CONNECTEDNESS-Notes

Def. A topological space X is disconnected if it admits a non-trivial splitting:

$$X = A \cup B$$
, $A \cap B = \emptyset$, A, B open in X, and non-empty.

(We'll abbreviate 'disjoint union' of two subsets A and B –meaning $A \cap B = \emptyset$ – by $A \sqcup B$.)

X is connected if no such splitting exists. A subset $C \subset X$ is connected if it is a connected topological space, when endowed with the induced topology (the open subsets of C are the intersections of C with open subsets of X.)

Note that X is connected if and only if the only subsets of X that are simultaneously open and closed are \emptyset and X.

Example. The real line R is connected. The connected subsets of R are exactly the intervals. (See [Fleming] for a proof.)

Def. A topological space X is path-connected if any two points $p, q \in X$ can be joined by a continuous path in X, the image of a continuous map $\gamma: [0,1] \to X, \ \gamma(0) = p, \gamma(1) = q.$

Path-connected implies connected: If $X = A \sqcup B$ is a non-trivial splitting, taking $p \in A, q \in B$ and a path γ in X from p to q would lead to a non-trivial splitting $[0,1] = \gamma^{-1}(A) \sqcup \gamma^{-1}(B)$ (by continuity of γ), contradicting the connectedness of [0,1].

Example: Any normed vector space is path-connected (connect two vectors v, w by the line segment $t \mapsto tw + (1-t)v, t \in [0,1]$), hence connected.

The continuous image of a connected space is connected: Let $f: X \to Y$ be continuous, with X connected. If $f(X) = A \sqcup B$ is a nontrivial splitting (with A, B relatively open in f(X): $A = f(X) \cap U, B = f(X) \cap V$, with U, V open in Y). Then (since $f^{-1}(A) = f^{-1}(U)$ and $f^{-1}(B) = f^{-1}(V)$ are open in X, by continuity), $f^{-1}(f(X)) = f^{-1}(A) \sqcup f^{-1}(B)$ is a nontrivial splitting of X (since $f^{-1}(f(X)) = X$, the domain of f being X.) This would contradict the connectedness of X.

An easy corollary is the general intermediate value theorem: if $f: X \to R$ is a continuous function from a connected space X and it takes on the values $a, b \in R$ (with a < b), then it also takes on any value in the interval [a, b]. (That is, $f^{-1}(\{t\}) \neq \emptyset$, for all $t \in [a, b]$).

If $X \subset Y$ is a dense subset, and X is connected, then so is Y. Recall

'dense' means that any non-empty open subset U of Y contains points of X. Equivalently $\bar{X} = Y$, the closure of X in Y is all of Y.

To see this, consider (as usual) a nontrivial splitting $Y = A \sqcup B$, with A, B open in Y. Then $X = (X \cap A) \sqcup (X \cap B)$ would be a nontrivial splitting of X. Note that $X \cap A \neq \emptyset$ if $A \neq \emptyset$: take $a \in A$, and an open neighborhood U of A in Y, with $U \subset A$. Then we may find $x \in U \cap X$, in particular $x \in A \cap X$. (And likewise for $B \cap X$.) This would contradict the connectedness of X.

More generally, if $X \subset Y \subset \overline{X}$ and X is connected, then so is Y. $(Y \subset \overline{X})$ means any *non-empty* open set in Y intersects X.) To see this consider a splitting $Y = A \sqcup B$, with A, B open in Y. Then

$$X = X \cap Y = (X \cap A) \sqcup (X \cap B)$$

is a splitting of X. Since X is connected, one of $X \cap A$ or $X \cap B$ must be empty, and since $Y \subset \bar{X}$ this means A or B is empty, so the supposed splitting of Y is trivial.

Example of a connected subset of \mathbb{R}^2 that isn't path connected. Consider the graph and the vertical segment:

$$\Gamma = \{(x,y)|x > 0, y = \cos(1/x)\}, \quad \Sigma = \{(x,y)|x = 0, y \in [-1,1]\}.$$

The claim is that the disjoint union $C = \Gamma \sqcup \{0\}$ is a connected, but not path-connected subset of the plane. It follows that $\bar{\Gamma} = \Gamma \sqcup \Sigma$ isn't path-connected either.

Note that Γ is dense in $\Gamma \sqcup \Sigma$ ($\bar{\Gamma} = \Gamma \sqcup \Sigma$), and the graph Γ is connected (indeed, homeomorphic to R). So we know $\Gamma \sqcup \Sigma$ is connected; but this does not imply its subset C is connected. On the other hand since $\Gamma \subset C \subset \bar{\Gamma}$, it does follow (as just seen) that C is connected.

To see C is not path-connected, proceed by contradiction. If C were path-connected, in particular there would exist a continuous path $\gamma:[0,1]\to C$ joining the origin 0 to the point $(\frac{1}{2\pi},1)\in\Gamma$, with $\gamma(0)=0$.

The idea of the proof is that for t in a small interval containing 0, $\gamma(t)$ would have to be close to the origin, while its first component $\gamma^1(t)$ would map that interval to a small interval on the positive x-axis containing 0; however in any such interval the graph Γ has "large swings".

Formally, consider the set $J = \{t \in [0,1] | \gamma(t) = 0\}$. Clearly J is closed in [0,1] and non-empty $(0 \in J)$. If we show J is open, by connectedness of [0,1] it would follow that J = [0,1], contradicting $\gamma(1) = (\frac{1}{2\pi}, 1)$.

Let $t_0 \in J$. There exists an open interval $I_{\delta}(t_0) = (t_0 - \delta, t_0 + \delta)$ (or $[0, \delta)$, if $t_0 = 0$) contained in [0, 1] so that $||\gamma(t)|| < 1$ for $t \in I_{\delta}(t_0)$ (by continuity of γ). The image $\gamma^1(I_{\delta}(t_0))$ of this interval under the first component γ^1 is an interval on the x-axis containing 0. (Connected maps to connected). We claim this interval is degenerate (I.e., it is just the trivial interval $\{0\}$.)

Indeed any non-degenerate interval (on the positive x-axis) containing 0 necessarily contains a point of the form $x = \frac{1}{2\pi n}$ (for some large integer $n \ge 1$), so we have $\gamma(t) = (\frac{1}{2\pi n}, 1)$ for some $t \in I_{\delta}(t_0)$, contradicting $||\gamma(t)|| < 1$.

Thus $\gamma^1(I_{\delta}(t_0)) = \{0\}$, and since the only point of C with first coordinate 0 is the origin, it follows that γ maps the interval $I_{\delta}(t_0)$ to the origin, so this interval is contained in J, proving J is open.

Remark: Note that this example shows that the closure of a path-connected set is not necessarily path-connected!

However, in one important case connected implies path-connected.

Proposition. A connected open subset of \mathbb{R}^n is path-connected. Indeed, any two points may be joined by a polygonal line.

Proof (outline). Let $U \subset R^n$ be open and connected, $p \in U$. Consider the sets $A = \{q \in U | q \text{ may be joined to } p \text{ by a polygonal line in } U\}$ and $B = \{q \in U | q \text{ may not be joined to } p \text{ by a polygonal line in } U\}$. Using convexity of open balls in R^n , it is not hard to show that both A and B are open in U! Since U can't have a non-trivial splitting, it follows that $B = \emptyset$ (since $p \in A$.)

It is very plausible that a union of connected sets with a point in common is connected, and not hard to prove. (But note that the intersection of two connected sets with a point in common is not always connected!)

Proposition. Let $(X_{\lambda})_{{\lambda}\in L}$ be a family of connected subsets of X with a point in common: $a\in \cap_{{\lambda}\in L} X_{\lambda}$. Then $Y=\cup_{{\lambda}\in L} X_{\lambda}$ is connected.

Proof. Suppose we had a nontrivial splitting $Y = A \sqcup B$. Say $a \in A$; then $\forall \lambda \in L$, $a \in A \cap X_{\lambda}$. But for each λ we have $X_{\lambda} = (X_{\lambda} \cap A) \sqcup (X_{\lambda} \cap B)$, where we can't have both sets non-empty, since X_{λ} is connected. Thus $X_{\lambda} \cap B = \emptyset$ for all $\lambda \in L$, and hence $B = \bigcup_{\lambda \in L} (X_{\lambda} \cap B)$ is empty, and the splitting must be trivial. This shows A is connected.

Corollary 1. X is connected if, and only if, given any two points $a, b \in X$ there exists a connected subset $X_{ab} \subset X$ containing both a and b.

One direction is clear. Now assuming this property, we have for each

 $a \in X$: $X = \bigcup_{b \in X} X_{ab}$, with X_{ab} connected. Since the X_{ab} (for varying b) have the common point a, the conclusion follows from the proposition.

Corollary 2. The cartesian product $X = X_1 \times X_2$ of two spaces (with the product topology) is connected, if and only if, both factors X_1 and X_2 are.

The projections $p_i: X \to X_i$ are continuous, so X_1 and X_2 are connected if X is.

Conversely, assume X_1 and X_2 are connected. Fix $a = (a_1, a_2) \in X$, and consider, for each $x = (x_1, x_2) \in X$ the 'cross':

$$C_x = (X_1 \times \{a_2\}) \cup (\{x_1\} \times X_2).$$

This is connected, as the union of two connected sets with the common point (x_1, a_2) . The sets C_x have the common point $a = (a_1, a_2)$, and $X = \bigcup_{x \in X} C_x$.

Connectedness as a homeomorphism invariant.

If X and Y are homeomorphic, they are both connected or both disconnected. This allows one to use connectedness as a tool to show two given spaces $are\ not$ homeomorphic. Some examples:

- 1) R and $R^n, n > 1$. (Remove one point.)
- 2) The unit circle S^1 and any subset of R (Remove one point.)
- 3) Intervals of the forms (a, b) and [c, d) (Does any point disconnect?)

Connected components. Let $x \in X$. The connected component of x in X is the union C_x of all connected subsets of X containing x. As seen earlier, C_x is connected (and is the largest connected subset of X containing x.)

If $x, y \in X$, their connected components C_x, C_y are either disjoint, or coincide. Indeed if $z \in C_x \cap C_y$, then $C_x \cup C_y$ is connected, hence coincides with C_x and with C_y . The sets C_x (for some $x \in X$) are the connected components of X. Since the closure of a connected set is connected, each C_x must be closed in X. (But see Problem 7 below.)

PROBLEMS

1. Let $E \subset \mathbb{R}^n$ be a vector subspace. The complement $\mathbb{R}^n \setminus E$ is connected if, and only if, $dim(E) \leq n-2$.

Hint. Let d = dim(E). Pick a basis for R^n of the form $\{e_1, \ldots, e_d\} \cup \{f_1, \ldots, f_{n-d}\}$), where the first set is a basis of E. Letting F be the subspace spanned by the second set we have $R^n = E \oplus F$, and the coordinates of a point in R^n in this basis may be written as $p = (x, y) = \sum_{i=1}^d x^i e_i + \sum_{j=1}^{n-d} y^j f_j$, with $x = (x^i) \in R^d$, $y = (y^j) \in R^{n-d}$. To show two points

 $p \neq q$ in $R^n \setminus E$ may be joined by a curve, suppose first $p, q \in F \setminus \{0\}$, or in coordinates $p = (0, y_1), q = (0, y_2), y_1, y_2 \in R^{n-d} \setminus \{0\}$. Normalizing we obtain $\hat{y_1}, \hat{y_2}$ in S^{n-d-1} , the unit sphere in R^{n-d} . Note that since $n-d-1 \geq 1$ these two points may be joined by a curve on the sphere (see the hint to Problem 8). Show this implies y_1, y_2 may be joined by a curve in $R^{n-d} \setminus \{0\}$, then deal with the general case of $p, q \in R^n \setminus E$.

- **2.** If X is path-connected and $f: X \to \mathbb{R}^n$ is continuous, f(X) is path-connected.
- **3.** The union of path-connected subsets of \mathbb{R}^n with a common point is path-connected.
 - **4.** $X_1 \times X_2$ is path-connected if, and only if, both X_1 and X_2 are.
- **5.** (a) The set of invertible $n \times n$ matrices is disconnected (and open) in \mathbb{R}^{n^2} .
 - (b) The set of orthogonal $n \times n$ matrices is also disconnected.
- (c) The set of orthogonal $n \times n$ matrices with determinant one is connected (and so is the set of invertible $n \times n$ matrices with positive determinant.)
 - **6.** Let $Q \subset \mathbb{R}^2$ be a countable set. Then $X = \mathbb{R}^2 \setminus Q$ is connected.

Outline. Let $x, y \in X$, and pick any line L in R^2 cutting the segment [x, y] in its interior. For each $z \in L$, we have a 'broken segment' $S_z = [x, z]V[z, y]$. Note they intersect only at the endpoints. One of these must miss Q; if all the S_z encountered Q we would have an injective map from L to Q, which is impossible since L is uncountable.

- 7. Let $U \subset \mathbb{R}^n$ be an open set. Show the connected components of U are open in \mathbb{R}^n .
- **8.** Show that S^1 is not homeomorphic to S^n for n > 1. (Recall S^n denotes the unit sphere in \mathbb{R}^{n+1} .)

Hint. Show first that, for any $n, S^n \setminus \{N\}$ is homeomorphic to R^n (where $N = (0, 0, \dots, 0, 1) \in R^{n+1}$). Denoting points in R^{n+1} by (y, x_{n+1}) , with $y \in R^n$ and $|y|^2 + x_{n+1}^2 = 1$ if $(y, x_{n+1}) \in S^n$, the homeomorphism is:

$$z = f(y, x_{n+1}) = \frac{y}{1 - x_{n+1}} \in \mathbb{R}^n.$$

(This map is called *stereographic projection* from N.) This map is clearly continuous. To show it is a homeomorphism, compute the inverse map from R^n to $S^n \setminus \{N\}$ explicitly, and observe it is continuous.

Ans. The inverse map is $z \mapsto (\frac{2z}{|z|^2+1}, \frac{|z|^2-1}{|z|^2+1}), z \in \mathbb{R}^n$.

Remark: Note that this homeomorphism implies S^n and $S^n \setminus \{P\}$ are connected if $n \geq 1$ (for any $P \in S^n$.)