∼ a0
2

+
∞∑
n=1

e−
n2π2

L2 t[an cos(
nπx

L
) + bn sin(

nπx

L
)].

Substituting the expressions for the Fourier coefficients and formaly ex-
changing integration and infinite sum, we find:

u(x, t) ∼ 1

L

∫ L

−L
{1

2
+
∞∑
n=1

e−
n2π2

L2 t[cos(
nπx

L
) cos(

nπy

L
)+sin(

nπx

L
) sin(

nπy

L
)]}u0(y)dy,

or:

u(x, t) ∼
∫ L

−L
hper(x− y, t)u0(y)dy,

where hper(x, t), the ‘formal heat kernel in Vper[−L,L]’, is given by:

hper(x, t) =
1

2L
+

1

L

∞∑
n=1

e−
n2π2

L2 t cos(
nπx

L
).

Note hper(x, t) is even in x, and in Vper[−L,L] for each t > 0. We also
observe the relation with the Dirichlet heat kernel in [0, L]:

hD(x, y, t) = hper(x− y, t)− hper(x+ y, t), hper(x, t) =
1

2L
+ kD(x, t).

Exercise. Write down the corresponding development in VN [0, L], in-
cluding the heat kernel in VN [0, L], and its relation with hper. Hint: recall
the eigenfunction expansion in VN [0, L] corresponds to the Fourier cosine
series:

u0(x) ∼ a0
2

+

∞∑
n=1

an cos(
nπx

L
), an =

2

L

∫ L

0
u0(y) cos(

nπy

L
)dy, n ≥ 0.

20



Problems on the half-line. As for the wave equation, boundary value
problems on the half-line {x > 0} can be solved by extending the initial
data to the whole real line. Consider the Dirichlet problem:

ut − kuxx = 0 on {x > 0, t > 0}, u(x, 0) = u0(x), u(0, t) = 0 for all t > 0.

If we want continuous solutions up to t = 0, the compatibility condition
u0(0) = 0 is required (we assume u0 is defined, continuous and bounded on
{x ≥ 0}).

Denote by uo0 the odd extension of u0 to the real line (that is, uo0(x) =
−u0(−x) if x < 0). This extension is continuous, since u0(0) = 0. We can
write down the solution using the heat kernel:

u(x, t) =

∫ ∞
−∞

h(x− y, t)uo0(y)dy,

but it is useful to have an expression using only the original u0. The integral
on the negative half-line can be rewrtitten using the change of variable
y → z = −y, to give:

u(x, t) =

∫ ∞
0

[h(x− y, t)− h(x+ y, t)]u0(y)dy.
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PROBLEMS.

1. Solve ut = uxx on the half-line {x > 0}, with Dirichlet boundary
condition u(0, t) = 0 and initial condition u0(x) = sinhx = 1

2(ex − e−x).

2. (i) Find a formula for the solution of the Neumann problem on the
half-line {x > 0}, with boundary condition ux(0, t) = 0 and initial condition
u0(x), where u′0(x) = 0. Write down the answer in the form:

u(x, t) =

∫ ∞
0

hn(x, y, t)u0(y)dy

(that is, find the ‘Neumann heat kernel’ hN (x, y, t) for the half-line.
(ii) Solve ut = uxx on {x > 0}, with Neumann boundary conditions and

initial condition u0(x) = cosh(x) = 1
2(ex + e−x).

3. Let u be a solution of the heat equation in VN [0, L]. Use the energy

method to show the integral
∫ L
0 (u− ū)2dx is decreasing in t (unless u ≡ u0

is constant). Here ū is the average value of the solution over the interval
[0, L] (which is independent of t).

4. The function u0(x) = sin2 x is in all three spaces VD[0, π], VN [0, π], Vper[−π, π].
Solve the heat equation ut = uxx with initial condition u0, in each of these
spaces. Hint: In VN and Vper, u0 is a finite linear combination of eigenfunc-
tions; to solve the problem in VD, compute its Fourier sine series.

5. Suppose u(x, t) solves the heat equation with Neumann boundary
conditions in [0, π], and the initial condition u0 is a finite linear combination
of eigenfunctions:

u0(x) =
N∑
n=0

an cosnx.

Find constants C > 0 and λ > 0 so that |u(x, t)− ū| ≤ Ce−λt.

6. Find an expression (as an infinite series of functions) for the heat
kernel in VN [0, π], and its relation with the periodic heat kernel in [−π, π],
hper. Hint: recall the eigenfunction expansion in VN [0, L] corresponds to the
Fourier cosine series:

u0(x) ∼ a0
2

+
∞∑
n=1

an cosnx an =
2

π

∫ π

0
u0(y) cos(ny)dy, n ≥ 0.
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