
THE HESSIAN AND CONVEXITY

Let f ∈ C2(U), U ⊂ Rn open, x0 ∈ U a critical point.

Nondegenerate critical points are isolated. A critical point x0 ∈ U
is non degenerate if the quadratic form d2f(x0) is non-degenerate: (∀v 6=
0)(∃w 6= 0)(d2f(x0)(v, w) 6= 0). Equivalently, the symmetric linear operator
H(x0) ∈ L(Rn) associated with d2f(x0) by the standard inner product in
Rn does not have zero as an eigenvalue. This is equivalent to H(x0) being
invertible, or detH(x0) 6= 0.

Consider the map F : U → Rn, F (x) = df(x) ∈ L(Rn, R) ∼ Rn (where
we use the inner product to identify L(Rn, R) with Rn in the first equality
below). Then, for the standard basis (ei) of Rn:

〈∂eiF (x), ej〉 = ∂ei(df)(x)[ej ] = d2f(x)(ei, ej) = 〈H(x)ei, ej〉

or dF (x)[ei] = ∂eiF (x) = H(x)ei for all i, and we conclude dF (x) = H(x) ∈
L(Rn). Thus H(x0) invertible is equivalent to dF (x0) invertible, and we
know this implies the existence of a ball Br(x0) and c > 0 so that

|F (x)− F (x0)| > c|x− x0| for all x ∈ Br(x0);

in particular (since F (x0) = df(x0) = 0) we have df(x) = F (x) 6= 0 if
x ∈ Br(x0), x 6= x0. We conclude nondegenerate critical points are isolated.

Hessian test for local max/min.

A. Sufficient conditions.
(i) If d2f(x0) > 0, x0 is a strict local min. If d2f(x0) < 0, x0 is a strict

local max.

Proof. Since x0 is a critical point, we have for |v| small enough:

f(x0 + v)− f(x0) = [
1

2
d2f(x0)(v̂, v̂) +

r(v)

|v|2
]|v|2, v̂ =

v

|v|
, lim

v→0

r(v)

|v|2
= 0.

Since d2f(x0) > 0, by compactness of the unit sphere in Rn we have
1
2d

2f(x0)(v̂, v̂) > µ > 0, for some µ > 0 depending only on x0. Then

choose δ > 0 so that |r(v)||v|2 < µ/2 if |v| < δ, v 6= 0. We have:

f(x0 + v)− f(x0) > |v|2[µ+
r(v)

|v|2
] >

µ

2
|v|2 > 0 if |v| < δ and v 6= 0.

Thus x0 is a strict local min.
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Remark: If we only know d2f(x0) ≥ 0, it doesn’t follow that x0 is a local
min. (Example: x 7→ x3, x0 = 0.)

(ii) If d2f(x0) is indefinite, x0 is neither a local max, nor a local min.
(‘x0 is a ‘saddle point’.)

Proof. Let 0 6= v ∈ Rn be such that d2f(x0)(v, v) > 0. Then (since
limt→0 r(tv)/t2|v|2 = 0 in the second order Taylor approximation above) we
may find δ > 0 (depending on x0 and on v) so that

|t| ≤ δ, t 6= 0⇒ |r(tv)|
t2|v|2

<
1

4
d2f(x0)(v̂, v̂),

where v̂ = v
|v| . For such t:

f(x0+tv)−f(x0) = t2|v|2[1
2
d2f(x0)(v̂, v̂)+

r(tv)

t2|v|2
] > t2|v|2 1

4
d2f(x0)(v̂, v̂) > 0,

so x0 cannot be a local max.
The same argument shows that if d2f(x0)(w,w) < 0 and |t| is small

enough (with t 6= 0), then f(x0 + tw) − f(x0) < 0, so x0 cannot be a local
min, either.

B. Necessary conditions. If x0 is a local min, d2f(x0) ≥ 0. If x0 is a
local max, d2f(x0) ≤ 0.

Remark. Even if x0 is a strict local min, we can’t guarantee d2f(x0) > 0.
(Example: x 7→ x4, x0 = 0.)

Proof. Assume d2f(x0)(v, v) < 0, for some v ∈ Rn. By continuity at
x0 of d2f(·)(v, v) : U → R, we may find δ > 0 (depending on x0 and on
v) so that d2f(x0 + sv)(v, v) < 0 whenever |s| ≤ δ. Fix such an s. By the
second-order Mean Value Theorem, we may find θ ∈ (0, 1) (depending on
x0, v and s) so that:

f(x0 + sv0)− f(x0) =
1

2
d2f(x0 + θsv)(sv, sv) =

s2

2
d2f(x0 + θsv)(v, v) < 0,

since |θs| < |s| ≤ δ. Thus x0 can’t be a local min.

Convexity.
Definition. Let F : K → R (K ⊂ Rn open, convex) is convex if:

(∀x0, x1 ∈ K)f(xt) ≤ tf(x1) + (1− t)f(x0), xt := tx1 + (1− t)x0, t ∈ [0, 1].

(Strictly convex if we have strict inequality for t ∈ (0, 1).)
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Proposition 1. Let f be differentiable in K. Then f is strictly convex iff
the graph of f lies above its tangent plane at each point:

(∀x0, x ∈ K) f(x) > f(x0) + df(x0)[x− x0].

(f is convex iff weak inequality obtains.)

Proof. Assuming f strictly convex, we write down the defining inequality,
subtract f(x0) + df(x0)[xt − x0] from both sides and divide by t ∈ (0, 1),
noting xt − x0 = t(x− x0):

1

t
(f(xt)−f(x0)−df(x0)[xt−x0]) < f(x)−f(x0)−df(x0)[x−x0], t ∈ (0, 1).

The left-hand side is r(xt)/t (first-order Taylor remainder), so letting t→ 0+
we conclude the right-hand side is positive.

Conversely, assume strict inequality holds for all x, x0 ∈ K. Let x, y ∈ K,
and take x0 interior to the segment from x to y:

x0 = (1− t)x+ ty, y − x0 = −1− t
t

(x− x0), t ∈ (0, 1)

f(x) > f(x0) + df(x0)[x− x0] f(y) > f(x0) + df(x0)[y − x0].

Multiplying the first inequality by 1 − t, the second by t, and adding the
results, we eliminate the derivative terms:

f(x0) < tf(y) + (1− t)f(x), t ∈ (0, 1),

the inequality defining strict convexity.

Proposition 2. Let f ∈ C2(K). Then (i) If d2f(x) > 0 for all x ∈ K, then
f is strictly convex. (And d2f(x) semi-positive definite implies convex.) (ii)
If f is convex in K, d2f ≥ 0 for all x ∈ K.

Proof (i) Let x, x0 ∈ K and write the second-order mean value theorem
for this pair: for some θ ∈ (0, 1):

f(x)− f(x0)− df(x0)[x− x0] =
1

2
d2f(x0 + θ(x− x0))(x− x0, x− x0).

Since the right-hand side is assumed to be positive, Proposition 1 implies f
is strictly convex.

Proof(ii). Assume d2f(x0)(v, v) < 0, for some x0 ∈ K, v ∈ Rn, |v| = 1.
By continuity of d2f(·)(v, v), we may find r > 0 (depending on x0 and
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v) so that x ∈ Br(x0) ⇒ d2f(x)(v, v) < 0; in particular this is true if
x = x0 + sv, 0 ≤ s < r. Fix such an s > 0. By the second-order mean value
theorem, there exists θ ∈ (0, 1) (depending on x0, v and s) so that:

f(x0+sv)−f(x0)−df(x0)[sv] =
1

2
d2f(x0+θsv)(sv, sv) =

s2

2
d2f(x0+θsv)(v, v) < 0,

since 0 < θs < r. This contradicts the convexity criterion in Proposition 1.

Remark: Of course, f strictly convex does not imply d2f > 0 at all points
(for instance x 7→ x4.)

Convexity and differentiability in one dimension.

We consider f : I → R convex, where I ⊂ R is an open interval.

Three slopes lemma. Let a < b < c be points in I. Then:

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(b)− f(c)

b− c
.

It suffices to write:

b = tc+ (1− t)a, t ∈ (0, 1), b− a = t(c− a), b− c = (1− t)(c− a).

Then the first inequality is seen to be equivalent to:

f(b)− f(a) ≤ t(f(c)− f(a)), or f(b) ≤ tf(c) + (1− t)f(a),

the definition of convexity. The second inequality is proved similarly.

Continuity. Let x0 ∈ I, δ > 0 be such that [x0 − δ, x0 + δ] ⊂ I; set
M = max{f(x0 − δ), f(x0 + δ)}. (Note f(x0) ≤ M , by convexity). Let
x ∈ (x0, x0 + δ). Applying the lemma to x0 < x < x0 + δ, we find:

f(x)− f(x0)

x− x0
≤ f(x0 + δ)− f(x0)

δ
, or f(x)−f(x0) ≤

|x− x0|
δ

(M −f(x0)),

and considering the points x0 − δ < x0 < x:

f(x0)− f(x0 − δ)
δ

≤ f(x)− f(x0)

x− x0
, orf(x)− f(x0) ≥

|x− x0|
δ

(f(x0)−M).

We conclude (similarly for x ∈ (x0 − δ, x0)):

|f(x)− f(x0)| ≤
|x− x0|

δ
|M − f(x0)|.
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Thus:
f convex on I ⊂ R open⇒ f continuous in I.

The proof of continuity for f : K → R convex (where K ⊂ Rn is convex
and open) is similar (see [Fleming].) The fact that I is an open interval is
important here. The function f : [−1, 1]→ R:

f(x) = x2 for |x| < 1, f(±1) = 2

is convex and not continuous in [−1, 1].

Differentiability. For h > 0, denote by mf (x, x + h) = f(x+h)−f(x)
h the

slope of the (oriented) secant to the graph of f from x to x + h. The
three-slopes lemma implies this is monotone increasing in h; thus its limit
as h→ 0+ exists, the right-derivative of f at x:

f ′+(x) = lim
h→0+

mf (x, x+ h) = inf
h>0

mf (x, x+ h).

Similarly, the left-derivative exists for each x ∈ I:

f ′−(x) = lim
k→0+

mf (x− k, x) = sup
k>0

mf (x− k, x).

And since mf (x − k, x) ≤ mf (x, x + h) for each h, k > 0, it follows that
f ′−(x) ≤ f ′+(x), for each x ∈ I. Also, if x < y are points in I and h > 0, k > 0
are chosen so that x+ h = y − k, we have:

f ′−(x) ≤ f ′+(x) ≤ mf (x, x+ h) ≤ mf (y − k, y) ≤ f ′−(y) ≤ f ′+(y).

We see that f ′−, f
′
+ are both monotone increasing (nondecreasing) in I, with

f ′+(x) ≤ f ′−(y) if x < y.

And now it is easy to see that, if a ∈ I is a point of continuity of f ′−,
then f ′−(a) = f ′+(a):

f ′−(a) ≤ f ′+(a) ≤ lim
y→a+

f ′−(y) = f ′−(a).

Thus f is differentiable at a. Being monotone, f ′− is continuous at all but a
countable set of points in I. We conclude:

f convex in I ⊂ R⇒ f differentiable in the complement of a countable set D ⊂ I.

The corresponding results in higher dimensions will be seen later.
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