THE HESSIAN AND CONVEXITY
Let f € C?(U),U C R"™ open, xg € U a critical point.

Nondegenerate critical points are isolated. A critical point x¢g € U
is non degenerate if the quadratic form d?f(zo) is non-degenerate: (Vv #
0)(3w # 0)(d?f(w0) (v, w) # 0). Equivalently, the symmetric linear operator
H(zo) € L(R") associated with d?f(xg) by the standard inner product in
R"™ does not have zero as an eigenvalue. This is equivalent to H(zp) being
invertible, or det H (zg) # 0.

Consider the map F : U — R", F(z) = df(z) € L(R",R) ~ R" (where

we use the inner product to identify £(R", R) with R™ in the first equality
below). Then, for the standard basis (e;) of R™:

(0, F (), €5) = Oc,(df )(x)[e;] = d* f(x)(es, €5) = (H(x)es, €))

or dF(x)[e;] = Oc, F(x) = H(x)e; for all 4, and we conclude dF'(z) = H(x) €
L(R™). Thus H(zg) invertible is equivalent to dF(zp) invertible, and we
know this implies the existence of a ball B,(z¢) and ¢ > 0 so that

|F(z) — F(z0)| > c|lx — xo| for all x € B,(zo);

in particular (since F(xo) = df(zg) = 0) we have df(z) = F(x) # 0 if
x € By(x0),z # xog. We conclude nondegenerate critical points are isolated.

Hessian test for local max/min.

A. Sufficient conditions.
(i) If d? f(x0) > 0, xo is a strict local min. If d%f(xg) < 0, x is a strict
local max.

Proof. Since x¢ is a critical point, we have for |v| small enough:

Flan+ 0) = faw) = [ 20)(0,0) + o, o= o tim Tl —o.

Since d?f(zo) > 0, by compactness of the unit sphere in R"™ we have
%de(xo)(f),@) > pu > 0, for some g > 0 depending only on xg. Then
choose § > 0 so that |T£T2)‘ < p/2if |v| < §,v # 0. We have:

r(v)

F(zo +v) — fzo) > [vf2[u + iike g|v|2 > 0if [v] < & and v # 0.

Thus zg is a strict local min.



Remark: If we only know d? f(zg) > 0, it doesn’t follow that z¢ is a local
min. (Example: z — 23,29 = 0.)

(ii) If d?f(xo) is indefinite, zo is neither a local max, nor a local min.
(‘zg is a ‘saddle point’.)

Proof. Let 0 # v € R™ be such that d?f(zo)(v,v) > 0. Then (since
lim;_,o 7(tv)/t?|v|> = 0 in the second order Taylor approximation above) we
may find 6 > 0 (depending on xy and on v) so that

r(tv)| _ 1

< ~d*f(20)(0,9),

t|<6,t#40=
H<6t£0= 5 <

where 0 = ﬁ For such t:

o)~ fz0) = LIP3 Foo)(0,0)+ 51 ] > Pl 3 (20)(0,9) > 0,

so xo cannot be a local max.

The same argument shows that if d?f(zo)(w,w) < 0 and [t| is small
enough (with ¢t # 0), then f(xzo + tw) — f(zo) < 0, so xp cannot be a local
min, either.

B. Necessary conditions. If xq is a local min, d?f(zg) > 0. If zg is a
local max, d?f(zg) < 0.

Remark. Even if x is a strict local min, we can’t guarantee d2 f(xg) > 0.
(Example: z + z* 19 = 0.)

Proof. Assume d?f(xg)(v,v) < 0, for some v € R". By continuity at
xo of d2f(-)(v,v) : U — R, we may find § > 0 (depending on xo and on
v) so that d2f(wg + sv)(v,v) < 0 whenever |s| < 6. Fiz such an s. By the
second-order Mean Value Theorem, we may find # € (0,1) (depending on
xo,v and s) so that:

2
flxo+ svy) — f(xo) = éde(iL‘o + Osv)(sv, sv) = %dzf(xo + 0sv)(v,v) <0,

since |0s] < |s| < §. Thus z¢ can’t be a local min.

Convexity.
Definition. Let F': K — R (K C R™ open, convex) is convez if:

(Vzo, 21 € K) f(ay) <tf(x1)+(1—1t)f(xo), x¢:=tx1+(1—1t)zo,t € [0,1].

(Strictly convex if we have strict inequality for ¢ € (0,1).)



Proposition 1. Let f be differentiable in K. Then f is strictly convex iff
the graph of f lies above its tangent plane at each point:

(Vzo,z € K)  f(x) > f(20) + df (z0)[x — 20]-

(f is convex iff weak inequality obtains.)

Proof. Assuming f strictly convex, we write down the defining inequality,
subtract f(zo) + df (xg)[z¢ — zo] from both sides and divide by ¢ € (0,1),
noting x; — xg = t(x — xp):

%(f(mt)_f(fvo)_df(xo)[xt—lf()]) < f(x) = f(xo)—df (xo)[x—zo], t€(0,1).

The left-hand side is r(x¢)/t (first-order Taylor remainder), so letting ¢ — 04
we conclude the right-hand side is positive.

Conversely, assume strict inequality holds for all z, zg € K. Let z,y € K,
and take x¢ interior to the segment from x to y:
1—t
t

xOZ(l_t)x+tyv Yy—To=— (CC—JJO),tG(O,].)

f(x) > f(zo) +df (vo)[x — 0]  f(y) > f(x0) + df (x0)[y — w0

Multiplying the first inequality by 1 — ¢, the second by ¢, and adding the
results, we eliminate the derivative terms:

flzo) <tf(y) + (A —1)f(x),t € (0,1),
the inequality defining strict convexity.

Proposition 2. Let f € C?(K). Then (i) If d*f(x) > 0 for all v € K, then
f is strictly convex. (And d?f(z) semi-positive definite implies convex.) (ii)
If fis convex in K, d®f >0 for all z € K.

Proof (i) Let z,z¢9 € K and write the second-order mean value theorem
for this pair: for some 6 € (0, 1):

(@) = J (@) = df o)l — 0] = 3 F (w0 + 0w — ))& — 30,2 — o).

Since the right-hand side is assumed to be positive, Proposition 1 implies f
is strictly convex.

Proof(ii). Assume d?f(zo)(v,v) < 0, for some g € K,v € R, |v] = 1.
By continuity of d?f(-)(v,v), we may find » > 0 (depending on zo and



v) so that z € B,(wg) = d®f(z)(v,v) < 0; in particular this is true if
x =1x9+ sv,0 < s <r. Fix such an s > 0. By the second-order mean value
theorem, there exists 6 € (0,1) (depending on zg,v and s) so that:

f(xo+sv)—f(xo)—df (xo)[sv] = %d2f(xo+93v)(sv, sv) = 822d2f(:x0+03v)(v,v) <0,

since 0 < fs < r. This contradicts the convexity criterion in Proposition 1.

Remark: Of course, f strictly convex does not imply d? f > 0 at all points
(for instance z > x%.)

Convexity and differentiability in one dimension.
We consider f: 1 — R convex, where I C R is an open interval.
Three slopes lemma. Let a < b < ¢ be points in I. Then:

1) = fla) _ fle) = fla) _ fb) = flo)

b—a c—a - b—c

It suffices to write:
b=tc+(1—t)a, te€(0,1), b—a=tlc—a), b—c=(1—-1t)(c—a).
Then the first inequality is seen to be equivalent to:

f(0) = fa) <t(f(c) = f(a)), or f(b) < tf(c)+ (1 —1)f(a),
the definition of convexity. The second inequality is proved similarly.

Continuity. Let zy € I,§ > 0 be such that [xg — J,z¢ + §] C I; set
M = max{f(xzo — 0), f(xo + d)}. (Note f(zp) < M, by convexity). Let
x € (xg,x0 + 0). Applying the lemma to zp < x < zg + J, we find:

f(x) = f(wo) _ f(zo+9)— f(x0)

|z — x|

— < 5 , OT f(x) _f(‘rO) < 5 (M—f(ﬂl'())),
X X0
and considering the points g — § < ¢ < x:
_ B _ _
Jleo) = Jro =) T ZIG) oy 13— fiag) 2 2 (g0 - ).
We conclude (similarly for = € (xg — 4, x0)):
7@ = flao)l < 222 ar — pa).



Thus:
f convex on I C R open = f continuous in I.

The proof of continuity for f: K — R convex (where K C R™ is convex
and open) is similar (see [Fleming].) The fact that I is an open interval is
important here. The function f:[—1,1] — R:

f(x) =2® for |z| <1, f(£1)=2
is convex and not continuous in [—1, 1].

Differentiability. For h > 0, denote by my(z,z + h) = w the
slope of the (oriented) secant to the graph of f from z to = + h. The
three-slopes lemma implies this is monotone increasing in h; thus its limit
as h — 04 exists, the right-derivative of f at x:

! = li h) = inf h).
fi(x) hir&rmf(:v,x—i—) }1Lr>10mf(x,x+)

Similarly, the left-derivative exists for each z € I:

"(x) = lim ms(x —k,z) =supm¢(z — k,x).
(@) = Jim ) Sup 7 )

And since my(x — k,x) < my(x,x + h) for each h,k > 0, it follows that
fl(x) < fl(x), for each x € I. Also, if x < y are points in I and h > 0,k > 0
are chosen so that x + h = y — k, we have:

fL(@) < file) <myp(z,z+h) <mp(y —k,y) < fL(y) < fi(y).
We see that f’, fi are both monotone increasing (nondecreasing) in I, with
fil@) < fLy)ifz <y.
And now it is easy to see that, if @ € I is a point of continuity of f’,

then f’ (a) = f.(a):
f(a) < fi(a) < lim £ (y) = ' (a).

T y—ag

Thus f is differentiable at a. Being monotone, f’ is continuous at all but a
countable set of points in /. We conclude:

f convex in I C R = f differentiable in the complement of a countable set D C I.

The corresponding results in higher dimensions will be seen later.



