DIFFERENTIAL FORMS and LINE INTEGRALS

Let U C R™ be a connected open set. Al-forminUisamapw : U — A,
where A' denotes the space of linear functionals in R™ (i.e. linear maps
R™ — R). In standard coordinates:

w(x) = Zai(x)da:i, dz;[v] = v,

the i component of v. w is said to be continuous (or C*) in U if each
component a; € C(U) (resp. a; € CF(U)).

Let v : [a,b] — U be a rectifiable curve. We define the line integral of
the 1-form w along v by:

/ﬂ = /01 w(y () [ (t)]dt.

Proposition. (Invariance under increasing reparametrization). Let f : [a, b] —
[c,d] be a C! diffeomorphism, f'(t) > 0,f(a) = ¢, f(b) = d. Then if
a: [e,d] = U is a rectifiable curve and v = ao f : [a,b] — U, we have:
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Exact 1-forms. A continuous 1 — form is exact in the connected open
set U if there exists f € C}(U) so that df = w in U. Such an f (which is
unique up to a constant) is called a potential for w.

The following is one version of the Fundamental Theorem of Calculus in
several variables.

Theorem. (i) Let f € CY(U). Then if w = df € Cy(A'), for any
rectifiable curve 7 : [a,b] — U:
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:

Thus line integrals of w along a curve depend only on the endpoints of the
curve.

(ii) Conversely, if a 1-form w € Cp(A') with the property that its line
integrals along curves in U depend only on the endpoints of the curve is exact
in U. A potential is obtained by choosing a point xg € U and defining:

ﬂm:/% 7 0,1] = Uyy(0) = 0, 7(1) = .
Y
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A condition clearly equivalent to that stated in (ii) is: fv w = 0, for amy
closed (rectifiable) curve « in U.

A 1-form w in U is locally exact if, for any xg € U, there exists an open
ball B = B,(z0) C U and a potential f € C'(B) for w on this ball. This is
equivalent to: (i) line integrals of w along curves in B depend only on their
endpoints; or (ii) line integrals of w along closed curves in B are zero.

Definition. A 1-form w = Y a;dx; of class C! in U is closed if:
Oz;a; — Oy;a5 = 0 in U, Vi, j.
From Schwartz’s theorem for C? functions, it is easy to see that locally exact

C1 1-forms are closed. The converse is false:

Y T
w = _x2+y2dx+ a:2—|—y2dy

is closed in R?\ {0}, but not exact there, since its line integral along the
unit circle equals 2. On the other hand, w is exact in the half-plane H =
{(z,y) € R*;x > 0}: f(z,y) = arctan(y/z) is a potential for w in H.

Definition. A connected open set U C R" is starshaped if there exists
xg € U so that, for any x € U, the closed line segment from xy to x is
entirely contained in U. (For example, convex domains are starshaped with
respect to any interior point.)

Poincaré Lemma. If U C R™ is starshaped, any closed 1-form w €
Cl(AY) is exact in U.

For the proof, one defines f(x) as the line integral of w along the line
segment from zy to z, using the fact that w is closed (and differentiation
under the integral sign) to show f is a potential for w in U.

As a corollary, it follows that a 1-form of class C' is closed if, and only
if, it is locally exact.

Problem 1. Is the locally uniform limit of locally exact forms locally
exact? (That is, if wy — w uniformly on compact subsets of U (wg,w
continuous 1-forms in U), and each wy, is locally exact, is the same true for
w?

Question: Conversely: is any continuous, locally exact 1-form the limit
uniformly on compact sets) of closed 1-forms of class C*
iforml t sets) of closed 1-f f class C'1?



The precise topological concept relating local to global exactness (of
continuous 1-forms) is given by homotopy: two continuous curves 7, :
[0,1] = U (v(0) = «(0) = p,v(1) = a(1) = q) are homotopic in U with fized
endpoints if there exists a continuous map H : [0,1]2 — U satisfying:

H(0,t) =~(t), H(1,t) = «(t), H(s,0) = p,H(s,1) = q.

So the 1-parameter family of curves vs(t) = H(s,t) ‘deforms’ ~o(t) = ()
to v1(t) = a(t), through continuous curves in U as s varies from 0 to 1.

For closed curves v(0 = (1) = p the analogous definition (continuous
deformation through closed curves with basepoint p) is called homotopy with
basepoint.

Proposition. (Homotopy invariance of line integrals.) If v and a are
fixed-endpoint-homotopic (rectifiable) curves in U and w is a locally exact,
continuous one-form in U, then:
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Definition. A connected open set U C R" is simply-connected if any
two continuous curves v, a : [0,1] — U are homotopic with fixed endpoints.
(Equivalently, any closed curve with base point p is basepoint-homotopic in
U to the constant curve p. )

Corollary. In a simply-connected domain, any locally exact continuous
1-form is exact.

Conversely, given a connected open set U C R", if any locally exact
1-form is exact, it follows that U is simply connected.

Differential 2-forms. A bilinear form a : R™ x R™ — R is alternating if
fw,v) = —f(v,w) for all v,w; equivalently, f(v,v) = 0 for all v. The set
A? of alternating bilinear forms is a vector space of dimension n(n — 1)/2
(n > 2), with standard basis {dx; A dz;}i<;:

(dx; A dxj)[v,w] = viwj — vjw;, where v = (vq,...,v),w = (W1,...,Wy,).

In particular, the space A?(R?) is one-dimensional: any bilinear alternating
form in R? is a multiple of det[v, w] = det[v|w], the determinant of the 2 x 2
matrix given by column vectors v, w.

A differential 2-form is a map a : U — A?:

a(z) = Z bij(x)dz; A dxj,
1<j



where the b;; are continuous (or C*) functions in U.

Wedge product. Given «, 3 in Q%] (1-forms in U) we define their ‘wedge
product’ as the 2-form:

(a A B)[v, w] = a(v)B(w) — a(w)B(v).
Clearly A= —a AB.
Exterior differential. Let w = )", a;dx; € Q}] be of class C'. We define:
dw = Zdai ANdx; = Z(@zjai)dxj ANdx; € (212]

i i,
This is easily seen to equal:

dw = Z(@xjai — Gxiaj)da;j A dx;.

1<j

We adopt this expression as the definition of dw. Thus we see that

wisclosed & dw=0inU.

Problem 2. (i) d(fw) =df Aw + fdw if w € Qf, is C* and f € CL(U).

(ii) A 2-form a € Q% is ezact in U if o = dw, for some C! 1-form w in
U. Show that if « is closed and S is exact, a A § is exact. (Here a, § € Qllj
are C1).

Pullback. Let f : D — U be a C! map (y = f(z), where D C R™,U C
R™ are connected open sets. We define maps from 1 and 2-forms in U to 1
and 2-forms in D.

For 1-forms w € Q,, f*w € Q}j is defined by:

fo@)] = w(f@)df @], @€ D,ve R

In coordinates:



For 2-forms a = 3, . bij(y)dy; A dyj, define f*a € Q% by:

fra(o)v, w] = a(f(@)[df ()], df (z)[w]], =€ D,v,weR"

In coordinates:

Fro(w) = bi(f(z)dfi A df;

i<j
=Y Awdra Adzy, A=Y bij(f(2)) (O, fi0, [ = On, [iDu, f).
a<b 1<j

Proposition. (Invariance of exterior derivative.) For f : D — U of
class C2? and w € Q}] a C'! 1-form as above, we have:

frdw = df*w.

Proof. A calculation (done in class.)

Corollary. f*w is closed in D if w is closed in U. The converse holds if
f is a diffeomorphism.

Integration of 2-forms in R%. Let o € Q%J, UcCR?open. Ifp: D = U
is a C! diffeomorphism, the pullback of « is given by:

a= f(y)dyr Ndy2 = ¢"a = (f o ¢)dp1 A dpe = (f o ¢)Jy(z)dz1 A da,

assuming ¢ is ‘orientation-preserving’, in the sense that det d¢(x) > 0 for
allz € D.

This suggests the definition: for A C U measurable:

/A o= /A f(y)dy

(Integration with respect to Lebesgue measure, assuming f has an integral.)
Then the change of variables formula implies the transformation formula:

Ju7 = L
B $(B)

if B C D is measurable. Recall also the transformation formula for the line
integral of 1-forms w along curves v in D:

foue L

b}



Suppose we know that, for a subset A CC U C R? with piecewise C!
oriented boundary 0A, we have, for any 1-form w of class C' in U:

/dw:/ w.
A 0A

Then if ¢ : D — U is a diffeomorphism we have Q = ¢~'(A) CC D, a
domain with piecewise C! (oriented) boundary. Given a C! 1-form 1 in D
we have n = ¢*w for a 1-form w in U, so:

/ 77:/ w:/ dwz/gs*dw:/dn.
00 Jowa  Ju@ Q Q

So @ satisfies the same property as A (invariance of Stokes’ theorem.)

Stokes’ theorem for the rectangle. Let Q = [0,1]?> C R?, ¢ = 9Q its
oriented boundary. Let w € Qzlj be a 1-form of class C! in a neighborhood

U of Q. Then:
/w :/ dw.
c Q

Homotopy estimate. Let cy,c1 : [0,1] — U C R? be C! curves with
common endpoints, ¢o(0) = ¢1(0), co(1) = ¢1(1). Suppose cg, ¢1 are pointwise
close enough that the line segment from cy(t) to ¢;(t) is contained in U. Then
the curves are linearly homotopic, via:

H:[0,1] = U, H(s,t)=(1-s)co(t)+ sci(t).
Then if w € Q(1] is a C! 1-form, let:
H*w = Pds + Qdt, d(H'w) = (Qs— P;)ds A dt.

We have, with ¢ the oriented boundary of [0, 1]%:

/H*w:/w—/w.
c Cc1 €0

dH*w = H*dw = (dw(H (s,t))[Hs, H])ds A dt.

By Stokes’ theorem for the rectangle:

/ Hw = / (Qs — P)dsdt,
c [0,1]2



where, for K = H([0,1]?) C U (compact):

|Qs—Fi| = [dw(H (s, 1)) [Hs, Hi]| < (Sl}l{p \dWthl[lopl] lco(t)—cr(®)I(slch(£)+(1=s)|er (1))

Thus we obtain the homotopy estimate:

yLw—was@gwmsmw%@—qammm+Lmn

tel0,1]

As a consequence, we have:

Proposition. Let ¢ : [0,1] — U be a sequence of rectifiable curves of
bounded length (with common endpoints), converging uniformly in [0, 1] to
a rectifiable curve cq : [0,1] — U. Then for any C' 1-form w, we have:

[wo [ o
Ck €0

Remark: Tt is interesting that this is true even though the lengths of the
¢, may fail to converge to the length of ¢g.

Problem 3. [Giaquinta-Modica] Let w be a closed C* 1-form in R™\{0}.
Prove that w is exact in R™ \ {0} if lim,_,q |x|w(z) = 0.

Problem 4. [Giaquinta-Modica] (i) Let w be a closed 1-form in R?\ {0}

satisfying:
/ w =0,
.

where (t) = (cost,sint),t € [0,27]. Show that w is exact in R?\ {0}.
(ii) Show that any closed 1-form w in R?\ {0} decomposes as:

w = Awy + «a,

where A € R, a is exact in R?\ {0} and wy is the (closed) ‘angle 1-form’ in
R%\ {0}:
y x
— d
x2 + y2 T+ x2 + y2

wo = dy



