
DIFFERENTIAL FORMS and LINE INTEGRALS

Let U ⊂ Rn be a connected open set. A1-form in U is a map ω : U → Λ1,
where Λ1 denotes the space of linear functionals in Rn (i.e. linear maps
Rn → R). In standard coordinates:

ω(x) =
∑
i

ai(x)dxi, dxi[v] = vi,

the ith component of v. ω is said to be continuous (or Ck) in U if each
component ai ∈ C(U) (resp. ai ∈ Ck(U)).

Let γ : [a, b] → U be a rectifiable curve. We define the line integral of
the 1-form ω along γ by:∫

γ
ω =

∫ 1

0
ω(γ(t))[γ′(t)]dt.

Proposition. (Invariance under increasing reparametrization). Let f : [a, b]→
[c, d] be a C1 diffeomorphism, f ′(t) > 0, f(a) = c, f(b) = d. Then if
α : [c, d]→ U is a rectifiable curve and γ = α ◦ f : [a, b]→ U , we have:∫

γ
ω =

∫
α
ω.

Exact 1-forms. A continuous 1− form is exact in the connected open
set U if there exists f ∈ C1(U) so that df = ω in U . Such an f (which is
unique up to a constant) is called a potential for ω.

The following is one version of the Fundamental Theorem of Calculus in
several variables.

Theorem. (i) Let f ∈ C1(U). Then if ω = df ∈ CU (Λ1), for any
rectifiable curve γ : [a, b]→ U :∫

γ
ω = f(γ(b))− f(γ(a)).

Thus line integrals of ω along a curve depend only on the endpoints of the
curve.

(ii) Conversely, if a 1-form ω ∈ CU (Λ1) with the property that its line
integrals along curves in U depend only on the endpoints of the curve is exact
in U . A potential is obtained by choosing a point x0 ∈ U and defining:

f(x) =

∫
γ
ω, γ : [0, 1]→ U, γ(0) = x0, γ(1) = x.
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A condition clearly equivalent to that stated in (ii) is:
∫
γ ω = 0, for amy

closed (rectifiable) curve γ in U .

A 1-form ω in U is locally exact if, for any x0 ∈ U , there exists an open
ball B = Br(x0) ⊂ U and a potential f ∈ C1(B) for ω on this ball. This is
equivalent to: (i) line integrals of ω along curves in B depend only on their
endpoints; or (ii) line integrals of ω along closed curves in B are zero.

Definition. A 1-form ω =
∑
aidxi of class C1 in U is closed if:

∂xjai − ∂xiaj = 0 in U,∀i, j.

From Schwartz’s theorem for C2 functions, it is easy to see that locally exact
C1 1-forms are closed. The converse is false:

ω = − y

x2 + y2
dx+

x

x2 + y2
dy

is closed in R2 \ {0}, but not exact there, since its line integral along the
unit circle equals 2π. On the other hand, ω is exact in the half-plane H =
{(x, y) ∈ R2;x > 0}: f(x, y) = arctan(y/x) is a potential for ω in H.

Definition. A connected open set U ⊂ Rn is starshaped if there exists
x0 ∈ U so that, for any x ∈ U , the closed line segment from x0 to x is
entirely contained in U . (For example, convex domains are starshaped with
respect to any interior point.)

Poincaré Lemma. If U ⊂ Rn is starshaped, any closed 1-form ω ∈
C1
U (Λ1) is exact in U .

For the proof, one defines f(x) as the line integral of ω along the line
segment from x0 to x, using the fact that ω is closed (and differentiation
under the integral sign) to show f is a potential for ω in U .

As a corollary, it follows that a 1-form of class C1 is closed if, and only
if, it is locally exact.

Problem 1. Is the locally uniform limit of locally exact forms locally
exact? (That is, if ωk → ω uniformly on compact subsets of U (ωk, ω
continuous 1-forms in U), and each ωk is locally exact, is the same true for
ω?

Question: Conversely: is any continuous, locally exact 1-form the limit
(uniformly on compact sets) of closed 1-forms of class C1?
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The precise topological concept relating local to global exactness (of
continuous 1-forms) is given by homotopy: two continuous curves γ, α :
[0, 1]→ U (γ(0) = α(0) = p, γ(1) = α(1) = q) are homotopic in U with fixed
endpoints if there exists a continuous map H : [0, 1]2 → U satisfying:

H(0, t) = γ(t), H(1, t) = α(t), H(s, 0) = p,H(s, 1) = q.

So the 1-parameter family of curves γs(t) = H(s, t) ‘deforms’ γ0(t) = γ(t)
to γ1(t) = α(t), through continuous curves in U as s varies from 0 to 1.

For closed curves γ(0 = γ(1) = p the analogous definition (continuous
deformation through closed curves with basepoint p) is called homotopy with
basepoint.

Proposition. (Homotopy invariance of line integrals.) If γ and α are
fixed-endpoint-homotopic (rectifiable) curves in U and ω is a locally exact,
continuous one-form in U , then:∫

γ
ω =

∫
α
ω.

Definition. A connected open set U ⊂ Rn is simply-connected if any
two continuous curves γ, α : [0, 1]→ U are homotopic with fixed endpoints.
(Equivalently, any closed curve with base point p is basepoint-homotopic in
U to the constant curve p. )

Corollary. In a simply-connected domain, any locally exact continuous
1-form is exact.

Conversely, given a connected open set U ⊂ Rn, if any locally exact
1-form is exact, it follows that U is simply connected.

Differential 2-forms. A bilinear form α : Rn × Rn → R is alternating if
f(w, v) = −f(v, w) for all v, w; equivalently, f(v, v) = 0 for all v. The set
Λ2 of alternating bilinear forms is a vector space of dimension n(n − 1)/2
(n ≥ 2), with standard basis {dxi ∧ dxj}i<j :

(dxi ∧ dxj)[v, w] = viwj − vjwi, where v = (v1, . . . , vn), w = (w1, . . . , wn).

In particular, the space Λ2(R2) is one-dimensional: any bilinear alternating
form in R2 is a multiple of det[v, w] = det[v|w], the determinant of the 2× 2
matrix given by column vectors v, w.

A differential 2-form is a map α : U → Λ2:

α(x) =
∑
i<j

bij(x)dxi ∧ dxj ,
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where the bij are continuous (or Ck) functions in U .

Wedge product. Given α, β in Ω1
U (1-forms in U) we define their ‘wedge

product’ as the 2-form:

(α ∧ β)[v, w] = α(v)β(w)− α(w)β(v).

Clearly β ∧ α = −α ∧ β.

Exterior differential. Let ω =
∑

i aidxi ∈ Ω1
U be of class C1. We define:

dω =
∑
i

dai ∧ dxi =
∑
i,j

(∂xjai)dxj ∧ dxi ∈ Ω2
U .

This is easily seen to equal:

dω =
∑
i<j

(∂xjai − ∂xiaj)dxj ∧ dxi.

We adopt this expression as the definition of dω. Thus we see that

ω is closed ⇔ dω = 0 in U.

Problem 2. (i) d(fω) = df ∧ ω + fdω if ω ∈ Ω1
U is C1 and f ∈ C1(U).

(ii) A 2-form α ∈ Ω2
U is exact in U if α = dω, for some C1 1-form ω in

U . Show that if α is closed and β is exact, α ∧ β is exact. (Here α, β ∈ Ω1
U

are C1).

Pullback. Let f : D → U be a C1 map (y = f(x), where D ⊂ Rm, U ⊂
Rn are connected open sets. We define maps from 1 and 2-forms in U to 1
and 2-forms in D.

For 1-forms ω ∈ Ω1
U , f∗ω ∈ Ω1

D is defined by:

f∗ω(x)[v] = ω(f(x))[df(x)v], x ∈ D, v ∈ Rn.

In coordinates:

ω(y) =
∑
i

ai(y)dyi ⇒ f∗ω(x) =

n∑
i=

ai(f(x))dfi

=
m∑
a=1

ba(x)dxa, ba(x) =
∑
i

(∂xafi)(x)ai(f(x)), x ∈ D, f(x) ∈ U.
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For 2-forms α =
∑

i<j bij(y)dyi ∧ dyj , define f∗α ∈ Ω2
D by:

f∗α(x)[v, w] = α(f(x))[df(x)[v], df(x)[w]], x ∈ D, v,w ∈ Rn.

In coordinates:
f∗α(x) =

∑
i<j

bij(f(x))dfi ∧ dfj

=
∑
a<b

Aabdxa ∧ dxb, Aab =
∑
i<j

bij(f(x))(∂xafi∂xbfj − ∂xbfi∂xafj).

Proposition. (Invariance of exterior derivative.) For f : D → U of
class C2 and ω ∈ Ω1

U a C1 1-form as above, we have:

f∗dω = df∗ω.

Proof. A calculation (done in class.)

Corollary. f∗ω is closed in D if ω is closed in U . The converse holds if
f is a diffeomorphism.

Integration of 2-forms in R2. Let α ∈ Ω2
U , U ⊂ R2 open. If φ : D → U

is a C1 diffeomorphism, the pullback of α is given by:

α = f(y)dy1 ∧ dy2 ⇒ φ∗α = (f ◦ φ)dφ1 ∧ dφ2 = (f ◦ φ)Jφ(x)dx1 ∧ dx2,

assuming φ is ‘orientation-preserving’, in the sense that det dφ(x) > 0 for
all x ∈ D.

This suggests the definition: for A ⊂ U measurable:∫
A
α =

∫
A
f(y)dy

(Integration with respect to Lebesgue measure, assuming f has an integral.)
Then the change of variables formula implies the transformation formula:∫

B
φ∗α =

∫
φ(B)

α,

if B ⊂ D is measurable. Recall also the transformation formula for the line
integral of 1-forms ω along curves γ in D:∫

γ
φ∗ω =

∫
φ◦γ

ω.
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Suppose we know that, for a subset A ⊂⊂ U ⊂ R2 with piecewise C1

oriented boundary ∂A, we have, for any 1-form ω of class C1 in U :∫
A
dω =

∫
∂A
ω.

Then if φ : D → U is a diffeomorphism we have Q = φ−1(A) ⊂⊂ D, a
domain with piecewise C1 (oriented) boundary. Given a C1 1-form η in D
we have η = φ∗ω for a 1-form ω in U , so:∫

∂Q
η =

∫
∂φ(Q)

ω =

∫
φ(Q)

dω =

∫
Q
φ∗dω =

∫
Q
dη.

So Q satisfies the same property as A (invariance of Stokes’ theorem.)

Stokes’ theorem for the rectangle. Let Q = [0, 1]2 ⊂ R2, c = ∂Q its
oriented boundary. Let ω ∈ Ω1

U be a 1-form of class C1 in a neighborhood
U of Q. Then: ∫

c
ω =

∫
Q
dω.

Homotopy estimate. Let c0, c1 : [0, 1] → U ⊂ R2 be C1 curves with
common endpoints, c0(0) = c1(0), c0(1) = c1(1). Suppose c0, c1 are pointwise
close enough that the line segment from c0(t) to c1(t) is contained in U . Then
the curves are linearly homotopic, via:

H : [0, 1]→ U, H(s, t) = (1− s)c0(t) + sc1(t).

Then if ω ∈ Ω1
U is a C1 1-form, let:

H∗ω = Pds+Qdt, d(H∗ω) = (Qs − Pt)ds ∧ dt.

We have, with c the oriented boundary of [0, 1]2:∫
c
H∗ω =

∫
c1

ω −
∫
c0

ω.

dH∗ω = H∗dω = (dω(H(s, t))[Hs, Ht])ds ∧ dt.

By Stokes’ theorem for the rectangle:∫
c
H∗ω =

∫
[0,1]2

(Qs − Pt)dsdt,
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where, for K = H([0, 1]2) ⊂ U (compact):

|Qs−Pt| = |dω(H(s, t))[Hs, Ht]| ≤ (sup
K
|dω|) sup

t∈[0,1]
|c0(t)−c1(t)|(s|c′1|(t)+(1−s)|c′1(t)).

Thus we obtain the homotopy estimate:

|
∫
c0

ω −
∫
c1

ω| ≤ (sup
K
|dω|) sup

t∈[0,1]
|c0(t)− c1(t)|(L[c0] + L[c1]).

As a consequence, we have:
Proposition. Let ck : [0, 1] → U be a sequence of rectifiable curves of

bounded length (with common endpoints), converging uniformly in [0, 1] to
a rectifiable curve c0 : [0, 1]→ U . Then for any C1 1-form ω, we have:∫

ck

ω →
∫
c0

ω.

Remark: It is interesting that this is true even though the lengths of the
ck may fail to converge to the length of c0.

Problem 3. [Giaquinta-Modica] Let ω be a closed C1 1-form in Rn\{0}.
Prove that ω is exact in Rn \ {0} if limx→0 |x|ω(x) = 0.

Problem 4. [Giaquinta-Modica] (i) Let ω be a closed 1-form in R2 \{0}
satisfying: ∫

γ
ω = 0,

where γ(t) = (cos t, sin t), t ∈ [0, 2π]. Show that ω is exact in R2 \ {0}.

(ii) Show that any closed 1-form ω in R2 \ {0} decomposes as:

ω = λω0 + α,

where λ ∈ R, α is exact in R2 \ {0} and ω0 is the (closed) ‘angle 1-form’ in
R2 \ {0}:

ω0 = − y

x2 + y2
dx+

x

x2 + y2
dy

7


