PROBLEM SET 2: Solutions
(From Chapter 2 of do Carmo’s Differential Forms and Applications.)

a) [Lw = fo '(t)]dt and |w(z)] < MVz € U, while L =
fo \c ]dt. Thus:

1
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(b) It is enough to show that [ w = 0 for any closed curve ¢ in R*\ {0}
(c:]0,1] — R?\ {0},¢(0) = ¢(1)). Note that for s € [0,1) the curve:

cs(t) = (1 —s)e(t), tel0,1]

is a closed curve in R?\ {0}, freely homotopic to ¢ in R?\ {0}. Its length is

given by:
1 1
Lles] = /0 |ci(t)|dt = (1 - 8)/0 |/ (t)|dt = (1 — s)L[c],

Thus, by part (a): | [, w| < (1 —s)MLc|. But this line integral has the
same value as the one over ¢, hence:

|/wsu—$m¢

which can be made as small as desired by taking s sufficiently close to 1.
Hence its value is zero.

(c) The hypothesis in (c) implies |w| < @ on the circle S, of radius

r > 0, center 0 (where M (r) — 0 as r — 0,). Any closed curve c in R?\ {0}
with winding number & is freely homotopic to S¥, the circle S, traversed k
times (in a direction depending on the sign of k.) Note that the length of
S¥ (as a parametrized curve) is L[S¥] = 2|k|rr. Thus, from part (a):

/w||/‘m< L L[54] = 2lklm M (r),

which can be made as small as we want, taking r > 0 small enough (since
M(r) —0). Thus [ w=0.

4. It is enough to show that w is locally exact (exact in a neighborhood
of each point), since locally exact forms are closed. Let p € U, and let



V = D,, C U be the open disk with center p, bounded by the circle with
center p, radius ro (this is contained in U if ry is small enough.) Let ¢ be
a closed curve contained in V. Consider the closed curves in V: c¢4(t) =
sp+ (1 —s)e(t), for s € [0,1]. The line integral of w along ¢, satisfies:
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and hence defines a continuous function of s € [0, 1], bounded in absolute
value by (1 — s)M L|c], where M is the maximum of |w| over the closed disk
D,, (see problem 2(a)). A continuous function on an interval of R taking
only rational values must be constant, and since its value is zero at s = 1
(constant curve), it must be zero for all s. In particular considering s = 0
we see that fcw = 0. Since c is an arbitrary closed curve in V, we see that
w is exact in V, hence locally exact in U.

5. Let f,g be potential functions for w in U,V (resp.): df = w in U,
dg =win V. Then d(f —g) =0 in UNV, and since U NV is connected
it follows that f = g+ C in U NV, for some constant C' € R. Then letting
h=finU, h=g+ Cin V, we see that h is well-defined in all of U UV,

and satisfies dh = w. So w is exact in U U V.

8. F: U — R?is a vector field in U C R?, satisfying F(—q) = —F(q) in
D C U, a closed disk with center 0 € U. Assume F' # 0 on ¢ = 0D. Claim:
The index n(F; D) is an odd integer.

To see this, parametrize D (a circle of radius r centered at 0 € R?)
by ¢ : [0,2n] = U,c(t) = re*, and write F(c(t)) = |F(c(t))|e’*®, where
¢ : [0,27] — R is an angle function for the closed curve with values on the
unit circle F(c(t))/|F(¢(t))|. By definition, n(F; D) = (¢(27) — ¢(0))/(27).
The condition F(—q) = —F(q) for ¢ € ¢ implies:

¢t +m) = o(t) + km, Vvt €0, 2n],

where k is an odd integer. In particular ¢(27) = ¢(w) + kn and ¢(7) =
¢(0) + km. Thus ¢(27) — ¢(0) = 2k7, so n(F; D) = k, an odd integer (in
particular not 0). That F' has a zero in D then follows from Prop. 4 in the
text.



