
FUNCTIONS OF BOUNDED VARIATION

Remark. Throughout these notes, ‘increasing’ means ‘nondecreasing’:

x < y ⇒ f(x) ≤ f(y).

1. Functions of bounded variation.

Definition. Given f : [a, b]→ R and a partition

P = {a = x0 < x1 < x2 < . . . < xn < b = xn+1}

of [a, b], the variation of f over P is;

VP (f) =

n∑
j=0

|f(xj)− f(xj+1)|.

f is of bounded variation if the numbers VP (f) form a bounded set, as P
ranges over the set of all partitions of [a, b]. We denote the supremum of the
VP (f) over all partitions P by Vab(f), the variation of f from a to b.

Let BV [a, b] denote the real vector space of functions of bounded varia-
tion f : [a, b]→ R.

1) monotone functions, Lipschitz functions are in BV , but Hölder con-
tinuous functions are not always in BV (see Exercise 2). The indefinite
Riemann integral of a (bounded) integrable function is in BV (why?)

2) Let f(x) = x cos π
2x < 0 < x ≤ 1, f(0) = 0. Consider the partition P

of [0, 1] given by 0 < 1
2n <

1
2n−1 . . . <

1
3 <

1
2 < 1. The corresponding values

of f are:

0,
(−1)n

2n
, 0,

(−1)n−1

n− 1
, 0, . . . , 0,−1

6
, 0,

1

4
, 0,−1

2
, 0,

and thus:

VP (f) = 1 +
1

2
+

1

3
+ . . .+

1

n
,

showing that f is not in BV [0, 1].

3) f ∈ BV [a, b]⇒ f bounded.

4) The sum, difference and product of functions in BV is in BV ; also f
g ,

if f, g ∈ BV and g is bounded below by a positive constant.

5) Vab(f) = Vac(f) + Vcb(f) if a < c < b.

Proof. If P1, P2 are partitions of [a, c], [c, b] (resp.) and P = P1∪{c}∪P2,
we have Vab(P ) = Vac(P1) + Vbc(P2). This shows Vac(f) + Vbc(f) ≤ Vab(f).
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Now let P be any partition of [a, b]. If c ∈ P , we have equality as above.
If c 6∈ P , let P1, P2 be the partitions of [a, c] (resp. [c, b]) consisting of points
in P smaller than c (resp. greater than c). Then, since:

|f(xj+1)− f(xj)| ≤ |f(c)− f(xj)|+ |f(xj+1)− f(c)|

(where xj is the last point of P1 and xj+1 is the first point of P2), we have:

VP (f) ≤ VP1(f) + VP2(f).

This proves the other inequality.

Exercise 1. Show that Vab(f+g) ≤ Vab(f)+Vab(g) (for f, g ∈ BV [a, b]),
and give an example where the inequality is strict.

Exercise 2. Let C ⊂ [0, 1] be Cantor’s middle-thirds set, a closed,
perfect subset of [0, 1]. Let α ∈ (0, 1). Then the function:

f(x) = d(x,C)α

is Hölder continuous with exponent α, but is not inBV [0, 1] if α is sufficiently
small.

Outline. (i) In any complete metric space, the distance d(x,C) from
a point x to a compact set C is Lipschitz with constant 1. (Hint: Given
x, y ∈ X, let y0 ∈ C achieve d(y, C) and use |x− y0| ≤ |x− y|+ |y − y0|.)

(ii) Show that |xα − yα| ≤ |x− y|α for x ≥ 0, y ≥ 0, if 0 < α < 1.
Use (i) and (ii) to conclude f is Hölder continuous with exponent α.

(Note that the distance is either zero, or achieved at some point x0 ∈ C.)
(iii) At the kth step of the construction of C, 2k−1 open intervals, each

with length 3−k, are deleted from the middle of a closed interval remaining
in the previous step. Denote these intervals by Ikj , 1 ≤ j ≤ 2k−1, k ≥ 1.
Show that the variation of f in Ikj equals:

Vjk(f) = 2(
3−k

2
)α.

Use this to compute the variation of f in [0, 1], and conclude it is unbounded
if α is small enough.

(Reference: http://math.stackexchange.com/questions/1566955/are-there-
functions-that-are-holder-continuous-but-whose-variation-is-unbounded.)

Proposition 1. For f ∈ BV [a, b] let vf (x) = Vax(f), x ∈ [a, b], be the
indefinite variation of f (vf (a) = 0), a monotone increasing function. Then
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vf (x) and vf (x)− f(x) are both increasing in [a, b]. Thus any BV function
may be written as the difference of two increasing functions.

Proof. Let df (x) = vf (x)− f(x), and consider two points x < y in [a, b].
Then df (y)− df (x) = Vxy(f)− (f(y)− f(x)) ≥ 0.

Corollary. Any f ∈ BV [a, b] has at most countably many points of
discontinuity, all of jump type; in addition, f is differentiable a.e in [a, b].

In particular, any locally Lipschitz function (of one real variable) is dif-
ferentiable a.e. (Rademacher’s theorem in one dimension.)

2. Monotone and saltus functions.
Let f : [a, b] → R be monotone increasing. The saltus (jump) at x ∈

(a, b) is ∆f(x) = f(x+) − f(x−). Also ∆f(a) = f(a+) − f(a),∆f(b) =
f(b)−f(b−). (These are all nonnegative numbers.)We have, for any partition
P = {xj} of [a, b]:

∆f(a) +
n∑
j=1

∆f(xj) + ∆f(b) ≤ f(b)− f(a),

since we may find points yj−1 < xj < yj , j = 1, . . . n, in the open interval
(a, b) so that:

∆f(xj) ≤ f(yj)− f(yj−1), ∆f(a) ≤ f(y0)− f(a), ∆f(b) ≤ f(b)− f(yn),

and then:

∆f(a)+
n∑
j=1

∆f(xj)+∆f(b) ≤
n∑
j=1

f(yj)−f(yj−1)+f(y0)−f(a)+f(b)−f(yn) = f(b)−f(a).

Let f be monotone increasing on [a, b]. We define the saltus function
sf : [a, b]→ R by

sf (x) = f(a+)−f(a)+
∑

{a<xk<x}

∆f(xk)+f(x)−f(x−), 0 < x ≤ b; sf (a) = 0,

where the sum is over the countably many discontinuities of f that are
less than x. (Note we already showed this sum is finite.) Clearly sf (x) is
increasing and nonnegative. It is also easy to see that the image sf ([a, b]) is
a countable set, and that sf is constant (and thus differentiable, with zero
derivative) on any open interval in which f is continuous.

3



Proposition 2. If f is increasing, the difference cf (x) = f(x) − sf (x) is
increasing and continuous in [a, b].

Proof. Let x < y be points in [a, b). A short calculation shows that:

sf (y)−sf (x) = f(x+)−f(x)+
∑

x<xk<y

∆f(xk)+f(y)−f(y−) ≤ f(y)−f(x),

(do it!) This shows cf is increasing. Taking limits as y → x+, we get:

sf (x+)− sf (x) ≤ f(x+)− f(x), or cf (x+) ≥ cf (x).

On the other hand, the same inequality shows that if y > x we have:

sf (y)− sf (x) ≥ f(x+)− f(x),

and letting y → x+ we have: f(x+)− f(x) ≤ sf (x+)− sf (x), or cf (x+) ≤
cf (x). This shows cf is right-continuous.

Exercise 3. Following similar steps, show cf (x−) = cf (x), for x ∈ (a, b].

Example. let C = {xk}k≥1 be any countable set in (a, b) (for example,
C could be the set of rationals in(a, b).) Consider the function f : [a, b]→ R:

f(x) =
∑

{k;a<xk<x}

1

2k
for 0 < x ≤ b; f(a) = 0.

Letting Ik(x) = 1 if xk < x and x ∈ (a, b]; Ik(x) = 0 if xk ≥ x; Ik(a) = 0 we
have:

f(x) =

∞∑
k=1

Ik(x)

2k
.

By the Weierstrass criterion, the series defining f is absolutely and uniformly
convergent in [a, b]. f is clearly monotone increasing in [a, b].

Claim. The set of discontinuity of f is exactly C, and that ∆f(xk) = 1
2k

.

Outline. (i) If x0 6∈ C, f is continuous at x0.
To show this, observe the series is uniformly convergent in [a, b], and each

function Ik(x)
2k

is continuous on [a, b] \C. Note that by uniform convergence
given ε > 0 we may find N so that:

|f(x)− fN (x)| < ε, x ∈ [a, b], where fN (x) =
N∑
k=1

Ik(x)

2k
.
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Combine this inequality with continuity of fN at x0 to conclude.

(ii) To show f is discontinuous on C, note that if xk0 ∈ C, we may write:

f(x)−
∑

{k;k 6=k0}

Ik(x)

2k
=
Ik0(x)

2k0
.

By contradiction, assume f were continuous at xk0 . Explain why this would
imply continuity of the left-hand side at xk0 , while the right-hand side is
discontinuous at xk0 .

(iii) To establish the claim about the jump at xk, Let (j1, . . . , jN ) be the
permutation of (1, . . . , N) so that a < xj1 < . . . < xjN < b. Then show that
if xjk < x < xjk+1

:

fN (x) =
1

2jk+1
+

1

2jk+2
+ . . .+

1

2jN
.

Show this implies ∆fN (xjk) = 1
2jk

, and explain how this leads to ∆f(xjk) =
1

2jk
.

Remark: Note that the same argument implies that given any count-
able set C = {xn;n ≥ 1}, and any convergent series of positive numbers,∑∞

n=1 an <∞ with an > 0, defining:

f(x) =
∑

{n≥1;xn<x}

an

we obtain a monotone increasing function with jumps ∆f(xn) = an at points
of C, continuous elsewhere, and with total variation V (f) =

∑
n≥1 an (on

any sufficiently large bounded interval.) One can show this function is left-
continuous at the xn.

If
∑
an is absolutely convergent (but not of positive terms) we get a

function of bounded variation, with given jumps at given points.

Now consider f ∈ BV [a, b]. f is the difference of two monotone increas-
ing functions:

f(x) = vf (x)− df (x).

So we define the saltus function of f ∈ BV by:

sf (x) = svf (x)− sdf (x).

Proposition 3. If f ∈ BV [a, b], f is the sum of its saltus function and a
continuous function of bounded variation.
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Proof. Exercise 4. (Use the decomposition ‘saltus + continuous’ of the
increasing functions vf and df ).

Proposition 4. Let f ∈ BV [a, b]. If f is continuous at x0 ∈ (a, b), then
vf is continuous at x0.

Proof. We show that if f is right-continuous at x0 ∈ [a, b), then so is vf ;
(the proof for ‘left-continuous’ is analogous.)

Given ε > 0, choose a partition P = {x0, x1, . . . , xn} of [x0, b] so that
VP (f) > Vab(f)− ε. By right-continuity of f at x0, we may assume |f(x0)−
f(x1)| < ε, for adding points to P would make VP (f) even larger. Letting
P ′ be the partition starting at x1, we have:

Vx0b(f) < VP (f) + ε < VP ′(f) + 2ε ≤ Vx1b(f) + 2ε,

or:
Vx0x1(f) = vf (x1)− vf (x0) < 2ε.

Since ε is arbitrary, this implies vf (x1) ≤ vf (x0). Since x1 is an arbitrary
point in (x0, b), we conclude vf (x0+) ≤ vf (x0). But vf (x) is increasing, so
in fact vf (x0+) = vf (x0).

Corollary. Any continuous function of bounded variation is the difference
of two continuous increasing functions.

3. Precompactness of sets in BV.

Theorem. (Helly’s theorem.) Let F be an infinite family of functions
in BV [a, b], uniformly bounded (|f(x)| ≤ K in [a, b], for all f ∈ F , with
uniformly bounded variation (Vab(f) ≤ K, for all f ∈ F).

Then there is a sequence (fn) in F converging pointwise in [a, b] to a
function of bounded variation.

Since any function in BV is the difference of two monotone functions, it
is natural to reduce the proof to the increasing case. We have the lemma:

Lemma: Let F be an infinite family of increasing functions in [a, b], uni-
formly bounded byK. Then there exists a sequence (fn)n≥1 in F , converging
pointwise to an increasing function φ.

Proof. First, we have the fact: given any infinite, uniformly bounded
family of functions F on [a, b], and a countable subset E ⊂ [a, b], one may
find a sequence (fn)n≥1 in F , converging pointwise in E (to a function
f : E → R.) This can be proved by a standard diagonal argument.
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Applying this to the set E of rational points in [a, b], we find a sequence
(fn) (and a corresponding infinite set F0 ⊂ F) converging at every point of
E (include a in E if needed.) Define ψ in E as the limit:

ψ(x) = lim fn(x), x ∈ E.

It is easy to see ψ is increasing in E. On [a, b] \ E, define ψ by:

ψ(x) = sup{ψ(y); y ∈ E, y < x}.

ψ is increasing on [a, b], and hence continuous except on a countable set
Q ⊂ [a, b].

Claim: lim fn(x0) = ψ(x0) at any x0 where ψ is continuous.

Proof of claim: Given ε > 0, using the continuity of ψ at x0 we find
xl, xr points of E so that xl < x0 < xr, ψ(xr) − ψ(xl) < ε. Then find a
natural number N so that if n ≥ N :

|fn(xr)− ψ(xr)| < ε, |fn(xl)− ψ(xl)| < ε.

Then if n ≥ N :

ψ(x0)−2ε < ψ(xl)−ε < fn(xl) ≤ fn(x0) ≤ fn(xr) < ψ(xr)+ε < ψ(x0)+2ε.

This proves the claim.

Thus lim fn(x) = ψ(x) can only fail on the countable set Q where ψ is
discontinuous. Now use the fact mentioned at the start of the proof, applied
to the family F0 and the countable set Q. We obtain a subsequence (fn)
of F0 which converges at every point of [a, b] to a function φ(x), clearly
increasing. This concludes the proof of the lemma.

Important remark: The limit function may be discontinuous! (Can you
think of an example?)

Proof of theorem. For each function f ∈ F we have the decomposition
f(x) = vf (x) − df (x), both monotone. The family F1 = {vf ; f ∈ F}
is uniformly bounded, so we may find a convergent sequence (vn) ⊂ F1,
vn = vfn , lim vn(x) = ν(x), pointwise on [a, b]. (Note ν is increasing and
bounded.)

Now apply the lemma to the sequence (dn) = (dfn) of monotone func-
tions. We find a subsequence dnj converging pointwise on [a, b] to an increas-
ing function δ(x). Then the sequence fnj (x) = vnj (x) − dnj (x) converges
pointwise on [a, b] to the function of bounded variation ν(x)− δ(x).
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This concludes the proof of Helly’s precompactness theorem.

Remark. We may define, for f ∈ BV [a, b]:

||f ||BV = sup
[a,b]
||f ||+ Vab(f).

Exercise 5. Show that this defines a Banach norm in the vector space
BV [a, b] (i.e., BV with this norm is a complete metric space.)

Of course, Helly’s theorem does not conclude convergence in this norm,
but only pointwise.

4. Lebesgue outer measure in one dimension.

Given a subset E ⊂ R, we define its Lebesgue outer measure by:

m∗(E) = inf{
∑
I∈F
|I|;F a countable family of open intervals, E ⊂

⋃
F}.

Properties.
(1) countably subadditive:

m∗(
⋃
n≥q

En) ≤
∞∑
n=1

m∗(En).

Proof. Given ε > 0, find intervals (In,m) so that:

En ⊂
⋃
m≥1

In,m,
∑
m≥1
|In,m| ≤ m∗(En) +

ε

2n
.

Let φ : N → N ×N be a bijection. Then:

m∗(
⋃
n≥1

En) ≤
∞∑
k=1

|Iφ(k)| =
∞∑
n=1

∞∑
m=1

|In,m| ≤
∞∑
n=1

(m∗(En)+
ε

2n
) =

∑
n≥1

m∗(En)+ε.

(2) It follows that m∗(C) = 0 if C is countable (since m∗({x}) = 0 for
all x ∈ R, as is easy to show.)

(3) If I ⊂ R is an interval, m∗(I) = |I|.

Proof. It is enough to take I = [a, b], and m∗(I) ≤ b − a is clear. Let
I ⊂ ∪F , where

∑
J∈F |J | < m∗(I) + ε. We may find F1 ⊂ F finite so that

I ⊂ ∪F1.
Then inductively find intervals (aj , bj) ∈ F1, j = 1, . . . , p, so that:

a1 < a, ap < b < bp, an < bn−1 < bn for 2 ≤ n ≤ p.
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Then:

|I| = b−a = b1−a+(

p−1∑
n=2

(bn− bn−1))+ b− bp−1 ≤
p∑

n=1

(bn−an) ≤ m∗(I)+ ε.

(4) Translation invariance: m∗(E + t) = m∗(E) for any t ∈ R (since
|I + t| = |I| for each interval I. )

Remark. (The problem with Lebesgue outer measure.) m∗(E) is defined
for all subsets E ⊂ R. Unfortunately, m∗, although countably subadditive,
is not even ‘finitely additive’: there exist disjoint subsets A,B ⊂ R so that:

m∗(A ∪B) < m∗(A) +m∗(B).

The solution to this is to define a class of “measurable subsets” of R, re-
stricted to which m∗ is, indeed, countably additive: the measure of a count-
able disjoint union (of measurable sets) is the sum of the measures of the
sets.

5. Cantor sets and Lebesgue’s singular function.
We can generalize the usual construction of Cantor’s middle-thirds set (a

compact, perfect subset of [0, 1]) by varying the lengths of the open intervals
removed at the nth. step of the construction. Thus, consider a sequence
(an)n≥0 of positive real numbers, satisfying:

a0 = 1, 0 < an+1 <
1

2
an, n ≥ 0.

(In the classical construction, an = 3−n). At the zero-th step, there is only
one interval, J0,1 = [0, 1]. At the nth. step (n ≥ 1) we remove the middle
open interval (with length dn = an−1 − 2an) of each of the 2n−1 closed
intervals remaining at the (n − 1)th. step (each with length an−1). This
yields 2n closed intervals,each with length an.

Denote by {Jn,k; 1 ≤ k ≤ 2n} the closed intervals remaining at the nth.
step, and let Pn = ∪2nk=1Jn,k be their union. Let In,k; 1 ≤ k ≤ 2n−1 be the
open intervals removed at the nth step. Thus:

Pn−1 \ Pn =

2n−1⋃
k=1

In,k.

For instance,

J1,1 = [0, a1], J1,2 = [1− a1, 1], I1,1 = (a1, 1− a1)
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J2,1 = [0, a2], J2,2 = [a1 − a2, a2], I2,1 = (a2, a1 − a2),
J2,3 = [1− a1, 1− a1 + a2], J2,4 = [1− a2, 1], I2,2 = (1− a1 + a2, 1− a2).
The decreasing intersection of compact sets:

P =

∞⋂
n=1

Pn

is a compact, non-empty subset of [0, 1] (and in fact uncountable, without
isolated points): the Cantor set defined by the sequence (an).

Proposition 4. m∗(P ) = lim 2nan (a monotone decreasing sequence).

Proof. For each n ≥ 1, m∗(P ) ≤ m∗(Pn) ≤
∑2n

k=1m
∗(Jn,k) = 2nan. This

shows m∗(P ) ≤ lim 2nan. On the other hand:

m∗([0, 1] \ P ) ≤
∞∑
n=1

2n−1∑
k=1

m∗(In,k) =
∞∑
n=1

2n−1dn

=
∞∑
n=1

2n−1(an−1 − 2an) =
∞∑
n=1

(2n−1an−1 − 2nan) = 1− lim 2nan.

Since 1 = m∗([0, 1]) ≤ m∗(P ) +m∗([0, 1]\P ), or m∗(P ) ≥ 1−m∗([0, 1]\P ),
this shows m∗(P ) ≥ lim 2nan.

Remark. Note this implies that for any 0 ≤ λ < 1, we may choose (an)
so that m∗(P ) = λ (for instance, let an = λ

2n + 1−λ
3n .) For the classical

middle-thirds set, the outer Lebesgue measure is zero.

Lebesgue’s singular monotone function. We construct ψ : R→ [0, 1] con-
tinuous, monotone increasing (nondecreasing), surjective, with zero deriva-
tive a.e.

Recall the deleted open intervals {In,k; 1 ≤ k ≤ 2n−1} in the construction
of the classical middle-thirds Cantor set (an = 3−n,m∗(P ) = 0). We define
P to be constant in each In,k, as follows:

ψ =
1

2
on I1,1; ψ =

1

4
on I2,1; ψ =

3

4
on I2,2;

ψ =
2k − 1

2n
on In,k, k = 1, . . . 2n−1.

This defines ψ in [0, 1]\P , a union of open intervals contained in [0, 1]. Then
extend ψ to [0, 1] via:

ψ(0) = 0, ψ(x) = sup{ψ(t); t ∈ [0, 1] \ P, t < x} for x ∈ (0, 1].

10



Finally, extend to R by setting ψ(x) = 0 for x ≤ 0; ψ(x) = 1 for x ≥ 1.
Clearly ψ is increasing (nondecreasing).

Claim. ψ is continuous.
Proof. If x ∈ (0, 1) and ψ(x−) < ψ(x+), then the image ψ([0, 1]) misses

the interval (ψ(x−), ψ(x+)). But that’s impossible since the image of ψ
includes all the dyadic rationals 2k−1

2n , a dense subset of [0, 1].
To show right-continuity at 0, let xk be any sequence in (0, 1) converging

to 0. Then given n ≥ 1 we may find Kn so that xk <
1
2n for k ≥ Kn, so

xk < yn for some yn ∈ In,1, and by monotonicity:

ψ(xk) ≤ ψ(yn) =
1

2n
for k ≥ Kn.

Given ε > 0, we choose n so that 1
2n < ε, and then 0 ≤ ψ(xk) ≤ ε for

k ≥ K(ε). Thus limk ψ(xk) = 0 = ψ(0).

Exercise 6. Show that ψ(1) = 1, and that ψ is left-continuous at 1.

Remark: ψ is onto [0, 1] by a similar argument.

Being monotone, ψ is differentiable a.e. And ψ′ = 0 in U =
⋃∞
n=1

⋃2n−1

k=1 In,k,
an open set whose complement P has zero outer Lebesgue measure in [0, 1].
Thus ψ′ = 0 a.e. in R.

In addition, since ψ(U) is countable (dyadic rationals) it is a set of
measure zero. But this means ψ(P ) cannot have measure zero, since ψ is
onto: [0, 1] = ψ(U)∪ψ(P ). So ψmaps a set of measure zero to one which is
not of measure zero.

(In fact letting m∗ be outer Lebesgue measure on the line we have
m∗(ψ(U)) = 0 and hence:

1 = m∗([0, 1]) = m∗(ψ([0, 1]) ≤ m∗(ψ(U)) +m∗(ψ(P )) = m∗(ψ(P )) ≤ 1,

so m∗(ψ(P )) = 1.)

With a little more work, one can get a strictly increasing continuous
function, with zero derivative a.e. (see the next section.)

6. Fubini’s theorem on series of monotone functions.

Let (fn)n≥1 be a sequence of increasing functions on [a, b]. Assume the
series

f(x) =

∞∑
n=1

fn(x)
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converges pointwise in [a, b]. Then f is differentiable a.e. and f ′(x) =∑∞
n=1 f

′
n(x) a.e.

Application 1: There exists a strictly increasing continuous function f :
R→ R, such that f ′(x) = 0 a.e.

Let ψ(x) : R→ [0, 1] be Lebesgue’s continuous increasing function with
zero derivative a.e. (ψ is constant in each open interval in the complement
of the Cantor set in [0, 1], in (1,∞) and in (−∞, 0).)

Let ([an, bn])∞n=1 be an enumeration of the set of all non-degenerate closed
intervals with rational endpoints.

Define fn : R → [0, 2−n] by fn(x) = 2−nψ( x−anbn−an ); fn is continuous and
increasing.

Then set f(x) =
∑∞

n=1 fn(x). By the Weierstrass M -test, this series
converges uniformly on R to a continuous increasing function.

If x < y are two real numbers, we may find an n ≥ 1 so that x < an <
bn < y. Then:

f(y)− f(x) ≥ fn(y)− fn(x) ≥ fn(bn)− fn(an) =
1

2n
(ψ(1)− ψ(0)) > 0.

Thus f is strictly increasing.
By Fubini’s theorem, f ′(x) =

∑
f ′n(x) = 0 a.e. (Note f and each fn are

differentiable a.e.)

Application 2. More generally, let

f(x) =
∑

{n≥1;xn<x}

an =
∞∑
n=1

anIn(x)

be the BV function associated to a countable subset C = {xn;n ≥ 1} of (a, b)
and an absolutely convergent series

∑
n≥1 an (see the remark after Exercise

4). Then f ′(x) = 0 a.e., since each function anIn(x) has zero derivative a.e.

In fact if (xn) is dense in (a, b) this function is strictly increasing: if
x < y, let n0 be an index so that x < xn0 < y. Then it is easy to check that
f(x) + an0 ≤ f(y).

Proof of Fubini’s theorem.
Denote by sk, rk the partial sum and remainder (k ≥ 1):

sk(x) =
k∑

n=1

fn(x), rk(x) =
∞∑

n=k+1

fn(x).
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Both are increasing functions on [a, b](as is f). Let E ⊂ [a, b] be the set
where f and all the fn are differentiable. The complement of E in [a, b] has
measure zero.

Since rk is increasing, we have 0 ≤ r′k(x) = f ′(x)− s′k(x), x ∈ E.
(i) First we show that if a series of functions increasing on a set E, and

differentiable on E, converges pointwise in E, then its series of derivatives
converges (pointwise in E). Since f ′n(x) ≥ 0 in E for each n, we have:

s′k(x) ≤ s′k+1(x) ≤ f ′(x), x ∈ E.

Thus:
∞∑
n=1

f ′n(x) = lim s′k(x) ≤ f ′(x).

(ii) For the reverse inequality, choose k1 < k2 < . . . so that:

∞∑
j=1

(f(b)− skj (b)) <∞.

(Say skj (b) > f(b) − 2−j , using sk(b) ↑ f(b).) Since 0 ≤ f(x) − skj (x) =
rkj (x) ≤ rkj (b), we see that

∑∞
j=1(f(x) − skj (x)) converges uniformly on

[a, b].
This is a series of increasing functions in [a, b], and by the reasoning in

part (i) of this proof the corresponding series of derivatives converges!

∞∑
j=1

(f ′(x)− s′kj (x)) <∞.

In particular, s′kj (x)→ f ′(x) asJ →∞, for x ∈ E. Since the series of partial

sum derivatives s′k(x) is increasing k, it must converge to f(x), for x ∈ E.

7. Rectifiable curves.

A parametrized curve α : [a, b] → Rn (not necessarily continuous) is
rectifiable if:

L[α] := sup
P∈P

LP [α] <∞, where LP [α] :=

n∑
j=0

||α(tj+1)− α(tj)||

and the sup is taken over the set P of all finite partitions P = {t0 = a <
t1 < . . . < tn < tn+1 = b} of [a, b] and we use the euclidean norm.

13



Geometrically LP [α] is the length of the polygonal line defined by the
points on the curve pj = α(tj). Thus L[α] corresponds to the length, if α is
rectifiable.

Note this corresponds exactly to the definition of bounded variation:
rectifiable parametrized curves are functions of bounded variation taking
values in Rn; so we adopt the notation BV ([a, b];Rn).

In terms of components in the standard basis ofRn, α(t) = (α1(t), . . . , αn(t)),
where each αk : [a, b]→ R. In fact, considering:

|αk(tj+1)−αk(tj)| ≤ ||α(tj+1)−α(tj)|| ≤
n∑
i=1

|αi(tj+1)−αi(tj)|, k = 1, . . . , n,

we see that a parametrized curve α is rectifiable if and only if each component
function is in BV [a, b].

In particular, if α is rectifiable the tangent vector α′(t) exists a.e. in [a, b].
The arc length function of a rectifiable curve is the indefinite variation:

s(t) = L[α|[a,t]], t ∈ [a, b]; s(b) = L[α].

The arc length is monotone increasing (and continuous when α is), in par-
ticular differentiable a.e.

Exercise 7. Show that s′(x) = ||α′(x)|| for a.e. x ∈ [a, b]. (In fact s is
differentiable at a given x ∈ (a, b) if and only if α is differentiable at x.)

Hint: Let x ∈ (a, b) be a point where α is differentiable. Given ε > 0,
choose δ > 0 so that

α(x+ h) = α(x) + hα′(x) + hr(h), with ||r(h)|| < ε if 0 < |h| < δ.

Let {0 = t0 < t1 < . . . < tn < tn+1 = 1} be an arbitrary partition of [0, 1].
Show that:

n∑
k=0

||α(x+ tk+1h)− α(x+ tkh)|| ≤ |h|(||α′(x)||+ 2ε)

and explain why this implies s is differentiable at x with s′(x) ≤ ||α′(x)||.
The opposite inequality is easier to prove.

Exercise 8. Show that f ∈ BV [a, b] if and only if the graph γ(t) =
(t, f(t)) of f is rectifiable, and:

Vab(f) ≤ L[γ] ≤ b− a+ Vab(f).
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Given its geometric origin, it is natural to expect the length of a rectifiable
curve is independent of the choice of parametrization. A reparametrization
is defined by a homeomorphism h : [c, d] → [a, b] (which we take to be
increasing, so h(c) = a, h(d) = b). Such an h defines a bijection h∗ between
the sets of finite partitions of [c, d] and of [a, b]:

h∗ : P[c,d] → P[a,b], h(ti) = xi, i = 1, . . . , n, ti ∈ [c, d], xi ∈ [a, b].

Thus, with α : [a, b] → Rn, β = α ◦ h : [c, d] → Rn, we have, for any
P ∈ P[a,b]:

Lh∗P(β) =

n∑
i=0

||β(ti+1)− β(ti)|| =
n∑
i=0

||α(xi+1)− α(xi)|| = LP (α).

From this it follows that β = α ◦ h is rectifiable if and only if α is, with
the same length: L[α] = L[β], and similarly for the arc length functions:
sβ = sα ◦ h.

Remark. h is monotone, hence h′(t) exists in a subset [c, d] \ N , where
N ⊂ [c, d] has measure zero. We also know α′(x) exists in [a, b] \ E, where
E ⊂ [a, b] has measure zero; and that β′(t) exists outside of a subset of [c, d]
with measure zero. It is natural to ask whether

β′(t) = α′(h(t))h′(t),

where t ∈ [c, d] is such that both terms on the right are defined, namely:
t ∈ ([c, d]\N)∩{t ∈ [c, d];h(t) ∈ [a, b]\E}. For this set to have complement
of measure zero, we need the preimage h−1(E) to have measure zero. This
isn’t true in general, but it does hold if h is a Lipschitz homeomorphism.
(The precise condition needed is given in the next section).

Exercise 9. Show that if h : [c, d] → [a, b] is a (strictly increasing)
bi-Lipschitz homeomorphism (meaning the inverse is also Lipschitz), and
E ⊂ [a, b] is a set of measure zero, then the preimage h−1(E) has measure
zero.

Example. Let ψ : [0, 1] → [0, 1] be the continuous, increasing function
with ψ′(x) = 0 a.e. constructed in Section 5. Note that the preimage of
the set of dyadic rationals in [0, 1] (which is countable, hence of measure
zero) contains the complement in [0, 1] of the Cantor set, which has (outer)
measure one.

Exercise 10. Let F ⊂ BV ([a, b];Rn) be an infinite family of rectifiable
curves in Rn. Suppose F is uniformly bounded (α([a, b]) ⊂ BR∀α ∈ F , for

15



some ball BR ⊂ Rn) and of uniformly bounded length (L[α] ≤ Λ for all
α ∈ F , for some Λ > 0.)

Show there exists a sequence (αn)n≥1 in F converging pointwise to a rec-
tifiable curve α : [a, b]→ Rn. (Note the limit curve α may be discontinuous,
or constant.)

8. Absolutely continuous functions.

Definition. f : [a, b] → R is absolutely continuous if for all ε > 0 we
may find δ > 0 so that if {(ak, bk)}nk=1 is a finite collection of disjoint open
intervals contained in [a, b], we have:

n∑
k=1

(bk − ak) < δ ⇒
n∑
k=1

|f(bk)− f(ak)| < ε.

Properties.
1. Letting n = 1, we see that absolutely continuous functions are uni-

formly continuous.

2. AC functions define a vector subspace of C[a, b], in fact an algebra
(fg ∈ AC if f and g are AC); f/g is AC if f, g are and g is bounded below
by a positive constant. Lipschitz functions are clearly AC.

3. AC functions are of bounded variation. To see this, let f ∈ AC[a, b]
and let δ > 0 be given by the definition for ε = 1. Let a = a0 < a1 <
. . . < an < b be any finite partition of [a, b] into intervals of length less than
δ (that is, ak+1 − ak < δ. Then from the definition of AC it follows that
Vakak+1

(f) ≤ 1, so Vab(f) ≤ n.

4. Lebesgue’s singular continuous function ψ : [0, 1] → [0, 1] is in
BV [0, 1] (since it is increasing), but not in AC[0, 1]. To see this, recall
Pn = t{Jnk; 1 ≤ k ≤ 2n}, the disjoint union of closed intervals (each of
length 3−n) in the nth stage of the construction of Cantor’s middle-thirds
set P ⊂ [0, 1].

Using the continuity of ψ and its constant value (2k − 1)2−n in the
open interval Ink, a short computation shows that if Jnk = [ak, bk] we have
ψ(bk)− ψ(ak) = 2−n, for k = 1, . . . 2n.

Thus we have
∑2n

k=1(bk − ak) = (23)n (which can be made arbitrarily

small by taking n large enough), while
∑2n

k=1 |f(bk)− f(ak)| = 2n2−n = 1.

Extensions. (i) It is easy to see that f is AC if (and only if) ∀ε > 0∃δ > 0
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so that if {(ak, bk}∞k=1 is a collection of disjoint sub-intervals of [a, b], we have:

n∑
k=1

(bk − ak) < δ ⇒
n∑
k=1

Mk −mk < ε,

where

Mk = sup
x∈[ak,bk]

f(x) = f(βk), mk = inf
x∈[ak,bk]

f(x) = f(αk), αk, βk ∈ [ak, bk].

(ii) It is also easy to see we may take a countable (infinite) collection of
disjoint intervals {(ak, bk)}k≥1 in the definition, without changing it.

Proposition 5. If f ∈ AC[a, b] and E ⊂ [a, b] is a set of measure zero
(m∗(E) = 0), we have m∗(f(E)) = 0.

Proof. (Assume E ⊂ (a, b) for simplicity). Given ε > 0, choose δ > 0
(based on extensions (i) and (ii) above) so that if {(αj , βj)}j≥1 is a countable
collection of disjoint intervals in (a, b), we have:

∞∑
j=1

(βj − αj) < δ ⇒
∞∑
j=1

Mj −mj < ε,

with Mj ,mj the sup (resp. inf) of f on (aj , bj), as above.

Since m∗(E) = 0, we have E ⊂ ∪n≥1In, where the In are open intervals
contained in (a, b) and

∑
n≥1 |In| ≤ δ.

Since U = ∪n≥1In is an open subset of the real line, it may be written
as a countable disjoint union of open intervals:

U = t∞j=1(αj , βj), with
∑
j=1

(βj − αj) = m∗(U) ≤
∞∑
n=1

|In| < δ,

where the first equality uses countable additivity of outer Lebesgue mea-
sure on open intervals, while the inequality following it uses only countable
subadditivity of outer measure (which holds for all sets).

Noting that f((αj , βj)) = (mj ,Mj) (the sup and inf of f on (αj , βj)), we
find a countable covering by open intervals:

f(E) ⊂
∞⋃
j=1

(mj ,Mj), with
∞∑
j=1

(Mj −mj) < ε.
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This shows m∗(f(E)) = 0.

Additional facts on absolute continuity. (For proofs, see I.Natanson,
Theory of Functions of a Real Variable, ch. 9.)

1. Conversely, if a continuous function of bounded variation maps
null sets (=sets of measure zero) to null sets, it is absolutely continuous.
(Banach-Zarecki theorem.)

2. An absolutely continuous function f has derivatives a.e. (since it is
BV). If f ′(x) = 0 a.e., then f is constant.

3. A continuous function maps (Lebesgue) measurable sets to measur-
able sets if and only if it maps null sets to null sets.

4. (i) If g : [a, b]→ R is integrable, its indefinite integral f(x) =
∫ x
a g(t)dt

is absolutely continuous, and f ′(x) = g(x) a.e.
(ii) Conversely, if f is absolutely continuous, f ′(x) is integrable and we

have:

f(x) = f(a) +

∫ x

a
f ′(t)dt.

Informally, we may think of AC as exactly the class of continuous func-
tions on [a, b] for which the Fundamental Theorem of Calculus (both direc-
tions) holds. (For the Lebesgue integral.)
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