THE HESSIAN AND CONVEXITY

Let $f \in C^2(U), U \subset \mathbb{R}^n$ open, $x_0 \in U$ a critical point.

Nondegenerate critical points are isolated. A critical point $x_0 \in U$ is non degenerate if the quadratic form $d^2 f(x_0)$ is non-degenerate: $(\forall v \neq 0)(\exists w \neq 0)(d^2 f(x_0)(v, w) \neq 0)$. Equivalently, the symmetric linear operator $H(x_0) \in \mathcal{L}(\mathbb{R}^n)$ associated with $d^2 f(x_0)$ by the standard inner product in \mathbb{R}^n does not have zero as an eigenvalue. This is equivalent to $H(x_0)$ being invertible, or det $H(x_0) \neq 0$.

Consider the map $F: U \to \mathbb{R}^n$, $F(x) = df(x) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}) \sim \mathbb{R}^n$ (where we use the inner product to identify $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ with \mathbb{R}^n in the first equality below). Then, for the standard basis (e_i) of \mathbb{R}^n :

$$\langle \partial_{e_i} F(x), e_j \rangle = \partial_{e_i} (df)(x) [e_j] = d^2 f(x)(e_i, e_j) = \langle H(x)e_i, e_j \rangle$$

or $dF(x)[e_i] = \partial_{e_i}F(x) = H(x)e_i$ for all *i*, and we conclude $dF(x) = H(x) \in \mathcal{L}(\mathbb{R}^n)$. Thus $H(x_0)$ invertible is equivalent to $dF(x_0)$ invertible, and we know this implies the existence of a ball $B_r(x_0)$ and c > 0 so that

$$|F(x) - F(x_0)| > c|x - x_0|$$
 for all $x \in B_r(x_0)$;

in particular (since $F(x_0) = df(x_0) = 0$) we have $df(x) = F(x) \neq 0$ if $x \in B_r(x_0), x \neq x_0$. We conclude nondegenerate critical points are isolated.

Hessian test for local max/min.

A. Sufficient conditions.

(i) If $d^2 f(x_0) > 0$, x_0 is a strict local min. If $d^2 f(x_0) < 0$, x_0 is a strict local max.

Proof. Since x_0 is a critical point, we have for |v| small enough:

$$f(x_0+v) - f(x_0) = \left[\frac{1}{2}d^2 f(x_0)(\hat{v},\hat{v}) + \frac{r(v)}{|v|^2}\right]|v|^2, \quad \hat{v} = \frac{v}{|v|}, \quad \lim_{v \to 0} \frac{r(v)}{|v|^2} = 0.$$

Since $d^2 f(x_0) > 0$, by compactness of the unit sphere in \mathbb{R}^n we have $\frac{1}{2}d^2 f(x_0)(\hat{v},\hat{v}) > \mu > 0$, for some $\mu > 0$ depending only on x_0 . Then choose $\delta > 0$ so that $\frac{|r(v)|}{|v|^2} < \mu/2$ if $|v| < \delta, v \neq 0$. We have:

$$f(x_0+v) - f(x_0) > |v|^2 [\mu + \frac{r(v)}{|v|^2}] > \frac{\mu}{2} |v|^2 > 0$$
 if $|v| < \delta$ and $v \neq 0$.

Thus x_0 is a strict local min.

Remark: If we only know $d^2 f(x_0) \ge 0$, it doesn't follow that x_0 is a local min. (Example: $x \mapsto x^3, x_0 = 0$.)

(ii) If $d^2 f(x_0)$ is indefinite, x_0 is neither a local max, nor a local min. (' x_0 is a 'saddle point'.)

Proof. Let $0 \neq v \in \mathbb{R}^n$ be such that $d^2 f(x_0)(v,v) > 0$. Then (since $\lim_{t\to 0} r(tv)/t^2 |v|^2 = 0$ in the second order Taylor approximation above) we may find $\delta > 0$ (depending on x_0 and on v) so that

$$|t| \le \delta, t \ne 0 \Rightarrow \frac{|r(tv)|}{t^2 |v|^2} < \frac{1}{4} d^2 f(x_0)(\hat{v}, \hat{v}),$$

where $\hat{v} = \frac{v}{|v|}$. For such t:

$$f(x_0+tv) - f(x_0) = t^2 |v|^2 \left[\frac{1}{2}d^2 f(x_0)(\hat{v}, \hat{v}) + \frac{r(tv)}{t^2 |v|^2}\right] > t^2 |v|^2 \frac{1}{4}d^2 f(x_0)(\hat{v}, \hat{v}) > 0,$$

so x_0 cannot be a local max.

The same argument shows that if $d^2 f(x_0)(w, w) < 0$ and |t| is small enough (with $t \neq 0$), then $f(x_0 + tw) - f(x_0) < 0$, so x_0 cannot be a local min, either.

B. Necessary conditions. If x_0 is a local min, $d^2 f(x_0) \ge 0$. If x_0 is a local max, $d^2 f(x_0) \le 0$.

Remark. Even if x_0 is a strict local min, we can't guarantee $d^2 f(x_0) > 0$. (Example: $x \mapsto x^4, x_0 = 0$.)

Proof. Assume $d^2 f(x_0)(v,v) < 0$, for some $v \in \mathbb{R}^n$. By continuity at x_0 of $d^2 f(\cdot)(v,v) : U \to \mathbb{R}$, we may find $\delta > 0$ (depending on x_0 and on v) so that $d^2 f(x_0 + sv)(v, v) < 0$ whenever $|s| \leq \delta$. Fix such an s. By the second-order Mean Value Theorem, we may find $\theta \in (0,1)$ (depending on x_0, v and s) so that:

$$f(x_0 + sv_0) - f(x_0) = \frac{1}{2}d^2f(x_0 + \theta sv)(sv, sv) = \frac{s^2}{2}d^2f(x_0 + \theta sv)(v, v) < 0,$$

since $|\theta s| < |s| \le \delta$. Thus x_0 can't be a local min.

Convexity.

Definition. Let $F: K \to R$ ($K \subset R^n$ open, convex) is convex if:

$$(\forall x_0, x_1 \in K) f(x_t) \le t f(x_1) + (1-t) f(x_0), \quad x_t := t x_1 + (1-t) x_0, t \in [0, 1].$$

(Strictly convex if we have strict inequality for $t \in (0, 1)$.)

Proposition 1. Let f be differentiable in K. Then f is strictly convex iff the graph of f lies above its tangent plane at each point:

$$(\forall x_0, x \in K) \quad f(x) > f(x_0) + df(x_0)[x - x_0].$$

(f is convex iff weak inequality obtains.)

Proof. Assuming f strictly convex, we write down the defining inequality, subtract $f(x_0) + df(x_0)[x_t - x_0]$ from both sides and divide by $t \in (0, 1)$, noting $x_t - x_0 = t(x - x_0)$:

$$\frac{1}{t}(f(x_t) - f(x_0) - df(x_0)[x_t - x_0]) < f(x) - f(x_0) - df(x_0)[x - x_0], \quad t \in (0, 1).$$

The left-hand side is $r(x_t)/t$ (first-order Taylor remainder), so letting $t \to 0_+$ we conclude the right-hand side is positive.

Conversely, assume strict inequality holds for all $x, x_0 \in K$. Let $x, y \in K$, and take x_0 interior to the segment from x to y:

$$x_0 = (1-t)x + ty, \quad y - x_0 = -\frac{1-t}{t}(x - x_0), t \in (0,1)$$
$$f(x) > f(x_0) + df(x_0)[x - x_0] \quad f(y) > f(x_0) + df(x_0)[y - x_0].$$

Multiplying the first inequality by 1 - t, the second by t, and adding the results, we eliminate the derivative terms:

$$f(x_0) < tf(y) + (1-t)f(x), t \in (0,1),$$

the inequality defining strict convexity.

Proposition 2. Let $f \in C^2(K)$. Then (i) If $d^2 f(x) > 0$ for all $x \in K$, then f is strictly convex. (And $d^2 f(x)$ semi-positive definite implies convex.) (ii) If f is convex in K, $d^2 f \ge 0$ for all $x \in K$.

Proof (i) Let $x, x_0 \in K$ and write the second-order mean value theorem for this pair: for some $\theta \in (0, 1)$:

$$f(x) - f(x_0) - df(x_0)[x - x_0] = \frac{1}{2}d^2f(x_0 + \theta(x - x_0))(x - x_0, x - x_0).$$

Since the right-hand side is assumed to be positive, Proposition 1 implies f is strictly convex.

Proof(ii). Assume $d^2 f(x_0)(v, v) < 0$, for some $x_0 \in K, v \in \mathbb{R}^n, |v| = 1$. By continuity of $d^2 f(\cdot)(v, v)$, we may find r > 0 (depending on x_0 and v) so that $x \in B_r(x_0) \Rightarrow d^2 f(x)(v,v) < 0$; in particular this is true if $x = x_0 + sv, 0 \le s < r$. Fix such an s > 0. By the second-order mean value theorem, there exists $\theta \in (0, 1)$ (depending on x_0, v and s) so that:

$$f(x_0+sv) - f(x_0) - df(x_0)[sv] = \frac{1}{2}d^2f(x_0+\theta sv)(sv,sv) = \frac{s^2}{2}d^2f(x_0+\theta sv)(v,v) < 0,$$

since $0 < \theta s < r$. This contradicts the convexity criterion in Proposition 1.

Remark: Of course, f strictly convex does not imply $d^2 f > 0$ at all points (for instance $x \mapsto x^4$.)

Convexity and differentiability in one dimension.

We consider $f: I \to R$ convex, where $I \subset R$ is an *open* interval.

Three slopes lemma. Let a < b < c be points in I. Then:

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a} \le \frac{f(b) - f(c)}{b - c}.$$

It suffices to write:

$$b = tc + (1 - t)a, \quad t \in (0, 1), \quad b - a = t(c - a), \quad b - c = (1 - t)(c - a).$$

Then the first inequality is seen to be equivalent to:

$$f(b) - f(a) \le t(f(c) - f(a)), \text{ or } f(b) \le tf(c) + (1 - t)f(a),$$

the definition of convexity. The second inequality is proved similarly.

Continuity. Let $x_0 \in I, \delta > 0$ be such that $[x_0 - \delta, x_0 + \delta] \subset I$; set $M = \max\{f(x_0 - \delta), f(x_0 + \delta)\}$. (Note $f(x_0) \leq M$, by convexity). Let $x \in (x_0, x_0 + \delta)$. Applying the lemma to $x_0 < x < x_0 + \delta$, we find:

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_0 + \delta) - f(x_0)}{\delta}, \text{ or } f(x) - f(x_0) \le \frac{|x - x_0|}{\delta} (M - f(x_0)),$$

and considering the points $x_0 - \delta < x_0 < x$:

$$\frac{f(x_0) - f(x_0 - \delta)}{\delta} \le \frac{f(x) - f(x_0)}{x - x_0}, \text{ or } f(x) - f(x_0) \ge \frac{|x - x_0|}{\delta} (f(x_0) - M)$$

We conclude (similarly for $x \in (x_0 - \delta, x_0)$):

$$|f(x) - f(x_0)| \le \frac{|x - x_0|}{\delta} |M - f(x_0)|.$$

Thus:

$$f$$
 convex on $I \subset R$ open $\Rightarrow f$ continuous in I .

The proof of continuity for $f: K \to R$ convex (where $K \subset \mathbb{R}^n$ is convex and open) is similar (see [Fleming].) The fact that I is an open interval is important here. The function $f: [-1, 1] \to \mathbb{R}$:

$$f(x) = x^2$$
 for $|x| < 1$, $f(\pm 1) = 2$

is convex and not continuous in [-1, 1].

Differentiability. For h > 0, denote by $m_f(x, x + h) = \frac{f(x+h)-f(x)}{h}$ the slope of the (oriented) secant to the graph of f from x to x + h. The three-slopes lemma implies this is monotone increasing in h; thus its limit as $h \to 0_+$ exists, the right-derivative of f at x:

$$f'_{+}(x) = \lim_{h \to 0_{+}} m_{f}(x, x+h) = \inf_{h > 0} m_{f}(x, x+h).$$

Similarly, the left-derivative exists for each $x \in I$:

$$f'_{-}(x) = \lim_{k \to 0_{+}} m_f(x - k, x) = \sup_{k > 0} m_f(x - k, x).$$

And since $m_f(x - k, x) \leq m_f(x, x + h)$ for each h, k > 0, it follows that $f'_-(x) \leq f'_+(x)$, for each $x \in I$. Also, if x < y are points in I and h > 0, k > 0 are chosen so that x + h = y - k, we have:

$$f'_{-}(x) \le f'_{+}(x) \le m_f(x, x+h) \le m_f(y-k, y) \le f'_{-}(y) \le f'_{+}(y).$$

We see that f'_{-}, f'_{+} are both monotone increasing (nondecreasing) in I, with $f'_{+}(x) \leq f'_{-}(y)$ if x < y.

And now it is easy to see that, if $a \in I$ is a point of continuity of f'_{-} , then $f'_{-}(a) = f'_{+}(a)$:

$$f'_{-}(a) \le f'_{+}(a) \le \lim_{y \to a_{+}} f'_{-}(y) = f'_{-}(a).$$

Thus f is differentiable at a. Being monotone, f'_{-} is continuous at all but a countable set of points in I. We conclude:

f convex in $I \subset R \Rightarrow f$ differentiable in the complement of a countable set $D \subset I$.

The corresponding results in higher dimensions will be seen later.