MEASURABLE FUNCTIONS

Notation. F is the σ-algebra of Lebesgue-measurable subsets of $X = \mathbb{R}^n$. Given $E \in F$, $f : E \to \mathbb{R}$ (the extended real line) and $\alpha \in \mathbb{R}$ we adopt the notation:

$$E\{f > \alpha\} = \{x \in E; f(x) > \alpha\} = f^{-1}((\alpha, +\infty)) \in F.$$

In this handout we adopt the notations $m(E), m^*(E), m_*(E)$ for Lebesgue measure, outer and inner Lebegue measure (resp.)

Definition. f is measurable if for any $\alpha \in \mathbb{R}$, $E\{f > \alpha\}$ is in F.

It is easy to see that this is equivalent to requiring measurability of one of the following types of sets, for any α:

$$E\{f \geq \alpha\}, \quad E\{f < \alpha\}, \quad E\{f \leq \alpha\}.$$

It is also equivalent to requiring:

(i) For each open set $A \subset \mathbb{R}$, $f^{-1}(A) \in F$,

or to requiring

(ii) For each closed set $F \subset \mathbb{R}$, $f^{-1}(F) \in F$.

Recall that an algebra of subsets of X is a family \mathcal{F} of subsets with the properties (i) X and \emptyset are in \mathcal{F}; (ii) If $A \in \mathcal{F}$, the complement $A^c = X \setminus A$ is also in \mathcal{F}; (iii) If $A, B \in \mathcal{F}$, then $A \cup B, A \cap B$ and $A \setminus B$ are also in \mathcal{F}.

A family of subsets of X is a σ-algebra if it is an algebra and is closed under countable union:

$$A_n \in \mathcal{F} \text{ for } n = 1, 2, \ldots \Rightarrow \bigcup_{n \geq 1} A_n \in \mathcal{F}.$$

(It follows that \mathcal{F} is also closed under countable intersection.)

Given any family \mathcal{G} of subsets of X, consider the intersection of all σ-algebras containing \mathcal{G}. This is again a σ-algebra, the σ-algebra generated by \mathcal{G}. The Borel subsets of \mathbb{R}^n is the σ-algebra generated by the family of open subsets of \mathbb{R}^n. (Note this depends only on the topology, not on any measure.) Since open sets are Lebesgue-measurable, it follows that the Borel σ-algebra is contained in the σ-algebra of Lebesgue-measurable sets. In fact we have:

Fact: $E \subset \mathbb{R}^n$ is (Lebesgue) measurable if and only if there exists a Borel set $B \supset E$ with $m^*(B \setminus E) = 0$, if and only if there exists a Borel set $C \subset E$ with $m^*(E \setminus C) = 0$.

1
Problem 1. (Preimages behave nicely.) (i) Let \(f : E \to \bar{R} \) be a function. Show that the family of subsets \(\{ A \subset \mathbb{R}; f^{-1}(A) \in \mathcal{F} \} \) is a \(\sigma \)-algebra of subsets of \(R \).

(ii) Show that if \(f : E \to \bar{R} \) is measurable, then for every Borel set \(B \subset R \) we have \(f^{-1}(B) \in \mathcal{F} \).

Surprisingly, we have:

Example. There are measurable functions \(f : \mathbb{R} \to \mathbb{R} \) and (Lebesgue) measurable sets \(E \subset \mathbb{R} \) such that \(f^{-1}(E) \) is not measurable.

Let \(\phi : [0, 1] \to [0, 1] \) be Lebesgue’s singular function. The function \(g(x) = x + \phi(x) : [0, 1] \to [0, 2] \) is invertible, and maps the standard Cantor set (which has measure zero) onto a set of positive measure. And it is a fact that any set of positive measure contains a non-measurable set.

In fact, the following is true: a function \(f : \mathbb{R} \to \mathbb{R} \) maps measurable sets to measurable sets if, and only if, \(f \) maps sets of measure zero to sets of measure zero. ([Natanson, p.248, Theorem 2]).

Problem 2. (i) Let \(f, g : E \to \bar{R} \) be measurable. Then \(\max\{f, g\} \) and \(\min\{f, g\} \) are measurable. In particular, \(f_+ = \max\{f, 0\}, f_- = \max\{-f, 0\} \) and \(|f| = f_+ + f_- \) are measurable.

(ii) Let \(f : E \to \bar{R} \) be measurable and \(\phi : R \to R \) be continuous. Then the composition \(\phi \circ f \) is measurable. (In particular \(|f|^p \) (for any \(p \in \mathbb{R} \)) and \(e^f \) are measurable.)

Pointwise and a.e. limits. Let \(f_n, f : E \to \bar{R} \). Suppose \(f_n(x) \to f(x) \) pointwise in \(E \). Then \(f \) is measurable if each \(f_n \) is. To see this, let

\[
A_m^k = E\{f_k \geq \alpha + \frac{1}{m}\}, \quad B_m^n = \bigcap_{k=n}^{\infty} A_m^k.
\]

Then it is easy to see that:

\[
E\{f > \alpha\} = \bigcup_{m \geq 1, n \geq 1} B_m^n,
\]

and the set on the right is clearly measurable.

The same holds if we only know \(f_n \to f \) a.e. in \(E \): there is a null set \(N \subset E \) such that \(f_n \to f \) in \(E \setminus N \). Thus \(f \) is measurable in \(E \setminus N \), and also in \(N \) (since \(m(N) = 0 \), so \(f \) is measurable in \(E \)).

Proposition 1. (Lebesgue). Let \(E \subset X \) be measurable, with \(m(E) < \infty \). Suppose \(f_n \to f \) a.e. in \(E \), where \(f_n, f \) are measurable in \(E \) and finite a.e.
Then we have, for each $\sigma > 0$;

$$\lim_n m(E_n(\sigma)) = 0,$$

where $E_n(\sigma) = \{x \in E; |f_n(x) - f(x)| \geq \sigma\}$.

Remark: $m(E) < \infty$ is needed here: consider $f_n : R \to R, f_n(x) = 0$ for $x < n, f_n(x) = 1$ if $x \geq n$.

Proof. Consider the “bad sets”:

$$A = E\{f = \pm\infty\}; \quad A_n = E\{f_n = \pm\infty\}; \quad B = E\{f_n \not\to f\}.$$

Then $Q = A \cup (\cup_{n \geq 1} A_n) \cup B$ has measure zero. Fixing $\sigma > 0$, let

$$R_n(\sigma) = \bigcup_{k=n}^{\infty} E_k(\sigma), \quad M = \bigcap_{n=1}^{\infty} R_n(\sigma),$$

a decreasing intersection. Since $m(E) < \infty$, we have $m(M) = \lim_n m(R_n(\sigma))$.

But it is easy to see that $M \subset Q$. So $\lim_n m(R_n(\sigma)) = 0$, which is even stronger than the claim, since $E_n(\sigma) \subset R_n(\sigma)$. This concludes the proof.

A small extension of the proof leads to a stronger result:

Egorov’s theorem. Let $f_n, f : E \to R$, where $m(E) < \infty$. Then for any $\delta > 0$ we may find $F \subset E$ measurable with $m(F) \leq \delta$, so that $f_n \to f$ uniformly on $E \setminus F$.

Proof. We showed earlier that, for any $\sigma > 0$, $m(R_n(\sigma)) \to 0$. Let $(\sigma_i)_{i \geq 1}$ be any decreasing sequence of positive numbers converging to zero. Given $\delta > 0$, we find n_i so that:

$$m(R_{n_i}(\sigma_i)) < \frac{\delta}{2^i} \quad \forall i \geq 1.$$

Then letting

$$F = \bigcup_{i=1}^{\infty} R_{n_i}(\sigma_i), \quad m(F) \leq \sum_{i=1}^{\infty} m(R_{n_i}(\sigma_i)) \leq \delta,$$

it is easy to see that $f_n \to f$ uniformly in $E \setminus F$. Indeed given $\epsilon > 0$ choose $i_0 \geq 1$ so that $\sigma_{i_0} < \epsilon$. Then if $k \geq n_{i_0}$ and $x \in E \setminus F$, one verifies easily that:

$$|f_k(x) - f(x)| \leq \sigma_{i_0} < \epsilon.$$
Proposition 1 motivates the following definition.

Definition. Let $f_n, f : E \to \overline{R}$ be measurable and a.e. finite. We say f_n converges to f in measure if for all $\sigma > 0 \lim_{n \to \infty} m(E_n(\sigma)) = 0$, where $E_n(\sigma) = \{x \in E; |f_n(x) - f(x)| \geq \sigma\}$.

Remark. The limit in measure of a sequence (f_n) is not unique, but any two limits coincide a.e. ([Natanson, p.97]).

We showed in Proposition 1 that pointwise convergence implies convergence in measure (for functions defined on a set of finite measure). Conversely, if $f_n \to f$ in measure, then a subsequence of (f_n) converges to f pointwise a.e.

Proposition 2. Let $f_n, f : E \to R$, where $m(E) < \infty$. Assume $f_n \to f$ in measure. Then a subsequence (f_{n_i}) converges to f a.e. in E.

Proof. With notations as before, we have $m(E_n(\sigma)) \to 0$. Let $\sigma_i > 0$ be a decreasing sequence with limit zero. For each $i \geq 1$ we may find $n_i \geq 1$ so that:

$$m(E_{n_i}(\sigma_i)) \leq \frac{1}{2^i},$$

and hence $m(R_k) \leq \frac{1}{2^k}$, where $R_k = \bigcup_{i=k}^{\infty} E_{n_i}(\sigma_i)$.

Thus, defining:

$$N = \bigcap_{k=1}^{\infty} R_k,$$

the decreasing intersection property implies $m(N) = 0$. We claim that $f_{n_i}(x) \to f(x)$ for $x \in E \setminus N$.

To see this, let $\epsilon > 0$ be given, and let $x \in E \setminus N$. This means for some $k \geq 1$ we have: $x \in E \setminus R_k$, so for all $i \geq k$: $x \in E \setminus E_{n_i}(\sigma_i)$. Choosing $i_0 \geq k$ so that $\sigma_{i_0} < \epsilon$, we have for all $i \geq i_0$: $|f_{n_i}(x) - f(x)| < \epsilon$, as claimed.

The next result says that any given any measurable function f we may find a closed subset of its domain whose complement has arbitrarily small measure, so that the restriction of f to this closed set is continuous.

Luzin’s theorem. Let $f : E \to R$ be a measurable function. Then for any $\delta > 0$ we may find $F \subset E$ closed so that the restriction $f|_F$ is continuous on F and $m(E \setminus F) \leq \delta$.

Proof. (i) Assume first $m(E) < \infty$. For each integer $k \geq 1$, we let $\{I_{k,n}\}_{n \geq 1}$ denote the partition of R into countably many intervals (left-closed, right-open) of length $1/k$, and consider the partition of E by their
preimages, \[E = \bigcup_{n=1}^{\infty} E_{k,n}, \quad E_{k,n} = f^{-1}(I_{k,n}). \]

For each \(n \geq 1 \) we may find \(F_{k,n} \subset E_{k,n} \) compact, so that \(m(E_{k,n} \setminus F_{k,n}) < \frac{\delta}{2^{k+n+1}} \), in particular:

\[m(E \setminus \bigcup_{n=1}^{\infty} F_{k,n}) \leq \frac{\delta}{2k+1}, \quad m(E \setminus F_k) \leq \frac{\delta}{2k}, \quad \text{where} \quad F_k = \bigcup_{n=1}^{N_k} F_{k,n}, \]

for some \(N_k \geq 1 \) sufficiently large. Note the \(F_k \) are closed sets, hence their intersection \(F = \cap_{k \geq 1} F_k \) is also closed, and its complement in \(E \) has measure estimated by:

\[m(E \setminus F) = m(\bigcup_{k \geq 1} E \setminus F_k) \leq \delta. \]

Now define \(\phi_k : F_k \to R \) by:

\[\phi_k(x) = y_{k,n} \quad \text{for} \quad x \in F_{k,n}, \]

where \(y_{k,n} \in I_{k,n} \) is the left endpoint of the interval \(I_{k,n} \). This is well-defined, since the \(F_{k,n} \) for different \(n \) are disjoint. Further, since \(\phi_k \) is constant on disjoint closed sets, it is continuous in \(F_k \).

It is easy to see we have, for each \(x \in F_k \) (in particular, for each \(x \in F \)):

\[|\phi_k(x) - f(x)| \leq \frac{1}{k}. \]

This shows \(\phi_k \to f \) uniformly in \(F \), hence \(f \) is continuous when restricted to \(F \), as claimed in the statement of the theorem.

(ii) To extend this to the case when \(m(E) \) is not finite, consider the partition of \(R^n \) into countably many cubes \((Q_j)_{j \geq 1} \), say of side length one. We may apply part (i) to conclude the existence of \(F_j \subset E \cap Q_j \) with:

\[m((E \cap Q_j) \setminus F_j) \leq \frac{\delta}{2^j}, \quad f|_{F_j} \text{ continuous}. \]

Since the family of cubes \(\{Q_j\} \) is locally finite, the countable union of closed sets \(F = \cup_{j \geq 1} F_j \) is also closed. (Check this.) Thus \(f|_F \) is continuous and we estimate the measure of \(E \setminus F \) by:

\[m(E \setminus F) \leq \sum_{j=1}^{\infty} m((E \cap Q_j) \setminus F_j) \leq \delta, \]
as we wished to show.

Problem 3. Prove the converse: if $f : E \to R$ is a function with the property that for any $\delta > 0$ one may find a closed set $F \subset E$ so that the restriction $f|_F$ is continuous and $m(E \setminus F) < \delta$, then f is measurable.

Corollary 1. If $f : E \to R$ is measurable, for any $\delta > 0$ we may find $g_{\delta} : E \to R$ continuous in E, so that $m(\{x \in E; f(x) \neq g_{\delta}(x)\}) < \delta$. If $|f(x)| \leq K$ in E, then also $|g_{\delta}(x)| \leq K$ in E.

This follows from Tietze’s extension theorem in Topology (which says we can extend continuous functions defined on a closed subset to continuous functions on the whole space, without increasing its sup norm): extending the function f from the closed set F given by Luzin’s theorem to all of E yields g_{δ}.

Corollary 2. Let $f : E \to R$ be measurable. Then there exists a sequence $f_n : E \to R$ of functions continuous in E so that $f_n \to f$ a.e. in E.

Proof. Assume first $m(E) < \infty$. Letting δ_n be any sequence converging to 0 and considering the functions $f_n = g_{\delta_n}$ (continuous in E) given by Corollary 1, we see that $f_n \to f$ in measure. Thus by Proposition 2 a subsequence f_{n_j} converges to f a.e. in E.

It is easy to extend this to the case $m(E) = \infty$ (left to the reader.)