
PROBLEM SET 2: Solutions

(From Chapter 2 of do Carmo’s Differential Forms and Applications.)

2. (a)
∫
c ω =

∫ 1
0 ω(c(t))[c′(t)]dt and |ω(x)| ≤ M∀x ∈ U , while L =∫ 1

0 |c
′(t)|dt. Thus:

|
∫
c
ω| = |

∫ 1

0
ω(c(t))[c′(t)]dt| ≤

∫ 1

0
|ω(c(t))||c′(t)|dt ≤M

∫ 1

0
|c′(t)|dt = ML.

(b) It is enough to show that
∫
c ω = 0 for any closed curve c in R2 \ {0}

(c : [0, 1]→ R2 \ {0}, c(0) = c(1)). Note that for s ∈ [0, 1) the curve:

cs(t) = (1− s)c(t), t ∈ [0, 1]

is a closed curve in R2 \ {0}, freely homotopic to c in R2 \ {0}. Its length is
given by:

L[cs] =

∫ 1

0
|c′s(t)|dt = (1− s)

∫ 1

0
|c′(t)|dt = (1− s)L[c],

Thus, by part (a): |
∫
cs
ω| ≤ (1 − s)ML[c]. But this line integral has the

same value as the one over c, hence:

|
∫
c
ω| ≤ (1− s)L[c],

which can be made as small as desired by taking s sufficiently close to 1.
Hence its value is zero.

(c) The hypothesis in (c) implies |ω| ≤ M(r)
r on the circle Sr of radius

r > 0, center 0 (where M(r)→ 0 as r → 0+). Any closed curve c in R2 \{0}
with winding number k is freely homotopic to Skr , the circle Sr traversed k
times (in a direction depending on the sign of k.) Note that the length of
Skr (as a parametrized curve) is L[Skr ] = 2|k|πr. Thus, from part (a):

|
∫
c
ω| = |

∫
Sk
r

ω| ≤ M(r)

r
L[Skr ] = 2|k|πM(r),

which can be made as small as we want, taking r > 0 small enough (since
M(r)→ 0). Thus

∫
c ω = 0.

4. It is enough to show that ω is locally exact (exact in a neighborhood
of each point), since locally exact forms are closed. Let p ∈ U , and let
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V = Dr0 ⊂ U be the open disk with center p, bounded by the circle with
center p, radius r0 (this is contained in U if r0 is small enough.) Let c be
a closed curve contained in V . Consider the closed curves in V : cs(t) =
sp+ (1− s)c(t), for s ∈ [0, 1]. The line integral of ω along cs satisfies:∫

cs

ω =

∫ 1

0
ω(cs(t))c

′
s(t)dt = (1− s)

∫ 1

0
ω(cs(t))c

′(t)dt,

and hence defines a continuous function of s ∈ [0, 1], bounded in absolute
value by (1− s)ML[c], where M is the maximum of |ω| over the closed disk
D̄r0 (see problem 2(a)). A continuous function on an interval of R taking
only rational values must be constant, and since its value is zero at s = 1
(constant curve), it must be zero for all s. In particular considering s = 0
we see that

∫
c ω = 0. Since c is an arbitrary closed curve in V , we see that

ω is exact in V , hence locally exact in U .

5. Let f, g be potential functions for ω in U, V (resp.): df = ω in U ,
dg = ω in V . Then d(f − g) ≡ 0 in U ∩ V , and since U ∩ V is connected
it follows that f = g + C in U ∩ V , for some constant C ∈ R. Then letting
h = f in U , h = g + C in V , we see that h is well-defined in all of U ∪ V ,
and satisfies dh = ω. So ω is exact in U ∪ V .

8. F : U → R2 is a vector field in U ⊂ R2, satisfying F (−q) = −F (q) in
D ⊂ U , a closed disk with center 0 ∈ U . Assume F 6= 0 on c = ∂D. Claim:
The index n(F ;D) is an odd integer.

To see this, parametrize ∂D (a circle of radius r centered at 0 ∈ R2)
by c : [0, 2π] → U, c(t) = reit, and write F (c(t)) = |F (c(t))|eiφ(t), where
φ : [0, 2π] → R is an angle function for the closed curve with values on the
unit circle F (c(t))/|F (c(t))|. By definition, n(F ;D) = (φ(2π)− φ(0))/(2π).
The condition F (−q) = −F (q) for q ∈ c implies:

φ(t+ π) = φ(t) + kπ, ∀t ∈ [0, 2π],

where k is an odd integer. In particular φ(2π) = φ(π) + kπ and φ(π) =
φ(0) + kπ. Thus φ(2π) − φ(0) = 2kπ, so n(F ;D) = k, an odd integer (in
particular not 0). That F has a zero in D then follows from Prop. 4 in the
text.
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