PROBLEM SET 2: Solutions
(From Chapter 2 of do Carmo's Differential Forms and Applications.)
2. (a) $\int_{c} \omega=\int_{0}^{1} \omega(c(t))\left[c^{\prime}(t)\right] d t$ and $|\omega(x)| \leq M \forall x \in U$, while $L=$ $\int_{0}^{1}\left|c^{\prime}(t)\right| d t$. Thus:
$\left|\int_{c} \omega\right|=\left|\int_{0}^{1} \omega(c(t))\left[c^{\prime}(t)\right] d t\right| \leq \int_{0}^{1}|\omega(c(t))|\left|c^{\prime}(t)\right| d t \leq M \int_{0}^{1}\left|c^{\prime}(t)\right| d t=M L$.
(b) It is enough to show that $\int_{c} \omega=0$ for any closed curve $c$ in $R^{2} \backslash\{0\}$ $\left(c:[0,1] \rightarrow R^{2} \backslash\{0\}, c(0)=c(1)\right)$. Note that for $s \in[0,1)$ the curve:

$$
c_{s}(t)=(1-s) c(t), \quad t \in[0,1]
$$

is a closed curve in $R^{2} \backslash\{0\}$, freely homotopic to $c$ in $R^{2} \backslash\{0\}$. Its length is given by:

$$
L\left[c_{s}\right]=\int_{0}^{1}\left|c_{s}^{\prime}(t)\right| d t=(1-s) \int_{0}^{1}\left|c^{\prime}(t)\right| d t=(1-s) L[c]
$$

Thus, by part (a): $\left|\int_{c_{s}} \omega\right| \leq(1-s) M L[c]$. But this line integral has the same value as the one over $c$, hence:

$$
\left|\int_{c} \omega\right| \leq(1-s) L[c]
$$

which can be made as small as desired by taking $s$ sufficiently close to 1 . Hence its value is zero.
(c) The hypothesis in (c) implies $|\omega| \leq \frac{M(r)}{r}$ on the circle $S_{r}$ of radius $r>0$, center 0 (where $M(r) \rightarrow 0$ as $r \rightarrow 0_{+}$). Any closed curve $c$ in $R^{2} \backslash\{0\}$ with winding number $k$ is freely homotopic to $S_{r}^{k}$, the circle $S_{r}$ traversed $k$ times (in a direction depending on the sign of $k$.) Note that the length of $S_{r}^{k}$ (as a parametrized curve) is $L\left[S_{r}^{k}\right]=2|k| \pi r$. Thus, from part (a):

$$
\left|\int_{c} \omega\right|=\left|\int_{S_{r}^{k}} \omega\right| \leq \frac{M(r)}{r} L\left[S_{r}^{k}\right]=2|k| \pi M(r)
$$

which can be made as small as we want, taking $r>0$ small enough (since $M(r) \rightarrow 0)$. Thus $\int_{c} \omega=0$.
4. It is enough to show that $\omega$ is locally exact (exact in a neighborhood of each point), since locally exact forms are closed. Let $p \in U$, and let
$V=D_{r_{0}} \subset U$ be the open disk with center $p$, bounded by the circle with center $p$, radius $r_{0}$ (this is contained in $U$ if $r_{0}$ is small enough.) Let $c$ be a closed curve contained in $V$. Consider the closed curves in $V: c_{s}(t)=$ $s p+(1-s) c(t)$, for $s \in[0,1]$. The line integral of $\omega$ along $c_{s}$ satisfies:

$$
\int_{c_{s}} \omega=\int_{0}^{1} \omega\left(c_{s}(t)\right) c_{s}^{\prime}(t) d t=(1-s) \int_{0}^{1} \omega\left(c_{s}(t)\right) c^{\prime}(t) d t
$$

and hence defines a continuous function of $s \in[0,1]$, bounded in absolute value by $(1-s) M L[c]$, where $M$ is the maximum of $|\omega|$ over the closed disk $\bar{D}_{r_{0}}$ (see problem 2(a)). A continuous function on an interval of $\mathbb{R}$ taking only rational values must be constant, and since its value is zero at $s=1$ (constant curve), it must be zero for all $s$. In particular considering $s=0$ we see that $\int_{c} \omega=0$. Since $c$ is an arbitrary closed curve in $V$, we see that $\omega$ is exact in $V$, hence locally exact in $U$.
5. Let $f, g$ be potential functions for $\omega$ in $U, V$ (resp.): $d f=\omega$ in $U$, $d g=\omega$ in $V$. Then $d(f-g) \equiv 0$ in $U \cap V$, and since $U \cap V$ is connected it follows that $f=g+C$ in $U \cap V$, for some constant $C \in \mathbb{R}$. Then letting $h=f$ in $U, h=g+C$ in $V$, we see that $h$ is well-defined in all of $U \cup V$, and satisfies $d h=\omega$. So $\omega$ is exact in $U \cup V$.
8. $F: U \rightarrow R^{2}$ is a vector field in $U \subset R^{2}$, satisfying $F(-q)=-F(q)$ in $D \subset U$, a closed disk with center $0 \in U$. Assume $F \neq 0$ on $c=\partial D$. Claim: The index $n(F ; D)$ is an odd integer.

To see this, parametrize $\partial D$ (a circle of radius $r$ centered at $0 \in R^{2}$ ) by $c:[0,2 \pi] \rightarrow U, c(t)=r e^{i t}$, and write $F(c(t))=|F(c(t))| e^{i \phi(t)}$, where $\phi:[0,2 \pi] \rightarrow \mathbb{R}$ is an angle function for the closed curve with values on the unit circle $F(c(t)) /|F(c(t))|$. By definition, $n(F ; D)=(\phi(2 \pi)-\phi(0)) /(2 \pi)$. The condition $F(-q)=-F(q)$ for $q \in c$ implies:

$$
\phi(t+\pi)=\phi(t)+k \pi, \quad \forall t \in[0,2 \pi]
$$

where $k$ is an odd integer. In particular $\phi(2 \pi)=\phi(\pi)+k \pi$ and $\phi(\pi)=$ $\phi(0)+k \pi$. Thus $\phi(2 \pi)-\phi(0)=2 k \pi$, so $n(F ; D)=k$, an odd integer (in particular not 0$)$. That $F$ has a zero in $D$ then follows from Prop. 4 in the text.

